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General Approach for Building
Classification Model

Tid| | Attribl  Attrib2  Attrib3  Class Leaming

1 Yes Large 125K No algorithm

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No Ind UCtiOn

5 No Large 95K Yes

6 |No Medium | 60K No \

7 | ves Large 220K | No Learn

8 |No Small 85K Yes Model

9 |No Medium | 75K No \

10 [ No Small 90K Yes l

Training Set / @

Apply

Tid[| Attribl  Attrib2  Attrib3  Class Model

11 | No Small 55K ?

12 | Yes Medium 80K ?

13 | Yes Large 110k |2 Deduction

14 | No Small 95K ?

15 | No Large 67K ?

Test Set
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Classification Techniques

e Base Classifiers
— Decision Tree based Methods
— Rule-based Methods
— Nearest-neighbor
— Neural Networks
— Naive Bayes and Bayesian Belief Networks
— Support Vector Machines

e Ensemble Classifiers
— Boosting, Bagging, Random Forests
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Classification Errors

e Training errors (apparent errors)
— Errors committed on the training set

e Test errors

— Errors committed on the test set

e Generalization errors

— Expected error of a model over random
selection of records from same distribution
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Example Data Set

Training set

Two class problem:

+
4 +. 0

3000 data points (30% for
training, 70% for testing)

Data set for + class is
generated from a uniform

+*‘
+* & distribution

. * 1 Dataset for o class is
+*  generated from a mixture

of 3 gaussian
distributions, centered at

20 (5,15), (10,5), and (15,15)
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Decision Trees

Xx2<12.63

x1<6.56

+

x2<8.64

Decision Tree with 11 leaf nodes

Decision Tree with 24 leaf nodes

Which tree is better?

x1<215

x2<17.36
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Model Overfitting

04 T T

—— Training Error ||
--=-- Test Error

Error Rate

.
0 50 100

Number of Nodes

250

Underfitting: when model is too simple, both training and test errors are large

Overfitting: when model is too complex, training error is small but test error is large
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Mammal Classification Problem

Name Body Skin Aquatic Aerial Has Hiber- | Mammal
Temperalure Clover Creature | Creature | Loegs nalis
human warme-blooded hair yes ne no yes no ves
python cold-blooded scales no no no no yes no
salmon cold-blooded scales no ves no no no no
whale warme-blooded hair yes ves no no no ves
frog cold-blooded o no i no yes yem ey
Lomnodn cold-hlooded acales no no Ves no nce
dragon
bat warme-blooded hair yes no yes yes ves
pigeon warm-blooded | feathers no no yes no no
cat warme-blooded fur yes no no 3 no ves
leopard cold-blooded senles s Vs no o o ey
shurk
turtle cold-blooded senles o se no yes o o
pengin warm-bloaded | feathers no semi na ves no ne
porcupine warm-hloaded auills ves no no Ves Ves ves Body
eel cold-hlooded meales no ves no no no ne Temperature
salamander | cold-blooded none no semi no yes yes

Training Set

Decision Tree Model

training error = 0%
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Effect of Noise

Example: Mammal Classification problem

Body
Temperature

Model M1:

Training Set: Warm-blooded, Cold-blooded train err = 0%,

Name Body Gives | Four- | Hibernates | Class
Temperature Birth | legged Label test err = 30%
porcupine warm-blooded ves yes ves yes
cat warm-blooded yes yes no yes
bat’ warm-blooded ves 10 ves no
whale warm-blooded ves no no no”
salamander cold-blooded no yes ves no
komodo dragon cold-blooded no yes no no
python cold-blooded no no yes no
salmon cald-blooded no no no no
eagle warm-blooded no no no no
guppy cald-blooded yes no no no
Body
Test Set: Temperature
Name Body Gives Four- | Hibernates | Class Cold-blooded
Temperature Birth | legged Label

human warm-blooded yes no no yes

igeon warm-hblooded no no no no
eplegphant warm-blooded ves yes no yes Model M2:
leopard shark cold-blooded ves no no no .
turlile cold-blooded o yes no no train err = 20%,
penguin cold-blooded no no no no
eel cold-blooded no no no no test err = 10%
dolphin warm-blooded ves no no yes
spiny anteater | warm-blooded no yes ves yes
gila monster cold-blooded no yes yes no
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Lack of Representative Samples

Training Set:
Name Body Four- | Hibernates | Class
Temperature | legged Label
salamander | cold-blooded yes yes no
Luppy cold-blooded ne no no
eagle warm-blooded no no no
poorwill warm-blooded ne yes no
platypus warm-blooded yes yes yes
Test Set:
Name Body Four- | Hibernates | Class
Temperature | legged Label
human warm-blooded no no yes
pigeon warm-blooded noe no no
elephant warm-blooded yes no yes
leopard shark cold-blooded no no no
turtle cold-blooded yes no no
penguin cold-blooded no no no
eel cold-blooded no no no
dolphin warm-blooded no no yes
spiny anteater | warm-blooded yes ves yes

gila monster

cold-blooded

yes

yes

no

Body
Temperature

Warm-blooded Cold-blooded

es

Y No

Model M3:
train err = 0%,
test err = 30%

Lack of training records at the
leaf nodes for making reliable
classification
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Effect of Multiple Comparison Procedure

e Consider the ta_sk _of pred_icting whether Day1l |Up
ftog_k mgrket will rise/fall in the next 10 Day2 | Down
rading days Day 3 |Down
L Day4 |Up
e Random guessing: Day5 | Down
P(correct) = 0.5 Day 6 | Down
Day7 |Up
e Make 10 random guesses in a row: Day8 |Up
Day9 |Up
[NJ J{mJ J{ J Day 10 | Down
8 9
P(#correct > 8) = m =0.0547
2
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Effect of Multiple Comparison Procedure

e Approach:
— Get 50 analysts
— Each analyst makes 10 random guesses

— Choose the analyst that makes the most
number of correct predictions

e Probability that at least one analyst makes at
least 8 correct predictions

P(#correct >8) =1—(1-0.0547)* = 0.9399
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Effect of Multiple Comparison Procedure

e Many algorithms employ the following greedy strategy:
— Initial model: M

— Alternative model: M =M U v,
where y is a component to be added to the model
(e.g., a test condition of a decision tree)

— Keep M’ if improvement, A(M,M’) > o

e Often times, y is chosen from a set of alternative
components, I' = {y;, V5, .-, Ti}

e If many alternatives are available, one may inadvertently
add irrelevant components to the model, resulting in
model overfitting

| Introduction to Data Mining 1/2/2009 14




Notes on Overfitting

e Overfitting results in decision trees that are more
complex than necessary

e Training error no longer provides a good estimate
of how well the tree will perform on previously
unseen records

e Need new ways for estimating generalization
errors
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Estimating Generalization Errors

e Resubstitution Estimate
e Incorporating Model Complexity
e Estimating Statistical Bounds

e Use Validation Set
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Resubstitution Estimate

e Using training error as an optimistic estimate of
generalization error

e(T,) =4/24
e(Tg) = 6/24
Decision Tree, T, Decision Tree, T,
| Introduction to Data Mining 1/2/2009 17

Incorporating Model Complexity

e Rationale: Occam’s Razor

— Given two models of similar generalization
errors, one should prefer the simpler model
over the more complex model

— A complex model has a greater chance of
being fitted accidentally by errors in data

— Therefore, one should include model
complexity when evaluating a model
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Pessimistic Estimate

e Given a decision tree node t
— n(t): number of training records classified by t
— e(t): misclassification error of node t
— Training error of tree T:

z [e(ti) +Q(t; )]

I _e(T)+Q(T)

2.n(t) N

+ Q: is the cost of adding a node
+ N: total number of training records

Introduction to Data Mining 1/2/2009 19

Pessimistic Estimate

e(T,) =4/24

e(Ty) = 6/24

Q=1

Decision Tree, T, Decision Tree, T,

e'(T)) = (4 +7 x 1)/24 = 0.458

e'(Ty) = (6 + 4 x 1)/24 = 0.417
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Minimum Description Length (MDL)

X1y
X1y
il 1 X, 5
2 0 X, 5
Xs 0 X 2
Xe | 1 X3 N
4 ?
% | L Xy | 2

e Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
— Cost is the number of bits needed for encoding.
— Search for the least costly model.

e Cost(Data]Model) encodes the misclassification errors.

e Cost(Model) uses node encoding (number of children)
plus splitting condition encoding.
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Using Validation Set

e Divide training data into two parts:
— Training set:
+ use for model building

— Validation set:
+ use for estimating generalization error
¢ Note: validation set is not the same as test set

e Drawback:
— Less data available for training
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Handling Overfitting in Decision Tree

e Pre-Pruning (Early Stopping Rule)
— Stop the algorithm before it becomes a fully-grown tree

— Typical stopping conditions for a node:
+ Stop if all instances belong to the same class
+ Stop if all the attribute values are the same

— More restrictive conditions:

+ Stop if number of instances is less than some user-specified
threshold

+ Stop if class distribution of instances are independent of the
available features (e.g., using y ? test)

+ Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

+ Stop if estimated generalization error falls below certain threshold
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Handling Overfitting in Decision Tree

e Post-pruning
— Grow decision tree to its entirety

— Subtree replacement

< Trim the nodes of the decision tree in a bottom-up
fashion

+ If generalization error improves after trimming,
replace sub-tree by a leaf node

# Class label of leaf node is determined from
majority class of instances in the sub-tree

— Subtree raising
+ Replace subtree with most frequently used branch
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Example of Post-Pruning

Class = Yes

20

Class = No

10

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30

Error = 10/30

Pessim

istic error (After splitting)
=(9 + 4 x 0.5)/30 = 11/30
PRUNE!

Al A4
A2 A3
Class = Yes Class = Yes Class=Yes | 4 Class=Yes | 5
Class = No Class = No Class = No 1 Class = No
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Examples of Post-pruning

Decision Tree:

depth=1:

_——— e ——_—_—_—

breadth > 7 : class 1
breadth <=7
breadth <=3:
| ImagePages > 0.375 : class 0
| ImagePages <= 0.375 :
| totalPages <=6 : class 1

| TotalTime <= 361 : class 0
| TotalTime > 361 : class 1

epth > 1 :

MuliAgent=0_ _ _ _ _ _ _ _ _ _ _

|1 depth > 2: class 0

|1 depth <=2 |

[1] MultilP = 1: class 0 I
| MultilP = 0: 4

| | breadth <=6 :class 0 ]

|1

| | | RepeatedAccess <=0.0322 : class 0:

I1] | | RepeatedAccess > 0.0322 ;class 1

MultiAgent = 1:

| totalPages <= 81 : class 0

| totalPages > 81 : class 1

I 1
| : breadth > 6 :
|

Simplified Decision Tree:

|1 ImagePages <= 0.1333 : class 1

| | totalPages >81:class 1

|

|

¥

| || totalPages>6:

| || | breadth<=1:class 1 Su?t,ree | ImagePages > 0.1333 :

| '] | | breadth>1: class 0 Raising | breadth <=6 : class 0

| width >3 : |V] breadth > 6 : class 1

I MUIE=0 _ e
| | |VIimagePages <= 0.1333 : class 1 1 / d.e-ETh>—T ————————————
| | |1ImagePages >0.1333 : '/ MultiAgent =0: class 0 _ _ _ _
| | I1] breadth <=6 : class 0 | MultiAgent = 1:

I I e ze et | | totalPages <= 81 : class 0

[

I

Subtree
Replacement
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Evaluating Performance of Classifier

e Model Selection
— Performed during model building

— Purpose is to ensure that model is not overly
complex (to avoid overfitting)

— Need to estimate generalization error

e Model Evaluation
— Performed after model has been constructed

— Purpose is to estimate performance of
classifier on previously unseen data (e.g., test
set)
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Methods for Classifier Evaluation

e Holdout
— Reserve k% for training and (100-k)% for testing
e Random subsampling
— Repeated holdout
e Cross validation
— Partition data into k disjoint subsets
— k-fold: train on k-1 partitions, test on the remaining one
— Leave-one-out: k=n
e Bootstrap
— Sampling with replacement

— . b
-632 bootstrap: acc,,, = %2(0.632 x acc, +0.368 x acc, )

i=1
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Methods for Comparing Classifiers

e Given two models:
— Model M1: accuracy = 85%, tested on 30 instances
— Model M2: accuracy = 75%, tested on 5000 instances

e Can we say M1 is better than M2?
— How much confidence can we place on accuracy of M1
and M2?
— Can the difference in performance measure be
explained as a result of random fluctuations in the test
set?
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Confidence Interval for Accuracy

e Prediction can be regarded as a Bernoulli trial

— A Bernoulli trial has 2 possible outcomes
+ Coin toss — head/tail
# Prediction — correct/wrong

— Collection of Bernoulli trials has a Binomial distribution:
¢ x~Bin(N, p) x: number of correct predictions

e Estimate number of events
— Given N and p, find P(x=k) or E(x)
— Example: Toss a fair coin 50 times, how many heads

would turn up?
Expected number of heads = Nxp =50 x 0.5 =25
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Confidence Interval for Accuracy

e Estimate parameter of distribution

— Given x (# of correct predictions)
or equivalently, acc=x/N, and
N (# of test instances),

— Find upper and lower bounds of p (true accuracy of
model)
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Confidence Interval for Accuracy

Area=1-a

e For large test sets (N > 30),

— acc has a normal distribution
with mean p and variance

|o(1-p)/NaCC )
P(Z _ Z
( al2 < p(l— p)/ N < 1711/2) " i
=l-«a / \
Za/2 Zl- al2

e Confidence Interval for p:

_2xNxacc+Z;, +./Z7 +4xNxacc—4xN xacc’
) 20N+2Z2,)
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Confidence Interval for Accuracy

e Consider a model that produces an accuracy of
80% when evaluated on 100 test instances:

— N=100, acc =0.8 1o | Z
— Let1l-a=0. % confiden
et 1-a = 0.95 (95% confidence) 099|258
— From probability table, Z ,,=1.96
\ 0.98(2.33
N 50 100 | 500 | 1000 | 5000 0.95|1.96
p(lower) | 0.670 | 0.711 | 0.763 | 0.774 | 0.789 0.90]1.65
p(upper) | 0.888 | 0.866 | 0.833 | 0.824 | 0.811
Introduction to Data Mining 1/2/2009 33

Comparing Performance of 2 Models

e Given two models, say M1 and M2, which
IS better?
— M1l is tested on D1 (size=n1), found error rate = e,
— M2 is tested on D2 (size=n2), found error rate = e,
— Assume D1 and D2 are independent
— If n1 and n2 are sufficiently large, then

€~ N(/u’lfo-l)
€~ N(ﬂziaz)
— Approximate: 5 _ & 1-e)
. n
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Comparing Performance of 2 Models

e To test if performance difference is statistically
significant: d =el —e2
— d~ N(d,c) where d, is the true difference

— Since D1 and D2 are independent, their variance
adds up:

o'=0+0. =6 +0;
_ el(1-el) N e2(l-e2)
nl n2

— At (1-a) confidence level, d =d+Z &
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An lllustrative Example

e Given: M1: n1 =30, el =0.15
M2: n2 = 5000, e2 =0.25

ed=|e2-el|=0.1 (2-sided test)

5 _0.15(1-0.15) 0.25(1-0.25)
; 30 5000

e At 95% confidence level, Z ,,=1.96

=0.0043

d =0.100£1.96x~/0.0043 =0.100£0.128

=> Interval contains 0 => difference may not be
statistically significant
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Support Vector Machines (SVMs)

SVMs are a rare example of a methodology where
geometric intuition, elegant mathematics,
theoretical guarantees, and practical use meet.

e Find a linear hyperplane (decision boundary) that separates the data
| Introduction to Data Mining 1/2/2009 37 |

Support Vector Machines

1
0
o 0
o)
0
0
u 0
m
m
n
n
m
n n

e One Possible Solution
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Support Vector Machines

e Another possible solution

| Introduction to Data Mining 1/2/2009

Support Vector Machines

e Other possible solutions
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Support Vector Machines

O
O 0
o)
0
Bl _ 0
" TR --___o0
] — -
[
[
[
[
[ [
e Which one is better? B1 or B2?
e How do you define better?
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Support Vector Machines
B1
O
O 0

u ", man b

b12

e Find hyperplane maximizes the margin => B1 is better than B2

| Introduction to Data Mining 1/2/2009
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Support Vector Machines

f()?):{

1
-1

if WeX+b2>1
if WeX+b<-1

Margin =

Iwif

Introduction to Data Mining
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Support Vector Machines

e We want to maximize: Margin= T

— Which is equivalent to minimizing: L(w) =

— But subjected to the following constraints:
1 ifweX +b>1

{—1 if WeX, +b<-1

+ This is a constrained optimization problem

f(%,) =

— Numerical approaches to solve it
(e.g., quadratic programming)

WP

2

Introduction to Data Mining 1/2/2009
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Support Vector Machines

e What if the problem is not linearly separable?
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Support Vector Machines

e What if the problem is not linearly separable?
— Introduce slack variables

+ Need to minimize: | (w) = IwiF wif +C(Z§ j

+ Subject to:

i if Wex, +b>T-& )
Y1 ifwex +b<Cl+ &)
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Nonlinear Support Vector Machines

e What if decision boundary is not linear?

X5

xsssoxn elet
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Mapping into a New Feature Space

D:x2>X=D(x)

D(x1,X,) = (Xq,X,0,%,%,%%,X1X5)

e Rather than run SVM on x;, run it on ®(x;)
e Find non-linear separator in input space
e What if ®©(x;) is really big?

e Use kernels!
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Examples of Kernel Functions

e Polynomial kernel with degree d

K(x,y) = (xTy 4+ 1)4
e Radial basis function kernel with width o
K(x,y) = exp(—|x —y|[?/(202))
e Sigmoid K(x,y) = tanh(kxLy + 6)

— It does not satisfy the Mercer condition on all ¥
and 0
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Characteristics of SVMs

e Perform best on the average or outperform other
techniques across many important applications

e The results are stable, reproducible, and largely
independent of the specific optimization algorithm
e A convex optimization problem
— Lead to the global optimum
e The parameter selection problem
— The type of kernels (including its parameters)
— The attributes to be included.
e The results are hard to interpret
e Computational challenge
— Typically quadratic and multi-scan of the data

Introduction to Data Mining 1/2/2009 50




