Classification: Basic Concepts, Decision Trees, and Model Evaluation

Dr. Hui Xiong
Rutgers University

Classification: Definition

- Given a collection of records (training set)
 - Each record is characterized by a tuple \((x, y)\), where \(x\) is the attribute set and \(y\) is the class label
 - \(x\): attribute, predictor, independent variable, input
 - \(y\): class, response, dependent variable, output

- Task:
 - Learn a model that maps each attribute set \(x\) into one of the predefined class labels \(y\)
Examples of Classification Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Attribute set, x</th>
<th>Class label, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorizing email messages</td>
<td>Features extracted from email message header and content</td>
<td>spam or non-spam</td>
</tr>
<tr>
<td>Identifying tumor cells</td>
<td>Features extracted from MRI scans</td>
<td>malignant or benign cells</td>
</tr>
<tr>
<td>Cataloging galaxies</td>
<td>Features extracted from telescope images</td>
<td>Elliptical, spiral, or irregular-shaped galaxies</td>
</tr>
</tbody>
</table>

General Approach for Building Classification Model

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>Large</td>
<td>123K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>65K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attrib1</th>
<th>Attrib2</th>
<th>Attrib3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>30K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>
Classification Techniques

- **Base Classifiers**
 - Decision Tree based Methods
 - Rule-based Methods
 - Nearest-neighbor
 - Neural Networks
 - Naïve Bayes and Bayesian Belief Networks
 - Support Vector Machines

- **Ensemble Classifiers**
 - Boosting, Bagging, Random Forests

Example of a Decision Tree

<table>
<thead>
<tr>
<th>ID</th>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Splitting Attributes

- **Home Owner**: Yes -> NO, No -> MarSt
- **MarSt**: Single, Divorced -> Income
 - Income < 80K: NO
 - Income > 80K: YES
- **MarSt**: Married -> NO

Model: Decision Tree
Another Example of Decision Tree

<table>
<thead>
<tr>
<th>ID</th>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted</th>
<th>Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
<td>NO</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
<td>NO</td>
</tr>
</tbody>
</table>

There could be more than one tree that fits the same data!

Decision Tree Classification Task

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Large</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Medium</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Small</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Medium</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Large</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Medium</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Large</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Small</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Medium</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Small</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tid</th>
<th>Attr1</th>
<th>Attr2</th>
<th>Attr3</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>No</td>
<td>Small</td>
<td>55K</td>
<td>?</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Medium</td>
<td>80K</td>
<td>?</td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>Large</td>
<td>110K</td>
<td>?</td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>Small</td>
<td>95K</td>
<td>?</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>Large</td>
<td>67K</td>
<td>?</td>
</tr>
</tbody>
</table>

Introduction to Data Mining 1/2/2009
Apply Model to Test Data

Start from the root of tree.

Test Data

<table>
<thead>
<tr>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Introduction to Data Mining 1/2/2009 9
Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Diagram:
- Home Owner (No)
 - Income (No)
 - Single, Divorced
 - Income (YES)
 - > 80K
 - No
 - YES
 - Married

Introduction to Data Mining 1/2/2009
Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Introduction to Data Mining 1/2/2009

Apply Model to Test Data

Test Data

<table>
<thead>
<tr>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Married</td>
<td>80K</td>
<td>?</td>
</tr>
</tbody>
</table>

Assign Defaulted to "No"
Decision Tree Classification Task

![Decision Tree Induction Diagram](image)

Decision Tree Induction

- Many Algorithms:
 - Hunt’s Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT
General Structure of Hunt’s Algorithm

- Let D_t be the set of training records that reach a node t.

- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t.
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

Hunt’s Algorithm

(a) Defaulted = No
(b) Defaulted = Yes
(c) Defaulted = No
(d) Defaulted = Yes

Introduction to Data Mining 1/2/2009 17
Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition

- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

- Depends on attribute types
 - Binary
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split
Test Condition for Nominal Attributes

- Multi-way split:
 - Use as many partitions as distinct values.

- Binary split:
 - Divides values into two subsets
 - Need to find optimal partitioning.

Test Condition for Ordinal Attributes

- Multi-way split:
 - Use as many partitions as distinct values

- Binary split:
 - Divides values into two subsets
 - Need to find optimal partitioning
 - Preserve the order property among attribute values

This grouping violates order property
Test Condition for Continuous Attributes

Annual Income $> 80K$?
- Yes
- No

Annual Income?
- $< 10K$
- $[10K,25K]$
- $[25K,50K]$
- $[50K,80K]$
- $> 80K$

(i) Binary split
(ii) Multi-way split

Splitting Based on Continuous Attributes

- **Different ways of handling**
 - **Discretization** to form an ordinal categorical attribute
 - Static – discretize once at the beginning
 - Dynamic – ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- **Binary Decision**: $(A < v)$ or $(A \geq v)$
 - consider all possible splits and finds the best cut
 - can be more compute-intensive
How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred

- Need a measure of node impurity:

<table>
<thead>
<tr>
<th>C0: 5</th>
<th>C1: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>High degree of impurity</td>
<td>Low degree of impurity</td>
</tr>
</tbody>
</table>

Introduction to Data Mining 1/2/2009 25
Measures of Node Impurity

- **Gini Index**
 \[
 \text{GINI}(t) = 1 - \sum_j [p(j \mid t)]^2
 \]

- **Entropy**
 \[
 \text{Entropy}(t) = -\sum_j p(j \mid t) \log p(j \mid t)
 \]

- **Misclassification error**
 \[
 \text{Error}(t) = 1 - \max P(i \mid t)
 \]

Finding the Best Split

1. Compute impurity measure (P) before splitting
2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - Compute the average impurity of the children (M)
3. Choose the attribute test condition that produces the highest gain
 \[
 \text{Gain} = P - M
 \]
 or equivalently, lowest impurity measure after splitting (M)
Finding the Best Split

Before Splitting:

\[A? \]

Node N1

Yes

Node N2

No

\[B? \]

Node N3

Yes

Node N4

No

\[C0 \]

N00

P

\[C1 \]

N01

\[\text{Gain} = P - M1 \text{ vs } P - M2 \]

Gain = P - M1 vs P - M2

Measure of Impurity: GINI

- Gini Index for a given node \(t \):

\[
\text{GINI}(t) = 1 - \sum_j [p(j | t)]^2
\]

(Note: \(p(j | t) \) is the relative frequency of class \(j \) at node \(t \)).

- Maximum (1 - 1/\(n_c \)) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information
Computing Gini Index of a Single Node

\[
GINI(t) = 1 - \sum_{j} [p(j | t)]^2
\]

<table>
<thead>
<tr>
<th>C1</th>
<th>0</th>
<th>P(C1) = 0/6 = 0 P(C2) = 6/6 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>6</td>
<td>Gini = 1 – P(C1)^2 – P(C2)^2 = 1 – 0 – 1 = 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C1</th>
<th>1</th>
<th>P(C1) = 1/6 P(C2) = 5/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>5</td>
<td>Gini = 1 – (1/6)^2 – (5/6)^2 = 0.278</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C1</th>
<th>2</th>
<th>P(C1) = 2/6 P(C2) = 4/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>4</td>
<td>Gini = 1 – (2/6)^2 – (4/6)^2 = 0.444</td>
</tr>
</tbody>
</table>

Computing Gini Index for a Collection of Nodes

- When a node \(p \) is split into \(k \) partitions (children)

\[
GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)
\]

where, \(n_i \) = number of records at child \(i \),
\(n \) = number of records at parent node \(p \).

- Choose the attribute that minimizes weighted average Gini index of the children

- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT
Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

\[
\text{Gini} = 1 - \left(\frac{5}{6}\right)^2 - \left(\frac{1}{6}\right)^2 = 0.278
\]

\[
\text{Gini}(N1) = 1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2 = 0.444
\]

\[
\text{Gini}(N2) = 1 - \left(\frac{2}{6}\right)^2 - \left(\frac{4}{6}\right)^2 = 0.444
\]

<table>
<thead>
<tr>
<th>Parent</th>
<th>N1</th>
<th>N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\text{Gini(Children)} = 6/12 \times 0.278 + 6/12 \times 0.444 = 0.361
\]

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

\[
\begin{array}{c|c|c|c|c}
\text{CarType} & \text{Family} & \text{Sports} & \text{Luxury} \\
\hline
\text{C1} & 1 & 8 & 1 \\
\text{C2} & 3 & 0 & 7 \\
\text{Gini} & 0.163 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{CarType} & \text{(Sports, Luxury)} & \text{Family} \\
\hline
\text{C1} & 9 & 1 \\
\text{C2} & 7 & 3 \\
\text{Gini} & 0.468 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
\text{CarType} & \text{(Sports)} & \text{(Family, Luxury)} \\
\hline
\text{C1} & 8 & 2 \\
\text{C2} & 0 & 10 \\
\text{Gini} & 0.167 \\
\end{array}
\]
Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values = Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

For efficient computation:

- Sort the attribute on values
- Linearly scan these values, each time updating the count matrix and computing gini index
- Choose the split position that has the least gini index
Measure of Impurity: Entropy

- Entropy at a given node t:
 \[Entropy(t) = -\sum_j p(j \mid t) \log p(j \mid t) \]

(NOTE: \(p(j \mid t)\) is the relative frequency of class j at node t).

- Maximum (log \(n_c\)) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information

Entropy based computations are quite similar to the GINI index computations

Computing Entropy of a Single Node

\[Entropy(t) = -\sum_j p(j \mid t) \log_2 p(j \mid t) \]

<table>
<thead>
<tr>
<th>Class</th>
<th>Count</th>
<th>(P(C1))</th>
<th>(P(C2))</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td>0/6 = 0</td>
<td>6/6 = 1</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entropy = \(-0 \log 0 - 1 \log 1 = -0 - 0 = 0\)

<table>
<thead>
<tr>
<th>Class</th>
<th>Count</th>
<th>(P(C1))</th>
<th>(P(C2))</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>1/6</td>
<td>5/6</td>
<td>0.65</td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entropy = \(-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65\)

<table>
<thead>
<tr>
<th>Class</th>
<th>Count</th>
<th>(P(C1))</th>
<th>(P(C2))</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td>2/6</td>
<td>4/6</td>
<td>0.92</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entropy = \(-(2/6) \log_2 (2/6) - (4/6) \log_2 (4/6) = 0.92\)
Computing Information Gain After Splitting

- Information Gain:

\[
GAIN_{\text{split}} = \text{Entropy}(p) - \left(\frac{1}{n} \sum_{i=1}^{k} n_i \text{Entropy}(i) \right)
\]

Parent Node, \(p \) is split into \(k \) partitions;
\(n_i \) is number of records in partition \(i \)

- Choose the split that achieves most reduction (maximizes \(GAIN \))
- Used in the ID3 and C4.5 decision tree algorithms

Problems with Information Gain

- Info Gain tends to prefer splits that result in large number of partitions, each being small but pure

- Customer ID has highest information gain because entropy for all the children is zero
Gain Ratio

- Gain Ratio:

\[\text{GainRATIO} = \frac{\text{GAIN}}{\text{SplitINFO}} \]

\[\text{SplitINFO} = -\sum_{i=1}^{k} \frac{n_i}{n} \log \frac{n_i}{n} \]

Parent Node, p is split into k partitions

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
 - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

Measure of Impurity: Classification Error

- Classification error at a node t:

\[\text{Error}(t) = 1 - \max_{i} P(i | t) \]

- Maximum (1 - 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information
Computing Error of a Single Node

\[Error(t) = 1 - \max_i P(i \mid t) \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

\[P(C1) = 0/6 = 0 \quad P(C2) = 6/6 = 1 \]

Error = 1 – max (0, 1) = 1 – 1 = 0

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

\[P(C1) = 1/6 \quad P(C2) = 5/6 \]

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\[P(C1) = 2/6 \quad P(C2) = 4/6 \]

Error = 1 – max (2/6, 4/6) = 1 – 4/6 = 1/3

Comparison among Impurity Measures

For a 2-class problem:

- **Entropy**
- **Gini**
- **Misclassification error**

![Graph showing entropy, Gini, and misclassification error curves]
Misclassification Error vs Gini Index

Decision Tree

- **Parent:**
 - C1: 7
 - C2: 3
 - Gini = 0.42

Gini Index Calculation

- **Node N1 (A = Yes):**
 - Gini(N1) = 1 – (3/3)^2 – (0/3)^2
 - Gini(N1) = 0

- **Node N2 (A = No):**
 - Gini(N2) = 1 – (4/7)^2 – (3/7)^2
 - Gini(N2) = 0.489

Gini Index of Children

- **Gini(Children):**
 - Gini(Children) = 3/10 * 0 + 7/10 * 0.489
 - Gini(Children) = 0.342

Gini improves but error remains the same!!

Decision Tree Based Classification

- **Advantages:**
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets