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General Approach for Building 
Classification Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

Apply 
Model

Learn 
Model

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 
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ModelTid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 



Classification Techniques

Base Classifiers
– Decision Tree based Methods

Rule based Methods– Rule-based Methods
– Nearest-neighbor
– Neural Networks
– Naïve Bayes and Bayesian Belief Networks
– Support Vector Machines
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Ensemble Classifiers
– Boosting, Bagging, Random Forests

Classification: Model Overfitting and 
Classifier Evaluation

Dr. Hui Xiong
Rutgers University
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Classification Errors

Training errors (apparent errors)
– Errors committed on the training set

Test errors
– Errors committed on the test set

Generalization errors
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Generalization errors
– Expected error of a model over random 

selection of records from same distribution

Example Data Set

Two class problem: 

+, o

3000 data points (30% for3000 data points (30% for 
training, 70% for testing)

Data set for + class is 
generated from a uniform 
distribution

Data set for o class is
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Data set for o class is 
generated from a mixture 
of 3 gaussian 
distributions, centered at 
(5,15), (10,5), and (15,15)



Decision Trees
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Decision Tree with 11 leaf nodes Decision Tree with 24 leaf nodes

Which tree is better?

Model Overfitting
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Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large



Mammal Classification Problem
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Training Set

Decision Tree Model

training error = 0%

Effect of Noise 

Training Set:

Example: Mammal Classification problem
Model M1:

train err = 0%, 

test err = 30%

Test Set:
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Model M2:

train err = 20%, 

test err = 10%



Lack of  Representative Samples

Training Set:

Test Set:

Model M3:

train err = 0%, 
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Lack of training records at the 
leaf nodes for making reliable 
classification

test err = 30%

Effect of Multiple Comparison Procedure

Consider the task of predicting whether 
stock market will rise/fall in the next 10 
trading days

Day 1 Up
Day 2 Down
Day 3 Down

Random guessing:
P(correct) = 0.5

Make 10 random guesses in a row:

Day 3 Down
Day 4 Up
Day 5 Down
Day 6 Down
Day 7 Up
Day 8 Up
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Day 9 Up
Day 10 Down
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Effect of Multiple Comparison Procedure

Approach:
– Get 50 analysts
– Each analyst makes 10 random guesses
– Choose the analyst that makes the most 

number of correct predictions

Probability that at least one analyst makes at 
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y y
least 8 correct predictions

9399.0)0547.01(1)8(# 50 =−−=≥correctP

Effect of Multiple Comparison Procedure

Many algorithms employ the following greedy strategy:
– Initial model: M
– Alternative model: M’ = M ∪ γ,   γ,

where γ is a component to be added to the model 
(e.g., a test condition of a decision tree)

– Keep M’ if improvement, Δ(M,M’) > α

Often times, γ is chosen from a set of alternative 
components, Γ = {γ1, γ2, …, γk}
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p {γ1 γ2 γk}

If many alternatives are available, one may inadvertently 
add irrelevant components to the model, resulting in 
model overfitting



Notes on Overfitting

Overfitting results in decision trees that are more 
complex than necessary

Training error no longer provides a good estimate 
of how well the tree will perform on previously 
unseen records
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Need new ways for estimating generalization 
errors

Estimating Generalization Errors

Resubstitution Estimate

Incorporating Model ComplexityIncorporating Model Complexity

Estimating Statistical Bounds

Use Validation Set
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Resubstitution Estimate

Using training error as an optimistic estimate of 
generalization error

e(TL) = 4/24

e(TR) = 6/24
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Incorporating Model Complexity

Rationale: Occam’s Razor
– Given two models of similar generalization 

h ld f th i l d lerrors,  one should prefer the simpler model 
over the more complex model

– A complex model has a greater chance of 
being fitted accidentally by errors in data
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– Therefore, one should include model 
complexity when evaluating a model



Pessimistic Estimate

Given a decision tree node t
– n(t): number of training records classified by t
– e(t): misclassification error of node t
– Training error of tree T:
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Ω: is the cost of adding a node
N: total number of training records

i

Pessimistic Estimate

e(TL) = 4/24( L)

e(TR) = 6/24

Ω = 1
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e’(TL) = (4 +7 × 1)/24 = 0.458

e’(TR) = (6 + 4 × 1)/24 = 0.417



Minimum Description Length (MDL)

A?

B?

C?

0

1

Yes No

B1 B2

X y
X1 1
X2 0
X3 0

X y
X1 ?
X2 ?

Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
– Cost is the number of bits needed for encoding.

A B
C?

10

1
C1 C2

X3 0
X4 1
… …
Xn 1

X3 ?
X4 ?
… …
Xn ?
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– Search for the least costly model.
Cost(Data|Model) encodes the misclassification errors.
Cost(Model) uses node encoding (number of children) 
plus splitting condition encoding.

Using Validation Set

Divide training data into two parts:
– Training set: 

use for model building

– Validation set: 
use for estimating generalization error
Note: validation set is not the same as test set
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Drawback:
– Less data available for training



Handling Overfitting in Decision Tree

Pre-Pruning (Early Stopping Rule)
– Stop the algorithm before it becomes a fully-grown tree

Typical stopping conditions for a node:– Typical stopping conditions for a node:
Stop if all instances belong to the same class
Stop if all the attribute values are the same

– More restrictive conditions:
Stop if number of instances is less than some user-specified 

threshold
Stop if class distribution of instances are independent of the
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Stop if class distribution of instances are independent of the 
available features (e.g., using χ 2 test)

Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).
Stop if estimated generalization error falls below certain threshold

Handling Overfitting in Decision Tree

Post-pruning
– Grow decision tree to its entirety
– Subtree replacement

Trim the nodes of the decision tree in a bottom-up 
fashion

If generalization error improves after trimming, 
replace sub-tree by a leaf node 

Class label of leaf node is determined from

Introduction to Data Mining                                1/2/2009                  24

Class label of leaf node is determined from 
majority class of instances in the sub-tree

– Subtree raising
Replace subtree with most frequently used branch



Example of Post-Pruning

Class = Yes 20

Class = No 10

Training Error (Before splitting) = 10/30

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

A?

A1 A4

Error = 10/30 Pessimistic error (After splitting)

= (9 + 4 × 0.5)/30 = 11/30

PRUNE!
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A2 A3

Class = Yes 8
Class = No 4

Class = Yes 3
Class = No 4

Class = Yes 4
Class = No 1

Class = Yes 5
Class = No 1

Examples of Post-pruning
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Evaluating Performance of Classifier

Model Selection
– Performed during model building

Purpose is to ensure that model is not overly– Purpose is to ensure that model is not overly 
complex (to avoid overfitting)

– Need to estimate generalization error

Model Evaluation
Performed after model has been constructed
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– Performed after model has been constructed
– Purpose is to estimate performance of 

classifier on previously unseen data (e.g., test 
set)

Methods for Classifier Evaluation

Holdout
– Reserve k% for training and (100-k)% for testing 

Random subsamplingp g
– Repeated holdout

Cross validation
– Partition data into k disjoint subsets
– k-fold: train on k-1 partitions, test on the remaining one
– Leave-one-out:   k=n
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Bootstrap
– Sampling with replacement
– .632 bootstrap:     ( )∑

=

×+×=
b

i
siboot accacc

b
acc

1

368.0632.01



Methods for Comparing Classifiers

Given two models:
– Model M1: accuracy = 85%, tested on 30 instances
– Model M2: accuracy = 75%, tested on 5000 instances

Can we say M1 is better than M2?
– How much confidence can we place on accuracy of M1 

and M2?
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– Can the difference in performance measure be 
explained as a result of random fluctuations in the test 
set?

Confidence Interval for Accuracy

Prediction can be regarded as a Bernoulli trial
– A Bernoulli trial has 2 possible outcomes 

Coin toss – head/tailCoin toss head/tail
Prediction – correct/wrong

– Collection of Bernoulli trials has a Binomial distribution:
x ∼ Bin(N, p)      x: number of correct predictions

Estimate number of events
Gi N d fi d P( k) E( )
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– Given N and p, find P(x=k) or E(x)
– Example: Toss a fair coin 50 times, how many heads 

would turn up?
Expected number of heads = N×p = 50 × 0.5 = 25



Confidence Interval for Accuracy

Estimate parameter of distribution
– Given x (# of correct predictions) 

or equivalently, acc=x/N, and 
N (# of test instances)N (# of test instances), 

– Find upper and lower bounds of p (true accuracy of 
model)
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Confidence Interval for Accuracy

For large test sets (N > 30), 
– acc has a normal distribution 

with mean p and variance

Area = 1 - α

with mean p and variance 
p(1-p)/N
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Confidence Interval for p:
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Confidence Interval for Accuracy

Consider a model that produces an accuracy of 
80% when evaluated on 100 test instances:

N=100 acc = 0 8– N=100, acc = 0.8
– Let 1-α = 0.95 (95% confidence)

– From probability table, Zα/2=1.96

1-α Z

0.99 2.58

0.98 2.33

0.95 1.96

0 90 1 65

N 50 100 500 1000 5000
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0.90 1.65p(lower) 0.670 0.711 0.763 0.774 0.789

p(upper) 0.888 0.866 0.833 0.824 0.811

Comparing Performance of 2 Models

Given two models, say M1 and M2, which 
is better?
– M1 is tested on D1 (size=n1), found error rate = e1

– M2 is tested on D2 (size=n2), found error rate = e2

– Assume D1 and D2 are independent
– If n1 and n2 are sufficiently large, then

( )111 ,~ σμNe

Introduction to Data Mining                                1/2/2009                  34

– Approximate:
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Comparing Performance of 2 Models

To test if performance difference is statistically 
significant:  d = e1 – e2

d NN(d ) where d is the true difference– d ~ NN(dt,σt)   where dt is the true difference
– Since D1 and D2 are independent, their variance 

adds up:   
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– At (1-α) confidence level, 

21 nn
+=

tt
Zdd σ

α
ˆ

2/
±=

An Illustrative Example

Given: M1: n1 = 30, e1 = 0.15
M2: n2 = 5000, e2 = 0.25

d = |e2 – e1| = 0 1 (2-sided test)d  |e2 e1|  0.1   (2 sided test)

At 95% confidence level, Zα/2=1.96

0043.0
5000

)25.01(25.0
30

)15.01(15.0ˆ =
−

+
−

=
d

σ
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=> Interval contains 0 => difference may not be
statistically significant

128.0100.00043.096.1100.0 ±=×±=
t

d



Support Vector Machines (SVMs)

SVMs are a rare example of a methodology where 
geometric intuition, elegant mathematics, 
theoretical guarantees, and practical use meet.theoretical guarantees, and practical use meet.
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Find a linear hyperplane (decision boundary) that separates the data

Support Vector Machines

Introduction to Data Mining                                1/2/2009                  38

One Possible Solution



Support Vector Machines
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Another possible solution

Support Vector Machines
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Other possible solutions



Support Vector Machines

Introduction to Data Mining                                1/2/2009                  41

Which one is better? B1 or B2?
How do you define better?

Support Vector Machines
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Find hyperplane maximizes the margin => B1 is better than B2



Support Vector Machines

0=+• bxw rr

1−=+• bxw rr

1+=+• bxw rr
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Support Vector Machines

We want to maximize:

Whi h i i l t t i i i i
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– Which is equivalent to minimizing:
– But subjected to the following constraints:

This is a constrained optimization problem
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p p
– Numerical approaches to solve it 

(e.g., quadratic programming)



Support Vector Machines

What if the problem is not linearly separable?
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Support Vector Machines

What if the problem is not linearly separable?
– Introduce slack variables

Need to minimize:

Subject to: 
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Nonlinear Support Vector Machines

What if decision boundary is not linear?

XOO O O XXX x1

x2

X

OO O O

X

X

X

x1

x1
2
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Mapping into a New Feature Space

ΦΦ : x : x X = X = ΦΦ(x)(x)

Rather than run SVM on xi, run it on Φ(xi)
Find non-linear separator in input space

ΦΦ(x(x11,x,x22) = (x) = (x11,x,x22,x,x11
22,x,x22

22,x,x11xx22))
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What if Φ(xi) is really big?
Use kernels!



Examples of Kernel Functions

Polynomial kernel with degree d

Radial basis function kernel with width σ
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Sigmoid with parameter κ and θ
– It does not satisfy the Mercer condition on all κ

and θ

Characteristics of SVMs

Perform best on the average or outperform other 
techniques across many important applications
The results are stable, reproducible, and largelyThe results are stable, reproducible, and largely 
independent of the specific optimization algorithm
A convex optimization problem 

– Lead to the global optimum 

The parameter selection problem
– The type of kernels (including its parameters)

Th tt ib t t b i l d d
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– The attributes to be included.

The results are hard to interpret
Computational challenge

– Typically quadratic and multi-scan of the data


