
1

Introduction 1-1

Computer Network Applications

Lecture 5

Fall 2008

Dr. Hui Xiong
Rutgers University

Introduction 1-2

Last Course Review
Application architectures

Client-server
Peer-to-peer (P2P)
Hybrid of client-server and P2P

Introduction 1-3

What transport service does an app need?

Data loss
some apps (e.g., audio) can 
tolerate some loss
other apps (e.g., file 
transfer, telnet) require 
100% reliable data 
transfer

Timing
some apps (e.g., 
Internet telephony, 
interactive games) 
require low delay to be 
“effective”

Bandwidth
some apps (e.g., 
multimedia) require 
minimum amount of 
bandwidth to be 
“effective”
other apps (“elastic 
apps”) make use of 
whatever bandwidth 
they get 

Introduction 1-4

Internet transport protocols services

TCP service:
connection-oriented: setup 
required between client and 
server processes
reliable transport between 
sending and receiving process
flow control: sender won’t 
overwhelm receiver 
congestion control: throttle 
sender when network 
overloaded
does not provide: timing, 
minimum bandwidth 
guarantees

UDP service:
unreliable data transfer 
between sending and 
receiving process
does not provide: 
connection setup, 
reliability, flow control, 
congestion control, timing, 
or bandwidth guarantee 

Q: why bother?  Why is 
there a UDP?

Introduction 1-5

Internet apps:  application, transport protocols

Application

e-mail
remote terminal access

Web 
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

Introduction 1-6

User-server state: cookies

Many major Web sites 
use cookies

Four components:
1) cookie header line in 

the HTTP response 
message

2) cookie header line in 
HTTP request message

3) cookie file kept on 
user’s host and managed 
by user’s browser

4) back-end database at 
Web site

Example:
Susan access Internet 
always from same PC
She visits a specific e-
commerce site for first 
time
When initial HTTP 
requests arrives at site, 
site creates a unique ID 
and creates an entry in 
backend database for 
ID



2

Introduction 1-7

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678 

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend 

database

access

acc
ess

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

Introduction 1-8

Cookies (continued)
What cookies can bring:

authorization
shopping carts
recommendations
user session state 
(Web e-mail)

Cookies and privacy:
cookies permit sites to 
learn a lot about you
you may supply name 
and e-mail to sites
search engines use  
redirection & cookies 
to learn yet more
advertising  companies  
obtain info across 
sites

aside

Introduction 1-9

Web caches (proxy server)

user sets browser: Web 
accesses via  cache
browser sends all HTTP 
requests to  cache

object in cache: cache 
returns object 
else cache requests 
object from origin 
server, then returns 
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin 
server

origin 
server

Introduction 1-10

More about Web caching

Cache acts as both client 
and server
Typically cache is installed 
by ISP (university, 
company, residential ISP)

Why Web caching?
Reduce response time for 
client request.
Reduce traffic on an 
institution’s access link.
Internet dense with caches 
enables “poor” content 
providers to effectively 
deliver content (but so 
does P2P file sharing)

Introduction 1-11

Caching example 
Assumptions

average object size = 100,000 
bits
avg. request rate from 
institution’s browsers to origin 
servers = 15/sec
delay from institutional router 
to any origin server and back 
to router  = 2 sec

Consequences
utilization on LAN = 15%
utilization on access link = 100%
total delay   = Internet delay + 
access delay + LAN delay

=  2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps 
access link

institutional
cache

Introduction 1-12

Caching example (cont)
Possible solution

increase bandwidth of access 
link to, say, 10 Mbps

Consequences
utilization on LAN = 15%
utilization on access link = 15%
Total delay   = Internet delay + 
access delay + LAN delay

=  2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps 
access link

institutional
cache



3

Introduction 1-13

Caching example (cont)

Install cache
suppose hit rate is .4

Consequence
40% requests will be 
satisfied almost immediately
60% requests satisfied by 
origin server
utilization of access link 
reduced to 60%, resulting in 
negligible  delays (say 10 
msec)
total avg delay   = Internet 
delay + access delay + LAN 
delay   =  .6*(2.01) secs + 
milliseconds < 1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps 
access link

institutional
cache

Introduction 1-14

Chapter 2: Application layer

2.1 Principles of 
network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
2.7 Socket programming 
with TCP
2.8 Socket programming 
with UDP
2.9 Building a Web 
server

Introduction 1-15

FTP: the file transfer protocol

transfer file to/from remote host
client/server model

client: side that initiates transfer (either to/from 
remote)
server: remote host

ftp: RFC 959
ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user 
at host

Introduction 1-16

FTP: separate control, data connections

FTP client contacts FTP 
server at port 21, specifying 
TCP as transport protocol
Client obtains authorization 
over control connection
Client browses remote 
directory by sending 
commands over control 
connection.
When server receives a 
command for a file transfer, 
the server opens a TCP data 
connection to client
After transferring one file, 
server closes connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

Server opens a second TCP 
data connection to transfer 
another file.
Control connection: “out of 
band”
FTP server maintains “state”: 
current directory, earlier 
authentication

Introduction 1-17

FTP commands, responses

Sample commands:
sent as ASCII text over 
control channel
USER username
PASS password

LIST return list of file in 
current directory
RETR filename retrieves 
(gets) file
STOR filename stores 
(puts) file onto remote 
host

Sample return codes
status code and phrase (as 
in HTTP)
331 Username OK, 
password required
125 data connection 
already open; 
transfer starting
425 Can’t open data 
connection
452 Error writing 
file

Introduction 1-18

Chapter 2: Application layer

2.1 Principles of 
network applications
2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
2.7 Socket programming 
with TCP
2.8 Socket programming 
with UDP
2.9 Building a Web 
server



4

Introduction 1-19

Electronic Mail

Three major components:
user agents 
mail servers 
simple mail transfer 
protocol: SMTP

User Agent
a.k.a. “mail reader”
composing, editing, reading 
mail messages
e.g., Eudora, Outlook, elm, 
Netscape Messenger
outgoing, incoming messages 
stored on server

user mailbox

outgoing 
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Introduction 1-20

Electronic Mail: mail servers

Mail Servers
mailbox contains incoming 
messages for user
message queue of outgoing 
(to be sent) mail messages
SMTP protocol between mail 
servers to send email 
messages

client: sending mail 
server
“server”: receiving mail 
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Introduction 1-21

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from client 
to server, port 25
direct transfer: sending server to receiving server
three phases of transfer

handshaking (greeting)
transfer of messages
closure

command/response interaction
commands: ASCII text
response: status code and phrase

messages must be in 7-bit ASCII

Introduction 1-22

Scenario: Alice sends message to Bob
1) Alice uses UA to compose 

message and “to”
bob@someschool.edu

2) Alice’s UA sends message 
to her mail server; message 
placed in message queue

3) Client side of SMTP opens 
TCP connection with Bob’s 
mail server

4) SMTP client sends Alice’s 
message over the TCP 
connection

5) Bob’s mail server places the 
message in Bob’s mailbox

6) Bob invokes his user agent 
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Introduction 1-23

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250  Hello crepes.fr, pleased to meet you 
C: MAIL FROM: <alice@crepes.fr> 
S: 250 alice@crepes.fr... Sender ok 
C: RCPT TO: <bob@hamburger.edu> 
S: 250 bob@hamburger.edu ... Recipient ok 
C: DATA 
S: 354 Enter mail, end with "." on a line by itself 
C: Do you like ketchup? 
C: How about pickles? 
C: . 
S: 250 Message accepted for delivery 
C: QUIT 
S: 221 hamburger.edu closing connection

Introduction 1-24

Try SMTP interaction for yourself:

telnet servername 25

see 220 reply from server
enter HELO, MAIL FROM, RCPT TO, DATA, QUIT 
commands

above lets you send email without using email client 
(reader)



5

Introduction 1-25

SMTP: final words

SMTP uses persistent 
connections
SMTP requires message 
(header & body) to be in 7-
bit ASCII
SMTP server uses 
CRLF.CRLF to determine 
end of message

Comparison with HTTP:
HTTP: pull
SMTP: push

both have ASCII 
command/response 
interaction, status codes

HTTP: each object 
encapsulated in its own 
response msg
SMTP: multiple objects 
sent in multipart msg

Introduction 1-26

Mail message format

SMTP: protocol for 
exchanging email msgs

RFC 822: standard for text 
message format:
header lines, e.g.,

To:
From:
Subject:

different from SMTP 
commands!

body
the “message”, ASCII 
characters only

header

body

blank
line

Introduction 1-27

Message format: multimedia extensions

MIME: multimedia mail extension, RFC 2045, 2056
additional lines in msg header declare MIME content 
type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe. 
MIME-Version: 1.0 
Content-Transfer-Encoding: base64 
Content-Type: image/jpeg 

base64 encoded data ..... 
......................... 
......base64 encoded data 

multimedia data
type, subtype, 

parameter declaration

method used
to encode data

MIME version

encoded data

Introduction 1-28

Mail access protocols

SMTP: delivery/storage to receiver’s server
Mail access protocol: retrieval from server

POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download 

IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail 
server

user
agent

SMTP SMTP access
protocol

receiver’s mail 
server

Introduction 1-29

POP3 protocol

authorization phase
client commands: 

user: declare username
pass: password

server responses
+OK
-ERR

transaction phase, client:
list: list message numbers
retr: retrieve message by 
number
dele: delete
quit

C: list 
S: 1 498 
S: 2 912 
S: . 
C: retr 1 
S: <message 1 contents>
S: . 
C: dele 1 
C: retr 2 
S: <message 1 contents>
S: . 
C: dele 2 
C: quit 
S: +OK POP3 server signing off

S: +OK POP3 server ready 
C: user bob 
S: +OK 
C: pass hungry 
S: +OK user successfully logged on

Introduction 1-30

POP3 (more) and IMAP
More about POP3

Previous example uses 
“download and delete”
mode.
Bob cannot re-read e-
mail if he changes 
client
“Download-and-keep”: 
copies of messages on 
different clients
POP3 is stateless 
across sessions

IMAP
Keep all messages in 
one place: the server
Allows user to 
organize messages in 
folders
IMAP keeps user state 
across sessions:

names of folders and 
mappings between 
message IDs and folder 
name



6

Introduction 1-31

Chapter 2: Application layer

2.1 Principles of 
network applications
2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
2.7 Socket programming 
with TCP
2.8 Socket programming 
with UDP
2.9 Building a Web 
server

Introduction 1-32

DNS: Domain Name System

People: many identifiers:
SSN, name, passport #

Internet hosts, routers:
IP address (32 bit) -
used for addressing 
datagrams
“name”, e.g., 
ww.yahoo.com - used by 
humans

Q: map between IP 
addresses and name ?

Domain Name System:
distributed database
implemented in hierarchy of 
many name servers
application-layer protocol
host, routers, name servers to 
communicate to resolve names 
(address/name translation)

note: core Internet 
function, implemented as 
application-layer protocol
complexity at network’s 
“edge”

Introduction 1-33

DNS 
Why not centralize DNS?

single point of failure
traffic volume
distant centralized 
database
maintenance

doesn’t scale!

DNS services
Hostname to IP 
address translation
Host aliasing

Canonical and alias 
names

Mail server aliasing
Load distribution

Replicated Web 
servers: set of IP 
addresses for one 
canonical name

Introduction 1-34

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
Client queries a root server to find com DNS 
server
Client queries com DNS server to get amazon.com
DNS server
Client queries amazon.com DNS server to get  IP 
address for www.amazon.com


