
1

Last Course Review:

Four sources of packet delay
1. nodal processing:

check bit errors
determine output link

2. queueing
time waiting at output
link for transmission
depends on congestion

Introduction 1-1

A

B

propagation

transmission

nodal
processing queueing

p g
level of router

Delay in packet-switched networks
3. Transmission delay:

R=link bandwidth (bps)
L=packet length (bits)
time to send bits into
link = L/R

4. Propagation delay:
d = length of physical link
s = propagation speed in
medium (~2x108 m/sec)
propagation delay = d/s

Introduction 1-2

p p g y

A

B

propagation

transmission

nodal
processing queueing

Note: s and R are very
different quantities!

Packet loss

queue (aka buffer) preceding link in buffer
has finite capacity
when packet arrives to full queue, packet is
dropped (aka lost)

Introduction 1-3

pp
lost packet may be retransmitted by
previous node, by source end system, or
not retransmitted at all

Internet protocol stack
application: supporting network
applications

FTP, SMTP, STTP
transport: host-host data transfer

TCP, UDP

application

transport

Introduction 1-4

network: routing of datagrams from
source to destination

IP, routing protocols
link: data transfer between
neighboring network elements

PPP, Ethernet
physical: bits “on the wire”

network

link

physical

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 FTP
2 4 El t i M il

Introduction 1-5

2.4 Electronic Mail
SMTP, POP3, IMAP

2.5 DNS
2.6 P2p file sharing

Chapter 2: Application Layer
Our goals:

conceptual,
implementation
aspects of network
application protocols

learn about protocols
by examining popular
application-level
protocols

HTTP
F P

Introduction 1-6

transport-layer
service models
client-server
paradigm
peer-to-peer
paradigm

FTP
SMTP / POP3 / IMAP
DNS

2

Some network apps

E-mail
Web
Instant messaging
Remote login

Internet telephone
Real-time video
conference
Massive parallel
computing

Introduction 1-7

P2P file sharing
Multi-user network
games
Streaming stored
video clips

computing

Creating a network app
Write programs that

run on different end
systems and
communicate over a
network.
e g Web: Web server

application
transport
network
data link
physical

Introduction 1-8

e.g., Web: Web server
software communicates
with browser software

No software written for
devices in network core

Network core devices do
not function at app layer
This design allows for
rapid app development

application
transport
network
data link
physical

application
transport
network
data link
physical

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 FTP
2 4 El t i M il

2.6 P2P file sharing

Introduction 1-9

2.4 Electronic Mail
SMTP, POP3, IMAP

2.5 DNS

Application architectures

Client-server
Peer-to-peer (P2P)
Hybrid of client-server and P2P

Introduction 1-10

Client-server archicture
server:

always-on host
permanent IP address
server farms for scaling

clients:
communicate with

Introduction 1-11

communicate with
server
may be intermittently
connected
may have dynamic IP
addresses
do not communicate
directly with each other

Pure P2P architecture

no always on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP

Introduction 1-12

g
addresses
example: BitTorrent,
Gnutella

Highly scalable

But difficult to manage

3

Hybrid of client-server and P2P

Napster
File transfer P2P
File search centralized:

• Peers register content at central server
• Peers query same central server to locate content

Introduction 1-13

Peers query same central server to locate content
Instant messaging

Chatting between two users is P2P
Presence detection/location centralized:

• User registers its IP address with central server
when it comes online

• User contacts central server to find IP addresses of
buddies

App-layer protocol defines

Types of messages
exchanged, eg, request
& response messages
Syntax of message
types: what fields in

Public-domain protocols:
defined in RFCs
allows for
interoperability

 HTTP SMTP

Introduction 1-14

types: what fields in
messages & how fields
are delineated
Semantics of the
fields, ie, meaning of
information in fields
Rules for when and
how processes send &
respond to messages

eg, HTTP, SMTP
Proprietary protocols:

eg, KaZaA

What transport service does an app need?

Data loss
some apps (e.g., audio) can
tolerate some loss
other apps (e.g., file
transfer, telnet) require
100% reliable data

Bandwidth
some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“ ff

Introduction 1-15

100% reliable data
transfer

Timing
some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”

“effective”
other apps (“elastic
apps”) make use of
whatever bandwidth
they get

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real time audio/video

Data loss

no loss
no loss
no loss
l t l t

Bandwidth

elastic
elastic
elastic

di 5kb 1Mb

Time Sensitive

no
no
no
yes 100’s msec

Introduction 1-16

real-time audio/video

stored audio/video
interactive games
instant messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

yes, 100 s msec

yes, few secs
yes, 100’s msec
yes and no

Internet transport protocols services

TCP service:
connection-oriented: setup
required between client and
server processes
reliable transport between

di d i i

UDP service:
unreliable data transfer
between sending and
receiving process
does not provide:
connection setup

Introduction 1-17

sending and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: throttle
sender when network
overloaded
does not provide: timing,
minimum bandwidth
guarantees

connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
fil t f

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]

Underlying
transport protocol

TCP
TCP
TCP
TCP

Introduction 1-18

file transfer
streaming multimedia

Internet telephony

FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)

TCP
TCP or UDP

typically UDP

4

Chapter 2: Application layer

2.1 Principles of
network applications

app architectures
app requirements

2 2 Web and HTTP

2.6 P2P file sharing

Introduction 1-19

2.2 Web and HTTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

Web and HTTP

First some jargon
Web page consists of objects
Object can be HTML file, JPEG image, Java
applet, audio file,…
W b i t f b HTML fil hi h

Introduction 1-20

Web page consists of base HTML-file which
includes several referenced objects
Each object is addressable by a URL
Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext
transfer protocol
Web’s application layer
protocol
client/server model

PC running
Explorer

Introduction 1-21

client: browser that
requests, receives,
“displays” Web objects
server: Web server
sends objects in
response to requests

HTTP 1.0: RFC 1945
HTTP 1.1: RFC 2068

Server
running

Apache Web
server

Mac running
Navigator

HTTP overview (continued)

Uses TCP:
client initiates TCP
connection (creates socket)
to server, port 80
server accepts TCP

ti f li t

HTTP is “stateless”
server maintains no
information about
past client requests

aside

Introduction 1-22

connection from client
HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)
TCP connection closed

Protocols that maintain
“state” are complex!
past history (state) must
be maintained
if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

HTTP connections

Nonpersistent HTTP
At most one object is
sent over a TCP
connection.
HTTP/1 0 uses

Persistent HTTP
Multiple objects can
be sent over single
TCP connection
between client and

Introduction 1-23

HTTP/1.0 uses
nonpersistent HTTP

between client and
server.
HTTP/1.1 uses
persistent connections
in default mode

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.

(contains text,
references to 10

jpeg images)

Introduction 1-24

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

p
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

5

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

4. HTTP server closes TCP
connection.

Introduction 1-25

objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

time

Response time modeling
Definition of RTT: time to

send a small packet to
travel from client to
server and back.

Response time:
one RTT to initiate TCP

initiate TCP
connection

RTT

t

Introduction 1-26

one RTT to initiate TCP
connection
one RTT for HTTP
request and first few
bytes of HTTP response
to return
file transmission time

total = 2RTT+transmit time

time to
transmit
file

request
file

RTT

file
received

time time

Persistent HTTP

Nonpersistent HTTP issues:
requires 2 RTTs per object
OS must work and allocate
host resources for each TCP
connection
but browsers often open

Persistent without pipelining:
client issues new request
only when previous
response has been received
one RTT for each
referenced object

Introduction 1-27

f p
parallel TCP connections to
fetch referenced objects

Persistent HTTP
server leaves connection
open after sending response
subsequent HTTP messages
between same client/server
are sent over connection

Persistent with pipelining:
default in HTTP/1.1
client sends requests as
soon as it encounters a
referenced object
as little as one RTT for all
the referenced objects

HTTP request message

two types of HTTP messages: request, response
HTTP request message:

ASCII (human-readable format)

request line

Introduction 1-28

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

q
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

HTTP request message: general format

Introduction 1-29

Uploading form input

Post method:
Web page often
includes form input
Input is uploaded to
server in entity body

URL method:
Uses GET method
I t i l d d i

Introduction 1-30

server in entity body Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

6

Method types

HTTP/1.0
GET
POST
HEAD

HTTP/1.1
GET, POST, HEAD
PUT

uploads file in entity
body to path specified

Introduction 1-31

asks server to leave
requested object out of
response

body to path specified
in URL field

DELETE
deletes file specified in
the URL field

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon 22 Jun 1998

status line
(protocol

status code
status phrase)

header
li

Introduction 1-32

Last Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

lines

data, e.g.,
requested
HTML file

HTTP response status codes

200 OK
request succeeded, requested object later in this message

301 Moved Permanently

In first line in server->client response message.
A few sample codes:

Introduction 1-33

301 Moved Permanently
requested object moved, new location specified later in
this message (Location:)

400 Bad Request
request message not understood by server

404 Not Found
requested document not found on this server

505 HTTP Version Not Supported

