
9/30/2008

1

Computer Network Applications
Lecture 9

Dr. Hui Xiong
Rutgers University

Introduction 1-1

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3 3 Connectionless

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-2

3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

f
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data:
bi-directional data flow
in same connection
MSS: maximum segment
size

point-to-point:
one sender, one receiver

reliable, in-order byte
steam:

no “message boundaries”

Introduction 1-3

connection-oriented:
handshaking (exchange
of control msgs) init’s
sender, receiver state
before data exchange

flow controlled:
sender will not
overwhelm receiver

no message boundaries
pipelined:

TCP congestion and flow
control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP segment structure

source port # dest port #

32 bits

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used) # bytes

 illi

counting
by bytes
of data
(not segments!)

Introduction 1-4

application
data

(variable length)

Urg data pnterm

Options (variable length)

g y

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

rcvr willing
to accept

Internet
checksum

(as in UDP)

TCP seq. #’s and ACKs
Seq. #’s:

byte stream
“number” of first
byte in segment’s
data

ACKs:
 # f t b t

Host A Host B

User
types

‘C’
host ACKs
receipt of
‘C’, echoes

b k ‘C’

Introduction 1-5

seq # of next byte
expected from
other side
cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t
say, - up to
implementor

host ACKs
receipt

of echoed
‘C’

back ‘C’

time
simple telnet scenario

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

Introduction 1-6

9/30/2008

2

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

300

350

on
ds

)

Introduction 1-7

100

150

200

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

SampleRTT Estimated RTT

TCP Round Trip Time and Timeout

Setting the timeout
EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

Introduction 1-8

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3 3 Connectionless

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-9

3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

f
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

TCP reliable data transfer

TCP creates rdt
service on top of IP’s
unreliable service
Pipelined segments
Cumulative acks

Retransmissions are
triggered by:

timeout events
duplicate acks

Initially consider

Introduction 1-10

Cumulative acks
TCP uses single
retransmission timer

Initially consider
simplified TCP sender:

ignore duplicate acks
ignore flow control,
congestion control

TCP sender events:
data rcvd from app:

Create segment with
seq #
seq # is byte-stream
number of first data
byte in segment

timeout:
retransmit segment
that caused timeout
restart timer

Ack rcvd:
If acknowledges

Introduction 1-11

y g
start timer if not
already running (think
of timer as for oldest
unacked segment)
expiration interval:
TimeOutInterval

If acknowledges
previously unacked
segments

update what is known to
be acked
start timer if there are
outstanding segments

TCP: retransmission scenarios
Host A Host B

eq
=9

2
ti

m
eo

ut

Host A

l

ti
m

eo
ut

Host B

X

Introduction 1-12

time
premature timeout

Seloss

lost ACK scenario
time

Se
q=

92
 t

im
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

9/30/2008

3

Fast Retransmit

Time-out period often
relatively long:

long delay before
resending lost packet

Detect lost segments

If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:

Introduction 1-13

gm
via duplicate ACKs.

Sender often sends
many segments back-to-
back
If segment is lost,
there will likely be many
duplicate ACKs.

fast retransmit: resend
segment before timer
expires

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3 3 Connectionless

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-14

3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

f
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

TCP Flow Control

receive side of TCP
connection has a
receive buffer:

d t hi

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

Introduction 1-15

speed-matching
service: matching the
send rate to the
receiving app’s drain
rateapp process may be

slow at reading from
buffer

TCP Flow control: how it works

(S TCP i

Rcvr advertises spare
room by including value
of RcvWindow in
segments
Sender limits unACKed

Introduction 1-16

(Suppose TCP receiver
discards out-of-order
segments)
spare room in buffer

= RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

data to RcvWindow
guarantees receive
buffer doesn’t overflow

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3 3 Connectionless

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-17

3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

f
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

TCP Connection Management
Recall: TCP sender, receiver

establish “connection” before
exchanging data segments
initialize TCP variables:

seq. #s
buffers, flow control info
(e.g. RcvWindow)

Three way handshake:
Step 1: client host sends TCP

SYN segment to server
specifies initial seq #
no data

Step 2: server host receives
YN li i h YN CK

Introduction 1-18

client: connection initiator
Socket clientSocket = new
Socket("hostname","port

number");

server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

SYN, replies with SYNACK
segment

server allocates buffers
specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

SYN flood attack!!!

9/30/2008

4

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system

client server

close

l

Introduction 1-19

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

close

closed

ti
m

ed
 w

ai
t

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

Enters “timed wait” -
will respond with ACK
to received FINs

client server

closing

l i

Introduction 1-20

to received FINs

Step 4: server, receives
ACK. Connection closed.

Note: with small
modification, can handle
simultaneous FINs.

closing

closed

ti
m

ed
 w

ai
t

closed

TCP Connection Management (cont)

TCP server
lifecycle

Introduction 1-21

TCP client
lifecycle

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3 3 Connectionless

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-22

3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

f
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

Principles of Congestion Control

Congestion:
informally: “too many sources sending too much
data too fast for network to handle”
different from flow control!

Introduction 1-23

manifestations:
lost packets (buffer overflow at routers)
long delays (queueing in router buffers)

a top-10 problem!

Causes/costs of congestion: scenario 1

two senders, two
receivers
one router,
infinite buffers
no retransmission

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Introduction 1-24

large delays
when congested
maximum
achievable
throughput

9/30/2008

5

Causes/costs of congestion: scenario 2

one router, finite buffers
sender retransmission of lost packet

Host A λin : original
data

λout

Introduction 1-25

finite shared output
link buffers

Host B

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 2
always: (goodput)
“perfect” retransmission only when loss:

retransmission of delayed (not lost) packet makes larger
(than perfect case) for same

λ
in

λout=

λ
in

λout>
λ

in
λout

R/2R/2 R/2

Introduction 1-26

“costs” of congestion:
more work (retrans) for given “goodput”
unneeded retransmissions: link carries multiple copies of pkt

R/2
λin

λ o
ut

b.

R/2
λin

λ o
ut

a.

R/2
λin

λ o
ut

c.

R/4

R/3

Causes/costs of congestion: scenario 3
four senders
multihop paths
timeout/retransmit

λ
in

Q: what happens as
and increase ?λ

in

Host A
λin : original data λout

λ'in : original data, plus
retransmitted data

Introduction 1-27

finite shared output
link buffers

Host B

Causes/costs of congestion: scenario 3
H
o
s
t
A

H
o
s
t
B

λ
o
u
t

Introduction 1-28

Another “cost” of congestion:
when packet dropped, any “upstream transmission
capacity used for that packet was wasted!

Approaches towards congestion control

End-end congestion
control:
no explicit feedback from
network

Network-assisted
congestion control:
routers provide feedback
to end systems

Two broad approaches towards congestion control:

Introduction 1-29

network
congestion inferred from
end-system observed loss,
delay
approach taken by TCP

to end systems
single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)
explicit rate sender
should send at

Chapter 3 outline

3.1 Transport-layer
services
3.2 Multiplexing and
demultiplexing
3 3 Connectionless

3.5 Connection-oriented
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-30

3.3 Connectionless
transport: UDP
3.4 Principles of
reliable data transfer

f
connection management

3.6 Principles of
congestion control
3.7 TCP congestion
control

9/30/2008

6

TCP Congestion Control

end-end control (no network
assistance)
sender limits transmission:
LastByteSent-LastByteAcked

≤ CongWin

How does sender
perceive congestion?
loss event = timeout or
3 duplicate acks
TCP sender reduces

Introduction 1-31

≤ CongWin

Roughly,

CongWin is dynamic, function
of perceived network
congestion

TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:
AIMD
slow start
conservative after
timeout events

rate = CongWin
RTT Bytes/sec

TCP AIMD

24 Kbytes

congestion
window

multiplicative decrease:
cut CongWin in half
after loss event

additive increase:
increase CongWin by
1 MSS every RTT in
the absence of loss
events: probing

Introduction 1-32

8 Kbytes

16 Kbytes

time

Long-lived TCP connection

TCP Slow Start

When connection begins,
CongWin = 1 MSS

Example: MSS = 500
bytes & RTT = 200 msec
initial rate = 20 kbps

When connection begins,
increase rate
exponentially fast until
first loss event

Introduction 1-33

available bandwidth may
be >> MSS/RTT

desirable to quickly ramp
up to respectable rate

TCP Slow Start (more)

When connection
begins, increase rate
exponentially until
first loss event:

double CongWin every

Host A

RT
T

Host B

Introduction 1-34

g y
RTT
done by incrementing
CongWin for every ACK
received

Summary: initial rate
is slow but ramps up
exponentially fast time

Refinement
After 3 dup ACKs:

CongWin is cut in half
window then grows
linearly

But after timeout event:

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

Introduction 1-35

But after timeout event:
CongWin instead set to
1 MSS;
window then grows
exponentially
to a threshold, then
grows linearly

ACKs is more alarming

Summary: TCP Congestion Control

When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

Introduction 1-36

congestion avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

9/30/2008

7

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

TCP Fairness

Introduction 1-37

bottleneck
router

capacity R

TCP
connection 2

Fairness (more)
Fairness and UDP

Multimedia apps often
do not use TCP

do not want rate
throttled by congestion
control

Fairness and parallel TCP
connections
nothing prevents app from
opening parallel connections
between 2 hosts.
Web browsers do this

Introduction 1-38

Instead use UDP:
pump audio/video at
constant rate, tolerate
packet loss

Research area: TCP
friendly

Web browsers do this
Example: link of rate R
supporting 9 connections;

new app asks for 1 TCP, gets
rate R/10
new app asks for 11 TCPs, gets
R/2 !

Chapter 3: Summary
principles behind transport
layer services:

multiplexing,
demultiplexing
reliable data transfer

Introduction 1-39

flow control
congestion control

instantiation and
implementation in the
Internet

UDP
TCP

Next:
leaving the network
“edge” (application,
transport layers)
into the network
“core”

