

As	sociation Rule Mi	ining
• G oc ite	iven a set of transactions ccurrence of an item base ems in the transaction	, find rules that will predict the ed on the occurrences of other
Mark	et-Basket transactions	Example of Association Rules
TID	Items	
1	Bread, Milk	{Diaper} \rightarrow {Beer}, {Milk_Bread} \rightarrow {Eggs Coke}
2	Bread, Diaper, Beer, Eggs	{Beer, Bread} \rightarrow {Milk},
3	Milk, Diaper, Beer, Coke	
4	Bread, Milk, Diaper, Beer	Implication means co-occurrence,
5	Bread, Milk, Diaper, Coke	not causality!
Introduc	ction to Data Mining	08/06/2006 3

Definition: Frequent It	emse	et
 Itemset A collection of one or more items Example: {Milk, Bread, Diaper} k itemset 	TID	Items
 An itemset that contains k items Support count (σ) Frequency of occurrence of an itemset E.g. σ({Milk, Bread, Diaper}) = 2 Support Fraction of transactions that contain an itemset E.g. s({Milk, Bread, Diaper}) = 2/5 	1 2 3 4 5	Bread, MilkBread, Diaper, Beer, EggsMilk, Diaper, Beer, CokeBread, Milk, Diaper, BeerBread, Milk, Diaper, Coke
 Frequent Itemset An itemset whose support is greater than or equal to a <i>minsup</i> threshold 		
Introduction to Data Mining 08/06/	2006	4

Mi	ning Associatio	n Rules
<i>TID</i> 1 2 3 4 5	ItemsBread, MilkBread, Diaper, Beer, EggsMilk, Diaper, Beer, CokeBread, Milk, Diaper, BeerBread, Milk, Diaper, Coke	$\begin{array}{l} \label{eq:spectral_spectrum} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
Obs	ervations:	
• All t	he above rules are binary {Milk, Diaper, Beer}	partitions of the same itemset:
• Rul can	es originating from the san have different confidence	ne itemset have identical support but
• Thu	is, we may decouple the su	upport and confidence requirements
Introduc	ction to Data Mining	08/06/2006 8

	Cc	om	np.	ac	:t	Re	∋p	re	ese	en	ta	ti	or	۱ C	of	Fr	ec	qu	e	nt	11	tei	m	se	ts					
	•	Sc ide	om en	ne tic	ite al	em SI	ise Jp	ets pc	s a ort	re as	re s t	edi he	un ir	da su	ant ipe	t b ers	ec set	aı İs	JS	e t	the	эу	ha	av	e					
TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B 2	B 3	B 4	B5	B6	B7	B 8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 1 1 1 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1							
	•	Nı Ne	ur ee	nb d a	er a o	of co	fr m	ec pa	que ct	en re	t il	er es	ns ser	set nta	:s atio	= on	3>	$\star \sum_{k=1}^{1}$		10 k))									
	Intro	duct	ion	to D	ata I	Лinir	ng								08	3/06	/200	6										20]

Image: Configure Co	Exa	ample	e: Lif	t/Int	erest		
CoffeeCoffeeTea155Tea7559010100Association Rule: Tea \rightarrow CoffeeConfidence = P(Coffee Tea) = 0.75but P(Coffee) = 0.9						1	
Tea15520Tea755809010100Association Rule: Tea \rightarrow CoffeeConfidence = P(Coffee Tea) = 0.75but P(Coffee) = 0.9			Coffee	Coffee			
Tea755809010100Association Rule: Tea \rightarrow CoffeeConfidence = P(Coffee Tea) = 0.75but P(Coffee) = 0.9		Теа	15	5	20		
$\begin{array}{ c c c c c }\hline\hline & 90 & 10 & 100 \\\hline\hline & Association Rule: Tea \rightarrow Coffee \\\hline\hline & Confidence = P(Coffee Tea) = 0.75 \\\hline\hline & but P(Coffee) = 0.9 \\\hline\hline & \end{array}$		Теа	75	5	80		
Association Rule: Tea \rightarrow Coffee Confidence = P(Coffee Tea) = 0.75 but P(Coffee) = 0.9			90	10	100		
but $P(Coffee) = 0.9$	Cc	Ass	sociation = P(Coffe	n Rule: ⁻	Tea → (0.75	Coffee	
	bi	it P(Coffe	e) = 0.9	,	0110		
\rightarrow Lift = 0.75/0.9 = 0.8222 (< 1. therefore is nogetively associated		1 ift = 0	-, <mark>.,</mark> 75/0.0- (1 8333 (-	1 thora	foro is pogativoly ass	ciatod)
\rightarrow Lift - 0.7570.7 - 0.0555 (< 1, therefore is negatively associated		-Lift = 0.1	13/0.9= (J.0333 (<	, i, illele	Tore is negatively asso	Juareu)

	#	Measure	Formula
	1	A coefficient	P(A,B)-P(A)P(B)
There are lots of	1	\$ coefficient	$\sqrt{P(A)P(B)(1-P(A))(1-P(B))}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sum_j \max_k P(A_j, B_k) + \sum_k \max_j P(A_j, B_k) - \max_j P(A_j) - \max_k P(B_k)}{2 - \max_j P(A_j) - \max_k P(B_k)}$
in the literature	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
	6	Kappa (ĸ)	$\frac{P(A, B) + P(\overline{A},\overline{B}) - P(A)P(\overline{B}) - P(\overline{A})P(\overline{B})}{1 - P(A)P(\overline{B}) - P(\overline{A})P(\overline{B})}$ $(1 - P(A)P(\overline{B}) - P(\overline{A})P(\overline{B}) - P(\overline{A})P(\overline{B})$
	7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i})P(B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
	8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right.$
			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(A)}) $
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
			$-P(B)^3 - P(\overline{B})^3,$
			$P(B)[P(A B)^{3} + P(\overline{A} B)^{3}] + P(\overline{B})[P(A \overline{B})^{3} + P(\overline{A} \overline{B})^{3}]$
			$-P(A)^2 - P(A)^2$
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})},\frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
	15	cosine (IS)	$\frac{\hat{\mathbf{Y}}(\mathbf{A},\mathbf{B})}{\sqrt{\mathbf{Y}(\mathbf{A})\mathbf{Y}(\mathbf{B})}}$
	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(AB)}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(A)P(B)}{1-P(A,B)-P(AB)}$
Introduction to Date Mining	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Symbol	Measure	Inversion	Null Addition	Scaling
ϕ	ϕ -coefficient	Yes	No	No
α	odds ratio	Yes	No	Yes
κ	Cohen's	Yes	No	No
Ι	Interest	No	No	No
IS	Cosine	No	Yes	No
PS	Piatetsky-Shapiro's	Yes	No	No
S	Collective strength	Yes	No	No
ζ	Jaccard	No	Yes	No
h	All-confidence	No	No	No
s	Support	No	No	No

	Buy	Buy Exer	cise Machine	
	HDTV	Yes	No	
	Yes	99	81	180
	No	54	66	120
		153	147	300
<i>c</i> ({HD	$\Gamma V = No \} -$	• {Exercise]	Machine = Ye	$(s_{s}) = 54/120 = 45\%$

-				
Customer	Buy	Buy Exe	ercise Machine	Total
Group	HDTV	Yes	No	
College Students	Yes	1	9	10
	No	4	30	34
Working Adult	Yes	98	72	170
	No	50	36	86
ollege students: $c({HDTV = Ye})$	$es\} \rightarrow \{Exerc}$	cise Machin	ne = Yes}) = $1/1$ e = Yes}) = $4/3$	0 = 10% 4 = 11.8%
$c(\{\text{HDTV} = \text{Ne}\})$	$o \} \rightarrow \{ Exerc$	ise Machin	$c = 1cs_{j} = 173$	
c({HDTV = No	$o\} \rightarrow \{\text{Exerc}\}$	ise Machin	0 = 105)) = 175	
$c({\text{HDTV} = \text{Norking adults:}}$ $c({\text{HDTV} = \text{Yes})$	$b \rightarrow \{ \text{Exerc} \}$ $\rightarrow \{ \text{Exercise} \}$	e Machine =	$= Yes\}) = 98/170 =$	= 57.7%

Gender	Level of	State	Computer	Online	Chat	Online	Privacy
	Education	T11: -	at Home	Auction	Online	Banking	Concerns
Female	Graduate	linois	Yes	Yes	Daily	res	Yes
Male	Coffege	California	No	NO	Never	NO	No
Male	Graduate	Michigan	Yes	Yes	Monthly	Yes	Yes
Female	College	Virginia	No	Yes	Never	Yes	Yes
remale	Graduate	California	Yes	INO	INever	NO	Yes
Male	College	Minnesota	Yes	Yes	Weekly	Yes	Yes
Male	Coffege	Alaska	Yes	Yes N-	Daily	Yes N-	NO No
Famala	Creducto	Terregon	1es No	INO No	Monthly	NO	NO
remale	Graduate	rexas	110	INO	Monthly	INO	NO
Level \rightarrow {	of Educ Privacy	ation=0 Concer	Graduat ns = Y€	e, Onl es}	ine Ba	inking:	=Yes}

	Gend	ler	Age	Annua	al No of h	ours spent	No of	f email	Privacy	
	Eam	10	96	Incom 00V	e onine	per week	acco		Vec	
	Mal	ale	51	135K		10		4 9	No	
	Ma	e	29	80K		10		3	Yes	
	Fema	ale · · ·	45	120K		15		3	Yes	
	Fema	ale ···	31	95K		20		5	Yes	
	Mal	e ···	25	55K		25		5	Yes	
	Mal	e ···	37	100K		10		1	No	
	Ma	e	41	65K		8		2	No	
	Fema	ale	20	65K		12		1	INO	
	Male	Female		Age	Age	Age		Privacy	Privacy	1
				< 13	$\in [13, 21)$	$\in [21, 30)$		= Yes	= No	
	0	1		0	0	1		1	0	
	1	0		0	0	0		0	1	
v	1	0		0	0	1		1	0	
		1		0	0	0		1		1
	1	0		0	0	1		1	0	
	1	ŏ		ŏ	õ	0		ō	1	1
	1	0		0	0	0		0	1	1
	0	1		0	0	1		0	1	1
										1

	Gender		Age	Annual	No of hours spent	No of email	Privacy	
				Income	online per week	accounts	Concern	
	Female		26	90K	20	4	Yes	
	Male		51	135K	10	2	No	
	Male		29	80K	10	3	Yes	
	Female		45	120K	15	3	Yes	
	Female		31	95K	20	5	Yes	
$\langle \rangle$	Male		25	55K	25	5	Yes	
	Male		37	100K	10	1	No	
	Male		41	65K	8	2	No	
	Female		26	85K	12	1	No	
(Male, Incon (Income < 3) (Income > 1)	nsets: ne > 100K} 0K, No hou 00K, Onlir	urs ∈[ne Bai	10,15)) 1king =	} = Yes}	Association R {Male, Income {Income < 40K {Income > 100I → A	tules: > 100K} → Ag , No hours ∈[K,Online Bank αe: μ = 34	le: μ = 30 10,15)} → Age: μ ting = Yes}	ι = 2

Min-Apriori							
 Data contains only co "type" 	ntinuo	us a	ttrib	utes	of tl	he s	ame
 e.g., frequency of work 	rds in a	docu	ment				
	TID	W1	W2	W3	W4	W5	
	D1	2	2	0	0	1	
	D2	0	0	1	2	2	
	D3	2	3	0	0	0	
	D4	0	0	1	0	1	
Potential solution:	D5	1	1	1	0	2	
 Convert into 0/1 matr lose word frequency Discretization does not words not ranges of v 	ix and th informat ot apply vords	ion as u	pply sers	exist want	ing a asso	lgorit ociatio	hms on among
Introduction to Data Mining		08/	26/2006				20

A(1) A(2)		A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
	A(1)	1	1	1	0	1	0	0	0
B(5) B(6)	A(2)	1	1	0	1	0	1	0	0
	A(3)	1	0	1	1	0	0	1	0
	A(4)	0	1	1	1	0	0	0	1
B <u>(7)</u> B(8)	B(5)	1	0	0	0	1	1	1	0
	B(6)	0	1	0	0	1	1	0	1
	B(7)	0	0	1	0	1	0	1	1
A(3) A(4)	B(8)	0	0	0	1	0	1	1	1
A(2) A(1)		A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
	A(1)	1	1	0	1	0	1	0	0
B(7) B(6)	A(2)	1	1	1	0	0	0	1	0
	A(3)	0	1	1	1	1	0	0	0
	A(4)	1	0	1	1	0	0	0	1
B <mark>(5) B</mark> (8)	B(5)	0	0	1	0	1	0	1	1
	B(6)	1	0	0	0	0	1	1	1
	B(7)	0	1	0	0	1	1	1	0
	D(7)	•							

