
1

Computer Network Applications
Lecture 7

Dr. Hui Xiong
Rutgers University

Introduction 1-1

Chapter 3: Transport Layer
Our goals:

understand principles 
behind transport 
layer services:

multiplexing/demultipl
xin

learn about transport 
layer protocols in the 
Internet:

UDP: connectionless 
transport

Introduction 1-2

exing
reliable data transfer
flow control
congestion control

transport
TCP: connection-oriented 
transport
TCP congestion control

Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3 3 Connectionless 

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-3

3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

f
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control

Transport services and protocols
provide logical communication
between app processes 
running on different hosts
transport protocols run in 
end systems 

send side: breaks app 

application
transport
network
data link
physical

network
data link

network
data link
physical

network
data link
physicalnetwork

data link
physical

Introduction 1-4

messages into segments, 
passes to  network layer
rcv side: reassembles 
segments into messages, 
passes to app layer

more than one transport 
protocol available to apps

Internet: TCP and UDP

application
transport
network
data link
physical

network
data link
physical

data link
physical

Transport vs. network layer

network layer: logical 
communication 
between hosts
transport layer: logical 
communication 

Household analogy:
12 kids sending letters to 

12 kids
processes = kids
app messages = letters 

Introduction 1-5

communication 
between processes 

relies on, enhances, 
network layer services

app messages = letters 
in envelopes
hosts = houses
transport protocol = 
Ann and Bill
network-layer protocol 
= postal service

Internet transport-layer protocols

reliable, in-order 
delivery (TCP)

congestion control 
flow control
connection setup

li bl  d d 

application
transport
network
data link
physical

network
data link

network
data link
physical

network
data link
physicalnetwork

data link
physical

Introduction 1-6

unreliable, unordered 
delivery: UDP

no-frills extension of 
“best-effort” IP

services not available: 
delay guarantees
bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

data link
physical



2

Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3 3 Connectionless 

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-7

3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

f
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control

Multiplexing/demultiplexing

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with 
header (later used for 
demultiplexing)

Multiplexing at send host:

Introduction 1-8

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

How demultiplexing works
host receives IP datagrams

each datagram has source 
IP address, destination IP 
address
each datagram carries 1 
transport-layer segment
each segment has source  

source port # dest port #

32 bits

other header fields

Introduction 1-9

each segment has source, 
destination port number 
(recall: well-known port 
numbers for specific 
applications)

host uses IP addresses & port 
numbers to direct segment to 
appropriate socket

application
data 

(message)

TCP/UDP segment format

Connectionless demultiplexing

Create sockets with port 
numbers:

DatagramSocket mySocket1 = new 
DatagramSocket(99111);

DatagramSocket mySocket2 = new 
DatagramSocket(99222);

When host receives UDP 
segment:

checks destination port 
number in segment
directs UDP segment to 
socket with that port 

Introduction 1-10

DatagramSocket(99222);

UDP socket identified by  
two-tuple:

(dest IP address, dest port number)

socket with that port 
number

IP datagrams with 
different source IP 
addresses and/or source 
port numbers directed 
to same socket

Connectionless demux (cont)
DatagramSocket serverSocket = new DatagramSocket(6428);

P2 P1P1P3

Introduction 1-11

Client
IP:B

client
IP: A

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Connection-oriented demux

TCP socket identified 
by 4-tuple: 

source IP address
source port number
dest IP address

Server host may support 
many simultaneous TCP 
sockets:

each socket identified by 
its own 4-tuple

Introduction 1-12

dest port number
recv host uses all four 
values to direct 
segment to appropriate 
socket

Web servers have 
different sockets for 
each connecting client

non-persistent HTTP will 
have different socket for 
each request



3

Connection-oriented demux 
(cont)

P1 P1P2P4 P5 P6 P3

SP: 5775
DP: 80

Introduction 1-13

Client
IP:B

client
IP: A

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

D-IP:C
S-IP: A
D-IP:C

S-IP: B

D  8

D-IP:C
S-IP: B

Connection-oriented demux: 
Threaded Web Server

P1 P1P2P4 P3

SP: 5775
DP: 80

Introduction 1-14

Client
IP:B

client
IP: A

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

D-IP:C
S-IP: A
D-IP:C

S-IP: B

D  8

D-IP:C
S-IP: B

Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3 3 Connectionless 

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-15

3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

f
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones” 
Internet transport 
protocol
“best effort” service, UDP 
segments may be:

lost

Why is there a UDP?
no connection 
establishment (which can 
add delay)
simple: no connection state 

Introduction 1-16

delivered out of order 
to app

connectionless:
no handshaking between 
UDP sender, receiver
each UDP segment 
handled independently 
of others

simple: no connection state 
at sender, receiver
small segment header
no congestion control: UDP 
can blast away as fast as 
desired

UDP: more
often used for streaming 
multimedia apps

loss tolerant
rate sensitive

other UDP uses
DNS

source port # dest port #

32 bits

length checksum
Length, in

bytes of UDP
segment,
including

h d

Introduction 1-17

DNS
SNMP

reliable transfer over UDP: 
add reliability at 
application layer

application-specific 
error recovery!

Application
data 

(message)

UDP segment format

header

UDP checksum

Sender:
treat segment contents 

  f 16 bit 

Receiver:
compute checksum of 

i d t

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment

Introduction 1-18

as sequence of 16-bit 
integers
checksum: addition (1’s 
complement sum) of 
segment contents
sender puts checksum 
value into UDP checksum 
field

received segment
check if computed checksum 
equals checksum field value:

NO - error detected
YES - no error detected. 
But maybe errors 
nonetheless? More later 
….



4

Internet Checksum Example
Note

When adding numbers, a carryout from the 
most significant bit needs to be added to the 
result

Example: add two 16-bit integers

Introduction 1-19

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

Chapter 3 outline

3.1 Transport-layer 
services
3.2 Multiplexing and 
demultiplexing
3 3 Connectionless 

3.5 Connection-oriented 
transport: TCP

segment structure
reliable data transfer
flow control

Introduction 1-20

3.3 Connectionless 
transport: UDP
3.4 Principles of 
reliable data transfer

f
connection management

3.6 Principles of 
congestion control
3.7 TCP congestion 
control

Principles of Reliable data transfer
important in app., transport, link layers
top-10 list of important networking topics!

Introduction 1-21

characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable
no bit errors
no loss of packets

separate FSMs for sender, receiver:
sender sends data into underlying channel

i  d d t  f  d l i  h l

Introduction 1-22

receiver read data from underlying channel

Wait for 
call from 
above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for 
call from 

below

rdt_rcv(packet)

sender receiver

Rdt2.0: channel with bit errors

underlying channel may flip bits in packet
checksum to detect bit errors

the question: how to recover from errors:
acknowledgements (ACKs): receiver explicitly tells sender 
that pkt received OK
negative acknowledgements (NAKs): receiver explicitly 

Introduction 1-23

negative acknowledgements (NAKs): receiver explicitly 
tells sender that pkt had errors
sender retransmits pkt on receipt of NAK

new mechanisms in rdt2.0 (beyond rdt1.0):
error detection
receiver feedback: control msgs (ACK,NAK) rcvr->sender

rdt2.0 has a fatal flaw!

What happens if 
ACK/NAK corrupted?
sender doesn’t know what 
happened at receiver!
can’t just retransmit: 

Handling duplicates: 
sender adds sequence 
number to each pkt
sender retransmits current 
pkt if ACK/NAK garbled

Introduction 1-24

possible duplicate receiver discards (doesn’t 
deliver up) duplicate pkt

Sender sends one packet, 
then waits for receiver 
response

stop and wait



5

rdt3.0: channels with errors and loss

New assumption:
underlying channel can 
also lose packets (data 
or ACKs)

checksum, seq. #, ACKs, 

Approach: sender waits 
“reasonable” amount of 
time for ACK 
retransmits if no ACK 
received in this time

Introduction 1-25

m, q , ,
retransmissions will be 
of help, but not enough

if pkt (or ACK) just delayed 
(not lost):

retransmission will be  
duplicate, but use of seq. 
#’s already handles this
receiver must specify seq 
# of pkt being ACKed

requires countdown timer

rdt3.0 in action

Introduction 1-26

rdt3.0 in action

Introduction 1-27

Performance of rdt3.0

rdt3.0 works, but performance stinks
example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
10**9 b/sec = 8 microsec

L (packet length in bits)
R (transmission rate, bps) =

Introduction 1-28

U sender: utilization – fraction of time sender busy sending
1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
network protocol limits use of physical resources!

U 
sender =

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

= 

( , p )

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

Introduction 1-29

ACK arrives, send next 
packet, t = RTT + L / R

U 
sender = 

.008 
30.008 

= 0.00027 L / R 
RTT + L / R 

=

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged pkts
range of sequence numbers must be increased
buffering at sender and/or receiver

Introduction 1-30

Two generic forms of pipelined protocols: go-Back-N, 
selective repeat



6

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT 

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK
last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives send ACK

Introduction 1-31

ACK arrives, send next 
packet, t = RTT + L / R

last bit of 3rd packet arrives, send ACK

U 
sender = 

.024 
30.008 

= 0.0008 3 * L / R 
RTT + L / R 

= 

Increase utilization
by a factor of 3!


