Computer Network Applications
Lecture 7

Dr. Hui Xiong
Rutgers University

Introduction  1-1

Chapter 3: Transport Layer

Qur goals:

0 understand principles
behind ftransport
layer services:

o multiplexing/demultipl
exing

o reliable data transfer

o flow control

O congestion control

Q learn about transport
layer protocols in the
Internet:

O UDP: connectionless
transport

O TCP: connection-oriented
transport

O TCP congestion control

Introduction 12

Chapter 3 outline

Transport services and protocols

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
Q 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Introduction 13

Q provide /ogical communication
between app processes
running on different hosts

Q transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rev side: reassembles
segments into messages,
passes to app layer

0O more than one transport
protocol available to apps

o Internet: TCP and UDP

“transport.

fata fin
data link

==

physmul

| nefwork_|
physical

Introduction 1-4

Transport vs. network layer

Q network layer: logical
communication
between hosts

Q ftransport layer: logical
communication
between processes

o relies on, enhances,
network layer services

Household analogy:
12 kids sending letters to
12 kids

0 processes = kids

0 app messages = letters
in envelopes

0 hosts = houses

0 transport protocol =
Ann and Bill

0 network-layer protocol
= postal service

Introduction 15

Internet transport-layer protocols

Q reliable, in-order
delivery (TCP)
O congestion control
o flow control
O connection setup
0 unreliable, unordered
delivery: UDP
o no-frills extension of
“best-effort” IP
0 services not available:
O delay guarantees
O bandwidth guarantees

nefwork

hysical X
physical ==

data link

physical

physical

Introduction 1-6




Chapter 3 outline

0 3.1 Transport-layer
services

Q 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
Q 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Introduction 17

Multiplexing/demultiplexing

Demultiplexing at rcv host:

delivering received segments
to correct socket

Multiplexing at send host:
gathering data from multiple
sockets, enveloping data with
header (later used for

demultiplexing)

[ = socket O = process
P1) application (P2 P4 application
transport transport fransport
network network network
link link link
physical physical physical
host 1 host 2 host 3

Introduction 1-8

How demultiplexing works

Q host receives IP datagrams
o each datagram has source
IP address, destination IP
address
o each datagram carries 1
transport-layer segment
O each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)
0 host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Introduction 19

Connectionless demultiplexing

Q Create sockets with port

numbers:
DatagramSocket mySocketl

DatagramSocket(99111);
DatagramSocket mySocket2

DatagramSocket(99222);

0 UDP socket identified by

two-tuple:

(desr IP address, dest port number)

0 When host receives UDP
segment:
O checks destination port
number in segment
= new o directs UDP segment to
socket with that port
number
Q IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

= new

Introduction  1-10

Connectionless d

emux (cont)

DatagramSocket serverSocket

= new DatagramSocket(6428);

SP: 6428

SP: 6428

DP: 9157

DP: 5775

SP: 9157

SP: 5775

client |DP:6428
IP: A IP:

SP provides “return address”

server

DP: 6428 Client
c IP:B

Introduction  1-11

Connection-oriented demux

0 TCP socket identified
by 4-tuple:
O source IP address
O source port number
O dest IP address
O dest port number

0 recv host uses all four

values to direct

segment to appropriate

socket

Q Server host may support
many simultaneous TCP
sockets:

O each socket identified by
its own 4-tuple

0 Web servers have
different sockets for
each connecting client

O non-persistent HTTP will
have different socket for
each request

Introduction  1-12




Connection-oriented demux

(cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C
SP: 9157 SP: 9157
client | DP: §0 server OP: 3.0 Client
IPPA | SIPA P C 5-IP: B P8
D-IP:C D-IP:C

Introduction 1-13

Connection-oriented demux:

Threaded Web Server

=
SP: 5775
DP: 80
S-IP: B
D-IP:C
SP: 9157 SP: 9157
client DP: 89 server DP: 8_0 CIign‘r
IP: A S-IP: A P C S-IP: B IP:B
D-IP:C D-IP:C

Introduction  1-14

Chapter 3 outline

Q 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

Q 3.4 Principles of
reliable data transfer

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
Q 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Introduction  1-15

UDP: User Datagram Protocol [RFC 768]

a “no frills,” “bare bones”
Internet transport
protocol

0 “best effort” service, UDP
segments may be:

O lost
O delivered out of order
to app

Q connectionless:

o no handshaking between
UDP sender, receiver

O each UDP segment
handled independently
of others

Why is there a UDP?

0O no connection
establishment (which can
add delay)

0 simple: no connection state

at sender, receiver

small segment header

0 no congestion control: UDP
can blast away as fast as
desired

(=]

Introduction  1-16

UDP: more

0 often used for streaming
multimedia apps
O loss tolerant
O rate sensitive
0 other UDP uses
o DNS
o SNMP
0 reliable transfer over UDP:
add reliability at
application layer
o application-specific
error recovery!

Length, in
bytes of UDP [~ length checksum
segment,
including
header

32 bits

source port #| dest port #

Application
data
(message)

UDP segment format

Introduction  1-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

Sender:

O treat segment contents
as sequence of 16-bit
integers

0 checksum: addition (1's
complement sum) of
segment contents

0 sender puts checksum
value into UDP checksum
field

Receiver:
0 compute checksum of
received segment
0 check if computed checksum
equals checksum field value:
o NO - error detected
O YES - no error detected.
But maybe errors
nonetheless? More later

Introduction  1-18




Internet Checksum Example

0 Note
o When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1110011001100
0

1 0
110 101

1
0

-
o
-
o
-
o
-
o
-

wrapar'ound@lol1101110111011

sum 101 1100
checksum 0100010001000011

Introduction  1-19

[,
-
o
-
[
-
o
-
[

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

O 3.3 Connectionless o flow control
transport: ubP O connection management
Q 3.4 Principles of Q 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

Introduction

1-20

Principles of Reliable data transfer

0 important in app., transport, link layers
0 top-10 list of important networking topics!
=

g

32

ol

a

o

e [ion)ldeliver data()
2 3 reliakle data

72 fransfer protocal
58 (recening side)

udt_send )} frae_ccvn)

L mreictie chonnal)

(b service implementation

(@) provided service
0O characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Introduction  1-21

Rdt1.0: reliable transfer over a reliable channel

O underlying channel perfectly reliable
O no bit errors
O no loss of packets
0 separate FSMs for sender, receiver:
O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_send(data)

“Await for' “AWait for
, call from
packet = make_pkt(data) below
udt_send(packet)

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

call from
above

sender receiver

Introduction

1-22

Rdt2.0: channel with bit errors

O underlying channel may flip bits in packet
O checksum to detect bit errors
Q the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK
0 new mechanisms in rdt2.0 (beyond rdt1.0):
O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Introduction  1-23

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? 0 sender adds seguence
O sender doesn't know what number to each pkt

happened at receiver! 0 sender retransmits current
O can't just refransmit: pkt if ACK/NAK garbled
possible duplicate O receiver discards (doesn't

deliver up) duplicate pkt

stop and wait

Sender sends one packet,
then waits for receiver
response

Introduction

1-24




rdt3.0: channels with errors and loss

New assumption:
underlying channel can

also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,

retransmissions will be
of help, but not enough

Approach: sender waits

“reasonable” amount of
time for ACK

0 retransmits if no ACK

received in this time

0 if pkt (or ACK) just delayed

(not lost):
O retransmission will be
duplicate, but use of seq.

rdt3.0 in action

#'s already handles this

O receiver must specify seq
# of pkt being ACKed
O requires countdown timer

Introduction  1-25

sender receiver
sender receiver 3 okt
sand pkid ‘\* K0 6 pho -‘\"‘\_" 1o ol
v pkt0 ¢ v A
= saned ACKD ALK send ACKD
g / v ACKD
rev ACKD send pit] pict
send pid] \A({e.
- oy pitl
e sand ACK]
revACK ]
sand prl ot timecut o
4 resend pki 1
oy oV KD send pi ““\.__\* 1ev okt
sond ACKD ACK send ACK]
EWACKT e
sand pie0 i
(a) operation with no loss AT rev pid)
/ sond ACKD

{B] lost packet

Introduction  1-26

rdt3.0 in action

sander recaiver sender [
send piad i : sand pki0 it
T, rovpan PO 0, revpko
ACK sand ACKD S o RO
5 / 1oy ACKD
“ . send okt Pt
rov pid

ACK send ACK
(loss] X

fimaout

firmecut it 1esand pktl
resend pid] h“"“‘-—-.*
e - ! VAEK
e i 5 send pkid
HEVAC
sand pkid 2
oV pkdd
/ sand ACKD
(] lost ACK (d) premature fimeout

Introduction  1-27

Performance of rdt3.0

0 rd+3.0 works, but performance stinks
0 example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T - L (packet length in bits) _ 8kb/pkt
fransmit ™ R(fransmission rate, bps) = 10**9 b/sec

= 8 microsec

= L/—R = ﬂ = 0.00027

v = =
sender RTT+L/R 30.008
O U gongert Utilization - fraction of time sender busy sending
O 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link

O network protocol limits use of physical resources!

Introduction  1-28

last packet bit transmitted, t = L / R

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fa----------------ooooo|

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send nex
packet, t = RTT + L/ R

___L/R 008

U = = = 0.00027
sender  poT . L/R 30008

Introduction  1-29

Pipelined protocols

Pipelining: sender allows multiple, “in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
o buffering at sender and/or receiver

o shop-ona. B

0 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Introduction  1-30




Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —-
last bit transmitted, t =L /R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
—last bit of 39 packet arrives, send ACK

i Increase utilization
/by a factor of 3!

u - _3*L/R _ .024
sender  prT, /R 30.008

= 0.0008

Introduction  1-31




