Data Mining: Data	_
Dr. Hui Xiong Rutgers University	
THE STATE UNIVERSITY OF NEW JERSEY	
Introduction to Data Mining 1/2/2009 1	

Outline		
 Attributes and Objects 		
 Types of Data 		
 Data Quality 		
 Data Preprocessing 		
Introduction to Data Mining	1/2/2009	2

	Attribute Type	Description	Examples	Operations
guncar litative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: { <i>male,</i> <i>female</i> }	mode, entropy, contingency correlation, χ2 test
Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
ntitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Quar	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean harmonic mean, percent variation

	Attribute Type	Transformation	Comments
ve	Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Qualitati	Ordinal	An order preserving change of values, i.e., new_value = f(old_value) where <i>f</i> is a monotonic function	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 0}.
Jantitative	Interval	<i>new_value =a</i> * <i>old_value</i> + <i>b</i> where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
วั	Ratio	new_value = a * old_value	Length can be measured in meters or feet.

This categorization of attributes is due to S. S. Stevens

D	Data Matr	ix			
•	If data object attributes, the points in a m dimension re Such data se where there a	s have the sa en the data ol ulti-dimensior presents a di et can be repr	ame fixed se bjects can b nal space, v stinct attribu esented by	et of num be thoug vhere ea ute an m by	neric ht of as ach y n matrix,
	columns, one	e for each attr	one for each ibute	object,	and n
	columns, one Projection of x Load	e for each attr Projection of y load	ibute	Load	and n Thickness
	Columns, one Projection of x Load	Projection of y load	Distance	Load	and n Thickness 1.2
	Columns, one Projection of x Load 10.23 12.65	Projection of y load 5.27 6.25	Distance	Load 2.7 2.2	and n Thickness 1.2 1.1

p and *q* are the corresponding attribute values for two data objects.

Attribute	Dissimilarity	Similarity		
Type				
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{egin{array}{cc} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$		
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$		
Interval or Ratio	d = p-q	$s=-d,s=rac{1}{1+d} ext{ or } s=1-rac{d-min_d}{max_d-min_d}$		
Table 5.1. Similarity and dissimilarity for simple attributes				
Introduction	to Data Mining 1/2/2009	59		

			L1	p1	p2	р3	p4
			p1	0	4	4	6
			p2	4	0	2	4
			p3	4	2	0	2
		,	p4	6	4	2	0
point	X	y	10				
p1	0	2	L2	p1	p2	p3	p4
p2	2	0	p1	0	2.828	3.162	5.099
p3	3	1	p2	2.828	0	1.414	3.162
p4	5	1	p3	3.162	1.414	0	2
			p4	5.099	3.162	2	(
			L _∞	p1	p2	р3	p4
			p1	0	2	3	5
			p2	2	0	1	3
			р3	3	1	0	2
			p4	5	3	2	0
				Distanc	e Matrix		
Int	troduction	to Data Mining		1/2/200	٥		64

