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Abstract

Given a user-specified minimum correlation thresholdθ and a market basket database withN items and

T transactions, an all-strong-pairs correlation query findsall item pairs with correlations above the thresholdθ.

However, when the number of items and transactions are large, the computation cost of this query can be very high.

The goal of this paper is to provide computationally efficient algorithms to answer the all-strong-pairs correlation

query. Indeed, we identify an upper bound of Pearson’s correlation coefficient for binary variables. This upper

bound is not only much cheaper to compute than Pearson’s correlation coefficient but also exhibits special 2D-

monotone properties which allows pruning of many item pairseven without computing their upper bounds. A

Two-stepAll-strong-Pairs corrElation queRy (TAPER) algorithm is proposed to exploit these propertiesin a filter-

and-refine manner. Furthermore, we provide an algebraic cost model which shows that the computation savings

from pruning is independent or improves when the number of items is increased in data sets with common Zipf or

linear rank-support distributions. Experimental resultsfrom synthetic and real-world data sets exhibit similar trends

and show that the TAPER algorithm can be an order of magnitudefaster than brute-force alternatives. Finally, we

demonstrate that the algorithmic ideas developed in the TAPER algorithm can be extended to efficiently compute

negative correlation and uncentered Pearson’s correlation coefficient.
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I. I NTRODUCTION

Given a large set of items and observation data sets about co-occurring items, association analysis is

concerned with identification of strongly related (e.g. as measured by Pearson’s correlation coefficient

[22]) subsets of items. Association analysis is a core problem in data mining and databases. It plays

an important role in many application domains such as market-basket analysis [2], climate studies [25],

public health [8], and bioinformatics [17]. For instance, association analysis in market basket study can

reveal how the sales of a product are related with the sales ofother products. This type of information

can be useful for sales promotions, catalog design, and store layout.

The focus of this paper is on computing anall-strong-pairs correlation querythat returns pairs of

high positively correlated items (or binary attributes). The all-strong-pairs correlation queryproblem can

be formalized as follows: Given a user-specified minimum correlation thresholdθ and a market basket

database withN items andT transactions, an all-strong-pairs correlation query findsall item pairs with

correlations above the minimum correlation threshold,θ.

However, as the number of items and transactions in the data set increases, the computation cost for an

all-strong-pairs correlation query becomes prohibitively expensive. For example, consider a database of

106 items, which may represent the collection of books available at an e-commerce Web site. Answering

the all-strong-pairs correlation query from such a massivedatabase requires computing the correlations of

(

106

2

)

≈ 0.5×1012 possible item pairs. Thus, it may not be computationally feasible to apply a brute-force

approach to compute correlations for all half trillion pairs, particularly when the number of transactions

in the data set is also very large.

A. Related Work

Jermaine [13] investigated the implication of incorporating chi-square (χ2) [22] based queries to data

cube computations. He showed that finding the subcubes that satisfy statistical tests such asχ2 are inher-

ently NP-hard, but can be made more tractable using approximation schemes. Jermaine [14] also presented



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , VOL. X,NO. X, XXX 200X 3

an iterative procedure for high-dimensional correlation analysis by shaving off part of the database via

feedback from human experts. Finally, Brin [4] proposed aχ2-based correlation rule mining strategy.

However,χ2 does not possess a desired upward closure property for exploiting efficient computation [9].

This paper focuses on the efficient computation of statistical correlation for all pairs of items. Given

n items, a traditional brute force approach computes Pearson’s correlation coefficient for all
(

n

2

)

= n(n−1)
2

item pairs. This approach is often implemented using matrixalgebra in a statistical software package as

the “correlation matrix” [15] function, which computes Pearson’s correlation coefficient for all pairs of

columns. This approach is applicable to but not efficient forthe case of Boolean matrices, which can model

market-basket-type data sets. Recently, Ilyas et al. [12] proposed a more efficient method for identifying

correlated pairs. In this method, the sampling techniques are applied to exploit efficient computation. As

a result, this method cannot avoid false-positive and false-negative correlations.

In contrast, unlike the correlation matrix approach, the method proposed in this paper does not need

to compute all
(

n

2

)

pairs. In particular, for market-basket-type data sets with a Zipf-like rank-support

distribution, we show that only a small portion of the item pairs needs to be examined. In the real world,

Zipf-like distributions have been observed in a variety of application domains, including commercial retail

data, Web click-streams, and telecommunication data. Also, we show that our method is complete and

correct, since we do not apply any approximation schemes, such as sampling techniques.

B. Contributions

In our preliminary work [28], we provide an upper bound of Pearson’s correlation coefficient for

binary variables. The computation of this upper bound is much cheaper than the computation of the

exact correlation, since this upper bound can be computed asa function of the support of individual

items. Furthermore, we show that this upper bound has a special 1-D monotone property which allows

elimination of many item pairs even without computing theirupper bounds, as shown in Figure 1. The

x-axis in the figure represents the set of items having a lowerlevel of support than the support for

item xi. These items are sorted from left to right in decreasing order of their individual support values.
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The y-axis indicates the correlation between each item x anditem xi. Upperbound(xi, x) represents the

upper bound ofcorrelation(xi, x) and has a monotone decreasing behavior. This behavior guarantees

that an item pair(xi, xk) can be pruned if there exists an itemxj such thatupperbound(xi, xj) < θ and

supp(xk) < supp(xj).

correlation(xi, x)

x
xj xn

xi

upperbound(xi, x)

0

1

items sorted in descending order by supp(item)

xk

Fig. 1. Illustration of the Filtering Techniques. (The curves are only usedfor illustration purposes.)

A Two-stepAll-strong-Pairs corrElation queRy (TAPER) algorithm is proposed to exploit this 1-D

monotone property in a filter-and-refine manner which consists of two steps: filtering and refinement.

In the filtering step, many item pairs are filtered out using the easy-to-computeupperbound(xi, x) and

its monotone property. In the refinement step, the exact correlation is computed for remaining pairs

to determine the final query results. In addition, we have proved the completeness and correctness of

TAPER and provided an algebraic cost model to quantify the computational savings. As demonstrated by

our experiments on both real and synthetic data sets, TAPER can be an order of magnitude faster than

brute-force alternatives and the computational savings byTAPER is independent or improves when the

number of items is increased in data sets with common Zipf [29] or linear rank-support distributions.
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0
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(a) (b)

Fig. 2. (a) A Monotone Property of the Upper Bound (b) Illustration of 2-D Monotone Properties of the Upper Bound

In this paper, we identify that the upper bound of Pearson’s correlation coefficient for binary variables has

special 2-D monotone properties. Indeed, besides the 1-D monotone property mentioned above, the upper
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bound has another 1-D monotone property as shown in Figure 2 (a). The x-axis in the figure represents a

sorted item list in ascending order of their individual support values. The y-axis indicates the correlation

between itemxi and x. In this case, the itemxi is fixed and the upper bound ofcorrelation(x, xi) is

monotonically decreasing with the increase of the support value of itemx.

Figure 2 shows 2-D monotone properties of the upper bound. Inthe figure, for an item list{1, 2, 3, 4,

5, 6}, which is sorted by item support in non-increasing order, the upper bound of item pairs is decreasing

following the arrow direction. For instance, the upper bound of item pair{5, 6} is greater than that of

item pair{4, 5}. Also, the upper bound of item pair{1, 2} is greater than that of item pair{1, 3}.

With 2-D monotone properties of the upper bound, we can further refine the TAPER algorithm by

reducing the upper-bound computation in the coarse filter step. We show that the number of upper-bound

computations is reduced fromn(n−1)
2

to 2n − 3 for the worst case. In addition, we present experimental

results to show this computational improvement.

Finally, the method proposed in this paper is not limited to finding all pairs of high positively correlated

pairs. We show that the algorithmic ideas developed in the TAPER algorithm can also be extended for

identifying pairs of high negatively correlated pairs and for efficiently computing uncentered Pearson’s

correlation coefficient. To this end, we provide the theoretical basis, algorithmic ideas, and experimental

results for such an extension.

C. Scope and Outline

The scope of the all-strong-pairs correlation query problem proposed in this paper is restricted to market

basket databases with binary variables, and the correlation computational form is Pearson’s correlation

coefficient for binary variables, which is also called theφ correlation coefficient.

Note that the all-strong-pairs correlation query problem is different from the standard association-rule

mining problem [1], [3], [4], [5], [6], [7], [10], [11], [19], [20], [21], [26]. Given a set of transactions,

the objective of association rule mining is to extract all subsets of items that satisfy a minimum support

threshold. Support measures the fraction of transactions that contain a particular subset of items. The
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notions of support and correlation may not necessarily agree with each other. This is because item pairs

with high support may be poorly correlated while those that are highly correlated may have very low

support. For instance, suppose we have an item pair{A, B}, where supp(A) = supp(B) = 0.8 and

supp(A,B) = 0.64. Both items are uncorrelated becausesupp(A,B) = supp(A)supp(B). In contrast, an

item pair{A, B} with supp(A) = supp(B) = supp(A,B) = 0.001 is perfectly correlated despite its low

support. Patterns with low support but high correlation areuseful for capturing interesting associations

among rare anomalous events or rare but expensive items suchas gold necklaces and earrings.

The remainder of this paper is organized as follows. SectionII presents basic concepts. In section III, we

introduce the upper bound of Pearson’s correlation coefficient for binary variables. Section IV proposes

the TAPER algorithm. In section V, we analyze the TAPER algorithm in the areas of completeness,

correctness, and computation gain. Section VI discusses how to generalize our method. In section VII, we

present the experimental results. Finally, we draw conclusions and suggest future work in section VIII.

II. PEARSON’ S CORRELATION COEFFICIENT

In statistics, a measure of association is a numerical indexwhich describes the strength or magnitude of a

relationship among variables. Although literally dozens of measures exist, they can be categorized into two

broad groups: ordinal and nominal. Relationships among ordinal variables can be analyzed with ordinal

measures of association such as Kendall’s Tau [16] and Spearman’s Rank Correlation Coefficient [18].

In contrast, relationships among nominal variables can be analyzed with nominal measures of association

such as Pearson’s Correlation Coefficient and measures based on Chi Square [22].

Theφ correlation coefficient [22] is the computation form of Pearson’s Correlation Coefficient for binary

variables. In this section, we describe theφ correlation coefficient and show how it can be computed using

the support measure of association-rule mining [1].

In a 2× 2 two-way table shown in Table I, the calculation of theφ correlation coefficient reduces to

φ =
P(00)P(11) − P(01)P(10)
√

P(0+)P(1+)P(+0)P(+1)

, (1)
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P
0
1

Column Total

1
P(01)

0
P

P
P(+0)

(10)

(00)

Row

(11)

P(+1)

Total

P(0+)

P(1+)

N

A

B

TABLE I

A TWO-WAY TABLE OF ITEM A AND ITEM B.

whereP(ij), for i = 0, 1 and j = 0, 1, denote the number of samples which are classified in theith

row andjth column of the table. Furthermore, we letP(i+) denote the total number of samples classified

in the ith row, and we letP(+j) denote the total number of samples classified in thejth column. Thus,

P(i+) =
∑1

j=0 P(ij) and P(+j) =
∑1

i=0 P(ij). In the two-way table, given thatN is the total number of

samples, we can transform Equation 1 as follows.

φ =
(N − P(01) − P(10) − P(11))P(11) − P(01)P(10)

√

P(0+)P(1+)P(+0)P(+1)

=
NP(11) − (P(11) + P(10))(P(01) + P(11))

√

P(0+)P(1+)P(+0)P(+1)

=

P(11)

N
− P(1+)

N

P(+1)

N
√

P(0+)

N

P(1+)

N

P(+0)

N

P(+1)

N

Hence, when adopting the support measure of association rule mining [1], for two itemsA andB in a

market basket database, we havesupp(A) = P(1+)/N , supp(B) = P(+1)/N , andsupp(A,B) = P(11)/N .

With support notations and the above new derivations of Equation 1, we can derive the support form of

the φ correlation coefficient as shown below in Equation 2.

φ =
supp(A,B) − supp(A)supp(B)

√

supp(A)supp(B)(1 − supp(A))(1 − supp(B))
(2)

10

9

8

7

6

5

4

3

2

1

TID Items

1, 2, 3

1, 2, 3

1, 3

1, 2

1, 2

1, 2

1, 2, 3, 4, 5, 6

1, 2, 4, 5

1, 2, 4

3

0.667

−0.333

0.218

0.167

0.111

0.327

0.25

0.167

−0.5

−0.218

0

0.333

0.764

0.509

0.667

Correlation Support

{1, 2}

Pair

{1, 3}

{1, 4}

{1, 5}

{1, 6}

{2, 3}

{2, 4}

{2, 5}

{2, 6}

{3, 4}

{3, 5}

{3, 6}

{4, 5}

{4, 6}

{5, 6}

0.3

0.2

0.1

0.3

0.3

0.2

0.1

0.1

0.1

0.1

0.1

0.2

0.1

0.4

0.8

(b) Item pairs with Pearson’s Correlation
Coefficient and Support

(a) A Market Basket Database

Fig. 3. An Example Database.

Example 1:Consider the market basket database shown in Figure 3. For item 1 and item 2 in the

database, we can construct a two-way table as shown in Table II. Then, by Equation 1, we getφ =
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0
0
1

Column Total

1
{2}

Row Total

{1}
1

1 1

9

102

0

8

8

TABLE II

A TWO-WAY TABLE OF ITEM 1 AND ITEM 2.

1×8−1×0√
1×9×2×8

= 2
3
. Also, sincesupp(1, 2) = 0.8, supp(1) = 0.9, andsupp(2) = 0.8, by Equation 2, we get

φ = 0.8−0.8×0.9√
0.8×0.9×0.1×0.2

=0.08
0.12

=2
3
. As can be seen, the results from the two equations are identical. Finally,φ

correlation coefficients for other item pairs can be computed similarly. Figure 3 (b) showsφ correlation

coefficients for all item pairs.

III. PROPERTIES OF THEφ CORRELATION COEFFICIENT

In this section, we present some properties of theφ correlation coefficient. These properties are useful

for the efficient computation of all-strong-pairs correlation queries.

A. An Upper Bound

In this subsection, we propose an upper bound of theφ correlation coefficient for a given pair{A, B}

in terms of the support value of itemA and the support value of itemB.

Lemma 1:Given an item pair{A, B}, the support valuesupp(A) for item A, and the support value

supp(B) for item B, without loss of generality, letsupp(A) ≥ supp(B). The upper boundupper(φ{A,B})

of the φ correlation coefficient for{A, B} can be obtained whensupp(A,B) = supp(B) and

upper(φ{A,B}) =

√

supp(B)

supp(A)

√

1 − supp(A)

1 − supp(B)
(3)

Proof: According to Equation 2, for an item pair{A, B}, φ{A,B} = supp(A,B)−supp(A)supp(B)√
supp(A)supp(B)(1−supp(A))(1−supp(B))

When the support valuessupp(A) and supp(B) are fixed,φ{A,B} is monotone increasing with the

increase of the support valuesupp(A,B). By the given conditionsupp(A) ≥ supp(B) and the anti-

monotone property of the support measure, we get the maximumpossible value ofsupp(A,B) is supp(B).
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As a result, the upper bound upper(φ{A,B}) of the φ correlation coefficient for an item pair{A, B} can

be obtained whensupp(A,B) = supp(B). Hence,upper(φ{A,B}) =
√

supp(B)
supp(A)

√

1−supp(A)
1−supp(B)

.

As can be seen in Equation 3, the upper bound of theφ correlation coefficient for an item pair{A, B}

relies only on the support value of itemA and the support value of itemB. In other words, there is no

requirement to get the support valuesupp(A,B) of an item pair{A, B} for the calculation of this upper

bound. As already noted, when the number of itemsN becomes very large, it is difficult to store the

support of every item pair in the memory, sinceN(N − 1)/2 is a huge number. However, it is possible

to store the support of individual items in the main memory. As a result, this upper bound can serve

as a coarse filter to filter out item pairs which are of no interest, thus saving I/O cost by reducing the

computation of the support values of those pruned pairs.

Pair

{1, 2}

{1, 3}

{1, 4}

{1, 5}

{1, 6}

{2, 3}

{2, 4}

{2, 5}

{2, 6}

{3, 4}

{3, 5}

{3, 6}

{4, 5}

{4, 6}

{5, 6}

0.667

0.333

0.5

0.327

0.655

0.5

0.333

0.764

0.509

0.667

UPPER(Φ)

0.667

−0.5

−0.218

0

0.764

0.509

0.667

0.218

0.167

0.111

0.25

0.167

Correlation

−0.333

0.218

0.167

0.111

0.327

0.25

0.167

0.333

Fig. 4. All Pairs in the Example Database.

Example 2:Figure 4 shows all item pairs with their upper bound values for the example data set

shown in Figure 3. If we consider item pair{1, 2}, then by Equation 3, we haveupper(φ{1,2}) =
√

supp(2)
supp(1)

√

1−supp(1)
1−supp(2)

=
√

0.8
0.9

√

1−0.9
1−0.8

= 0.667 as shown in Figure 4. Finally, upper bounds of theφ

correlation coefficient for other item pairs can be computedin a similar manner. Figure 4 shows the

upper bounds andφ correlation coefficients for all item pairs.
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B. 2-D Monotone Properties

In this subsection, we present a conditional monotone property of the upper bound of theφ correlation

coefficient as shown below in Lemma 2

Lemma 2:For an item pair{A, B}, if we let supp(A) > supp(B) and fix itemA, the upper bound

upper(φ{A,B}) of {A, B} is monotone decreasing with the decrease of the support value of itemB.

Proof: By Lemma 1, we getupper(φ{A,B}) =
√

supp(B)
supp(A)

√

1−supp(A)
1−supp(B)

. For any given two itemsB1 andB2

with supp(A) > supp(B1) > supp(B2), we need to proveupper(φ{A,B1}) > upper(φ{A,B2}). This claim

can be proved as follows.
upper(φ{A,B1}

)

upper(φ{A,B2}
)

=
√

supp(B1)
supp(B2)

√

1−supp(B2)
1−supp(B1)

> 1. This follows the given condition

that supp(B1) > supp(B2) and (1 − supp(B1)) < (1 − supp(B2)).

Along the same line of Lemma 2, we can also derive another conditional monotone property of the

upper bound of theφ correlation coefficient as follows.

Lemma 3:For a pair of items{A, B}, let supp(A) > supp(B) and fix the itemB, the upper bound

upper(φ{A,B}) of {A, B} is monotone increasing with the decreasing of the support value of itemA.

Example 3:This example illustrates Lemma 2 and Lemma 3. As shown in Figure 4, if item1 is fixed,

the upper bounds of item pairs{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6} are in a decreasing order, which

follows Lemma 2. Also, the upper bounds of item pairs{1, 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6} are in an

increasing order. This follows Lemma 3.

Lemma 2 and Lemma 3 are 2-D monotone properties of the upper bound. These two lemmas allow

us to push the upper bound into the search algorithm, thus efficiently pruning the search space. In the

following section, we will introduce how this pruning works.

IV. A LGORITHM DESCRIPTIONS

Here, we first present theTwo-stepAll-strong-Pairs corrElation queRy (TAPER) algorithm to exploit

the proposed upper bound and its monotone properties.
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TAPER ALGORITHM
Input: S′: an item list sorted by item supports in non-increasing order.

θ: a user-specified minimum correlation threshold.
Output: P: the result of all-strong-pairs correlation query.
Variables: n: the size of item setS′.

A: the item with larger support.
B: the item with smaller support.

CoarseFilter(S′, θ) //The filtering Step
1DFiltering(S′, θ) or 2DFiltering(S′, θ)

Refine(A, B, θ) //The Refinement Step
1. Get the support supp(A, B) of item set{A, B}
2. φ = supp(A,B)−supp(A)supp(B)√

supp(A)supp(B)(1−supp(A))(1−supp(B))

3. if φ < θ then
4. return ∅ //return NULL
5. else
6. return {{A,B}, φ}

Fig. 5. The TAPER Algorithm

A. Overview

The TAPER algorithm is a filter-and-refine query processing strategy which consists of two steps:

filtering and refinement.

The Filtering Step: In this step, the TAPER algorithm applies two pruning techniques. The first

technique uses the upper bound of theφ correlation coefficient as a coarse filter. In other words, ifthe

upper bound of theφ correlation coefficient for an item pair is less than the user-specified correlation

threshold, we can prune this item pair right way. The second pruning technique prunes item pairs based

on special monotone properties of the upper bound of theφ correlation coefficient.

The Refinement Step:In the refinement step, the TAPER algorithm computes the exact correlation for

each surviving pair from the filtering step and retrieves thepairs with correlations above the user-specified

minimum correlation threshold as the query results.

Figure 5 shows the pseudocode of the TAPER algorithm, which includes theCoarseF ilter andRefine

procedures. In theCoarseF ilter procedure, monotone properties of the upper bound of theφ correlation

coefficient can be used in two different ways, namely 1D filtering and 2D filtering. The details of these

two filtering techniques are introduced in the following subsections.

ProcedureRefine works as follows. Line 1 gets the support for the item pair{A, B}. Note that the

I/O cost can be very expensive for line 1 when the number of items is large since we cannot store the
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support of all item pairs in the memory. Line 2 calculates theexact correlation coefficient of this item

pair. If the correlation is greater than the user-specified minimum correlation threshold, this item pair is

returned as a query result in line 6. Otherwise, the procedure returns NULL in line 4.

B. TAPER 1D: TAPER with 1D filter

In this subsection, we illustrate TAPER with 1D filter, denoted as TAPER 1D. The working mechanism

of 1D filtering is illustrated as the following Corollary.

Corollary 1: When searching for all pairs of items with correlations abovea user-specified threshold

θ, if an item list {i1, i2, . . . , im} is sorted by item supports in non-increasing order, an item pair {ia, ic}

with supp(ia) > supp(ic) can be pruned ifupper(φ{ia, ib}) < θ andsupp(ic) ≤ supp(ib).

Proof: First, whensupp(ic) = supp(ib), we getupper(φ(ia, ic)) = upper(φ(ia, ib)) < θ according to

Equation 3 and the given conditionupper(φ{ia, ib}) < θ; then we can prune the item pair{ia, ic}.

Next, we considersupp(ic) < supp(ib). Sincesupp(ia) > supp(ib) > supp(ic), by Lemma 2, we get

upper(φ{ia, ic}) < upper(φ{ia, ib}) < θ. Hence, the pair{ia, ic} is pruned.

1DFiltering(S′, θ) //The Filtering Step
1. n = size(S′), P = ∅
2. for i from 1 to n-1
3. A = S′[i]
4. for j from i+1 to n
5. B = S′[j]

6. upper(φ) =
√

supp(B)
supp(A)

√

1−supp(A)
1−supp(B)

7. if (upper(φ) < θ) then //Pruning by the monotone property
8. break from inner loop
9. else
10. P=P∪ Refine(A, B,θ)

Fig. 6. TAPER 1D: TAPER with a 1D filter

Figure 6 shows the pseudocode of 1D filtering, which works as follows. Line 1 initializes the variables

and creates an empty query result setP . Lines 2 - 10 iteratively enumerate candidate pairs and filter out

item pairs whose correlations are obviously less than the user-specified correlation thresholdθ. This is

implemented by two loops. Line 2 starts an outer loop. Line 3 specifies the reference item A, and line

4 starts a search within each branch. Line 5 specifies the target item B, and line 6 computes the upper
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bound of theφ correlation coefficient for item pair{A, B}. In line 7, if this upper bound is less than the

user-specified correlation thresholdθ, the search within this loop can stop by exiting from the inner loop,

as shown in line 8. The reason is as follows. First, the reference item A is fixed in each branch and it

has the maximum support value due to the way we construct the branch. Also, items within each branch

are sorted based on their support in non-increasing order. Then, by Lemma 2, the upper bound of theφ

correlation coefficient for the item pair{A, B} is monotone decreasing with the decrease of the support

of item B. Hence, if we find the first target item B which results in an upper boundupper(φ{A,B}) that

is less than the user-specified correlation thresholdθ, we can stop the search. Line 10 calls the procedure

Refine to compute the exact correlation for each surviving candidate pair and continues to check the

next target item until no target item is left.

{1,2} {1,3} {1,4} {1,5} {1,6} {2,3} {2,4} {2,5} {2,6} {3,4} {3,5} {3,6} {4,5} {4,6} {5,6}

{}

(0.9) (0.8) (0.5) (0.3) (0.2) (0.1)
{1} {2} {3} {4} {6}{5}

Support −>
Item −>

{1,2} {1,3} {1,4} {1,5} {1,6} {2,3} {2,4} {2,5} {2,6} {3,4} {3,5} {3,6} {4,5} {4,6} {5,6}

Item Support

1 0.9

2 0.8

3 0.5

4

5

6

0.3

0.2

0.1

TID Items

1, 2, 31

1, 2, 32

1, 33

1, 24

1, 25

1, 26

1, 2, 3, 4, 5, 67

1, 2, 4, 58

1, 2, 49

10 3

Pair

{1, 2}

{1, 3}

{1, 4}

{1, 5}

{1, 6}

{2, 3}

{2, 4}

{2, 5}

{2, 6}

{3, 4}

{3, 5}

{3, 6}

{4, 5}

{4, 6}

{5, 6}

0.667

0.333

0.5

0.327

0.655

0.5

0.333

0.764

0.509
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0.167

Fig. 7. Illustration of the filter-and-refine strategy of the TAPER algorithm with 1D filter.

Example 4:To illustrate the TAPER algorithm with 1D filter, consider a database shown in Figure 7.

To simplify the discussion, we use an item list{1, 2, 3, 4, 5, 6} which is sorted by item support in non-

increasing order. For a given correlation threshold 0.36, we can use Rymon’s generic set-enumeration tree

search framework [24] to demonstrate how filter-and-refine query processing works. For instance, for the

branch starting from item 1, we identify that the upper boundof theφ correlation coefficient for the item

pair {1, 3} is 0.333, which is less than the given correlation threshold0.36. Hence, we can prune this item
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pair immediately. Also, since the item list{1, 2, 3, 4, 5, 6} is sorted by item supports in non-increasing

order, we can prune pairs{1, 4}, {1, 5}, and{1, 6} by Lemma 2 without any further computation cost.

In contrast, for the traditional filter-and-refine paradigm, the coarse filter can only prune the item pair{1,

3}. There is no technique to prune item pairs{1, 4}, {1, 5}, and{1, 6}. Finally, in the refinement step,

only seven item pairs are required to compute the exact correlation coefficients, as shown in Figure 7 (c).

More than half of the item pairs are pruned in the filter step even though the correlation threshold is as

low as 0.36. Please note that the Rymon’s set-enumeration tree is used for illustration purposes. In our

algorithm, there is no requirement to construct such a tree structure.

C. TAPER 2D: TAPER with 2D Filter

The coarse filter step of TAPER 1D can be improved by reducing the number of upper bounds to be

computed; this leads to TAPER 2D. Indeed, we can reduce the computation of upper bounds in each inner

loop and produce an improved coarse filter step as shown in Figure 8. The key difference between TAPER

1D and TAPER 2D is that TAPER 2D records the break point in the last inner loop and starts computing

upper bounds from the recorded point instead of going through every candidate pair. The correctness of

this additional filtering is guaranteed by the following Corollary.

2DFiltering(S′, θ) //The Filtering Step
1. n = size(S′), P = ∅
2. startposi = 2
3. for i from 1 to n-1
4. A = S′[i]
5. for j from i+1 to n
6. flag=0
7. B = S′[j]
8. if(j ≥ startposi)

9. upper(φ) =
√

supp(B)
supp(A)

√

1−supp(A)
1−supp(B)

10. if (upper(φ) < θ) then //Pruning by the monotone property
11. if (j > i+1 || startposi == n)then //Reducing the Computation of Upper Bounds
12. startposi = j
13. else
14. startposi = j + 1
15. break from inner loop
16. P=P∪ Refine(A, B,θ)
17. if(startposi == (i+1) && flag ==0) startposi ++

Fig. 8. TAPER 2D: TAPER with a 2D filter
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Corollary 2: Given an item list{i1, i2, . . . , in}, which is sorted by item supports in non-increasing

order, the upper-bound computation of an item pair{ia, ic} with supp({ia}) > supp({ic}) can be saved

if upper(φ{ia−1, ic}) > θ, wheresupp({ia−1}) > supp({ic}).

Proof: First, we havesupp({ia−1}) > supp({ia}), since items are sorted by support in non-increasing

order. Also, by Lemma 3, we haveupper(φ{ia−1, ic}) < upper(φ{ia, ic}). Therefore,upper(φ{ia, ic}) >

θ. As a result, we do not need to compute the upper bound of{ia, ic}.

TAPER 2D is an improvement over TAPER 1D. The following Lemma4 shows that the number of

upper bound computations is reduced fromn(n−1)
2

in TAPER 1D to2n-3 in TAPER 2D for the worst

case.

Lemma 4:The number of upper bounds required to compute in the coarse filter step of TAPER 2D is

2n − 3, wheren is the number of objects in the data set.

Proof: Figure 8 shows that the number of upper bounds to be computed is determined by the valuek.

For each outer loop, there is an inner loop where the upper bound is computed.k starts from 2 and ends

at n. In each outloopi, there are at mostki − ki−1 + 1 number of upper bound computations. In total,

there are
∑n−1

i=1 (ki − ki−1 + 1) = 2n − 3 number of upper bounds to be computed.
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1
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(a) TAPER 1D (b) TAPER 2D

Fig. 9. TAPER 1D vs. TAPER 2D.

Example 5:This example illustrates the coarse filter steps of the TAPERalgorithm with 1D and 2D

filtering. Here, we use the data set shown in Figure 7. For the item list {1, 2, 3, 4, 5, 6}, which is sorted

by item support in non-increasing order, if the correlationthreshold is0.2, the coarse filter step of TAPER

1D is illustrated in Figure 9 (a). In the figure, the dot line indicates the item pairs whose upper bounds
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need to be computed. As can be seen, there are 14 upper-bound computations. In contrast, as shown in

Figure 9 (b), TAPER 2D computes upper bounds for 2n-3 =2 × 6 − 3 = 9 number of item pairs, which

are{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 6}, {4, 6}, and{5, 6}.

V. A NALYSIS OF THE TAPER ALGORITHM

In this section, we analyze TAPER in the areas of completeness, correctness, and computation savings.

Note that TAPER here will stand for both TAPER 1D and TAPER 2D to simplify the discussion.

A. Completeness and Correctness

Lemma 5:The TAPER algorithm is complete. In other words, this algorithm finds all pairs which have

correlations above a user-specified minimum correlation threshold.

Proof: The completeness of the TAPER algorithm can be shown by the following two facts. The first

is that all item pairs in the database have the opportunity tobe checked during the iteration process.

The second fact is that the filtering step only prunes item pairs if the upper bounds of theφ correlation

coefficient for these pairs are less than the user-specified correlation threshold. This is guaranteed by

Corollary 1 as well as Corollary 2. Also, the refinement step only prunes item pairs whose correlations

are less than the user-specified correlation threshold. Thesecond fact guarantees that all the pruned item

pairs cannot have correlations above the user-specified minimum correlation threshold.

Lemma 6:The TAPER algorithm is correct. In other words, every pair that both algorithms find has a

correlation above a user-specified minimum correlation threshold.

Proof: The correctness of the TAPER algorithm can be guaranteed by the refinement step of these two

algorithms, since the exact correlation of each candidate pair is calculated in the refinement step and every

pair with a correlation lower than the user-specified correlation threshold will be pruned.

B. Quantifying the Computation Savings

This section presents analytical results for the amount of computational savings obtained by TAPER.

First, we illustrate the relationship between the choices of the minimum correlation threshold and the size
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of the reduced search space (after performing the filtering step). Knowing the relationship gives us an

idea of the amount of pruning achieved using the upper-boundfunction of correlation.

Figure 10 illustrates a 2-dimensional plot for every possible combination of support pairs,supp(x) and

supp(y). If we impose the constraint thatsupp(x) ≤ supp(y), then all item pairs must be projected to

the upper left triangle since the diagonal line represents the conditionsupp(x) = supp(y).

To determine the size of the reduced search space, let us start from the upper bound of the correlation.

upper(φ{x,y}) =
√

supp(x)
supp(y)

√

1−supp(y)
1−supp(x)

< θ =⇒ supp(x)(1 − supp(y)) < θ2supp(y)(1 − supp(x)).

=⇒ supp(y) >
supp(x)

θ2 + (1 − θ2)supp(x)
(4)

The above inequality provides a lower bound onsupp(y) such that any item pair involvingx and y

can be pruned using the conditional monotone property of theupper bound function. In other words,

any surviving item pair that undergoes the refinement step must violate the condition given in Equation

4. These item pairs are indicated by the shaded region shown in Figure 10. During the refinement step,

TAPER has to compute the exact correlation for all item pairsthat fall in the shaded region between the

diagonal and the polyline drawn by Equation 5.

supp(y) =
supp(x)

θ2 + (1 − θ2)supp(x)
(5)

As can be seen from Figure 10, the size of the reduced search space depends on the choice of minimum

correlation threshold. If we increase the threshold from 0.5 to 0.8, the search space for the refinement

step is reduced substantially. When the correlation threshold is 1.0, the polyline from Equation 5 overlaps

with the diagonal line. In this limit, the search space for the refinement step becomes zero.

The above analysis shows only the size of the reduced search space that must be explored during the

refinement step of the TAPER algorithm. The actual amount of pruning achieved by TAPER depends

on the support distribution of items in the database. To facilitate our discussion, we first introduce the

definitions of several concepts used in the remainder of thissection.
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Fig. 10. An illustration of the reduced search space for the refinement step of the TAPER algorithm. Only item pairs within the shaded
region must be computed for their correlation.

Definition 1: The pruning ratio of the TAPER algorithm is defined by the following equation.

γ(θ) =
S(θ)

T
, (6)

whereθ is the minimum correlation threshold,S(θ) is the number of item pairs which are pruned before

computing their exact correlations at the correlation thresholdθ, andT is the total number of item pairs

in the database. For a given database,T is a fixed number and is equal to
(

n

2

)

= n(n−1)
2

, wheren is the

number of items.

Definition 2: For a sorted item list, the rank-support functionf(k) is a discrete function which presents

the support in terms of the rankk.

For a given database, letI = {A1, A2, . . . , An} be an item list sorted by item supports in non-increasing

order. Then itemA1 has the maximum support and the rank-support functionf(k) = supp(Ak), ∀ 1 ≤

k ≤ n, which is monotone decreasing with the increase of the rankk. To quantify the computation savings

for a given itemAj (1 ≤ j < n) at the thresholdθ, we need to find only the first itemAl (j < l ≤ n) such

that upper(φ{Aj ,Al}) < θ. By Lemma 2, ifupper(φ{Aj ,Al}) < θ, we can guarantee thatupper(φ{Aj ,Ai}),

wherel ≤ i ≤ n, is less than the correlation thresholdθ. In other words, all thesen − l + 1 pairs can be

pruned without a further computation requirement. According to Lemma 1, we get

upper(φ{Aj ,Al}) =

√

supp(Al)

supp(Aj)

√

1 − supp(Aj)

1 − supp(Al)
<

√

supp(Al)

supp(Aj)
=

√

f(l)

f(j)
< θ ⇒ f(l)

f(j)
< θ2

Since the rank-support functionf(k) is monotone decreasing with the increase of the rankk, we get
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l > f−1(θ2f(j)). To make the computation simple, we letl = f−1(θ2f(j))+1. Therefore, for a given item

Aj (1 < j ≤ n), the computation cost for(n−f−1(θ2f(j))) item pairs can be saved. As a result, the total

computation savings of the TAPER algorithm is shown below inEquation 7. Note that the computation

savings shown in Equation 7 is an underestimated value of theachieved computation savings.

S(θ) =
n

∑

j=2

{n − f−1(θ2f(j))} (7)

Finally, we conduct computation savings analysis on the data sets with some special rank-support

distributions. Specifically, we consider three special rank-support distributions: a uniform distribution, a

linear distribution, and a generalized Zipf distribution [29], as shown in the following three cases.

CASE I: A Uniform Distribution: In this case, the rank-support functionf(k) = C, whereC is a

constant. According to Equation 3, the upper bound of theφ correlation coefficient for any item pair is 1,

which is the maximum possible value for the correlation. Hence, for any given itemAj, we cannot find

an itemAl (j < l ≤ n) such thatupper(φ{Aj ,Al}) < θ, whereθ ≤ 1. As a result, the total computation

savingsS(θ) is zero.

CASE II: A Linear Distribution: In this case, the rank-support function has a linear distribution and

f(k) = a − mk, wherem is the absolute value of the slope anda is the intercept.

Lemma 7:When a database has a linear rank-support distributionf(k) and f(k) = a − mk (a > 0,

m > 0), for a user-specified minimum correlation thresholdθ, the pruning ratio of the TAPER algorithm

increases with the decrease of the ratioa/m, the increase of the correlation thresholdθ, and the increase

of the number of items, where0 < θ ≤ 1.

Proof: For the given database, letI = {A1, A2, . . . , An} be the item list sorted by item support in

non-increasing order. Then the itemA1 has the maximum support. Also, let the rank-support function

f(k) = a−mk, wherem is the absolute value of the slope anda is the intercept. From the rank-support

function f(k), we can derive the inverse functionf−1(y) = a−y

m
. Thus, f−1(θ2f(j)) = a−θ2(a−mj)

m
=
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a
m

(1 − θ2) + jθ2. According to Equation 7, we can get:

S(θ) =

n
∑

j=2

{n − f−1(θ2f(j))}

= n(n − 1) −
n

∑

j=2

a

m
(1 − θ2) −

n
∑

j=2

jθ2

= n(n − 1) − a

m
(n − 1)(1 − θ2) − (n − 1)(n + 2)

2
θ2

= (n − 1)(
n − 2

2
− (

a

m
− n + 2

2
)(1 − θ2))

Since the pruning ratioγ(θ) = S(θ)
T

and T = n(n−1)
2

, ⇒ γ(θ) =
(n−2)−(2 a

m
−(n+2))(1−θ2)

n
. Also, we know

supp(An) = f(n) = a − mn > 0, ⇒ 2 a
m

> 2n ≥ (n + 2), when n ≥ 2.

Thus, we can derive three rules as follows:

rule 1 : θ ր ⇒ (1 − θ2) ց ⇒ γ(θ) ր

rule 2 : a/m ց ⇒ (2
a

m
− (n + 2)) ց ⇒ γ(θ) ր

rule 3 : n ր ⇒ (2
a

m
− (n + 2))/n ց ⇒ γ(θ) ր

Therefore, the claim that the pruning ratio of the TAPER algorithm is increased with the decrease of the

ratio a/m, the increase of the correlation thresholdθ, and the increase of the number of items holds.

CASE III: A Generalized Zipf Distribution:In this case, the rank-support function has a generalized

Zipf distribution andf(k) = c
kp , where c and p are constants andp ≥ 1. When p is equal to 1, the

rank-support function has a Zipf distribution.

Lemma 8:When a database has a generalized Zipf rank-support distribution f(k) andf(k) = c
kp , for

a user-specified minimum correlation thresholdθ, the pruning ratio of the TAPER algorithm increases

with the increase ofp and the correlation thresholdθ, where0 < θ ≤ 1. Furthermore, the pruning ratio

is independent when the number of items is increased.

Proof: Since the rank-support functionf(k) = c
kp , the inverse functionf−1(y) = ( c

y
)

1

p . Accordingly,

f−1(θ2f(j)) = ( c
θ2 c

jp
)

1

p = j

(θ2)
1
p

. Applying Equation 7, we get:

S(θ) =
n

∑

j=2

{n − f−1(θ2f(j))} = n(n − 1) −
n

∑

j=2

j

(θ2)
1

p

= n(n − 1) − (n − 1)(n + 2)

2

1

θ
2

p
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Since the pruning ratioγ(θ) = S(θ)
T

andT = n(n−1)
2

, ⇒ γ(θ) = 2 − n+2
n

1

θ
2
p

.

Thus, we can derive three rules as follows:

rule 1 : θ ր ⇒ n + 2

n

1

θ
2
p

ց ⇒ γ(θ) ր

rule 2 : p ր ⇒ n + 2

n

1

θ
2
p

ց ⇒ γ(θ) ր

rule 3 : n → ∞ ⇒ lim
n→∞

n + 2

n

1

θ
2
p

=
1

θ
2
p

Therefore, the claim that the pruning ratio of the TAPER algorithm increases with the increase ofp

and the correlation thresholdθ holds. Also, rule 3 indicates that the pruning ratio is independent when

the number of items is increased in data sets withZipf distributions.

C. Dominance Zone Analysis

Here, we provide simple algebraic cost models for the computational cost of the brute-force algorithm

and the TAPER algorithm. We assume that the total number of objects in the data set isn.

The main cost of the brute-force algorithm is the cost of computing n(n−1)
2

number of exact correlation

coefficients. LetCcorr indicate the cost of computing the correlation coefficient for an item pair. The cost

model of the brute-force algorithm is given as follows.

CostBrute = O(n2) ∗ Ccorr (8)

The main cost of the TAPER algorithm consists of three parts:the sorting cost denoted byCsort, the cost

of computing upper bounds denoted byCupper, and the cost of computing exact correlation coefficients

denoted byCtc. The cost mode of the TAPER algorithm is given as follows.

CostTAPER = Csort + Cupper + Ctc = O(nlogn) + O(n) ∗ Cupper + (1 − γ(θ))O(n2) ∗ Ccorr

We haveCostBrute − CostTAPER = γ(θ)O(n2) ∗ Ccorr − O(nlogn) − O(n) ∗ Cupper.

With the increase ofn, the computation savings can be more dramatic for the TAPER algorithm,

particularly for data sets with non-uniform rank-support distributions, such as Zipf distributions. Note
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that Ccorr is much larger thanCupper, since there is a very expensive computation cost of finding support

values for item pairs when computing exact correlation coefficients. Indeed, when the number of objects

is large, we cannot store the support values of all item pairsin the memory; that is, we may need to scan

the whole data set once in order to find the support value of every item pair.

VI. D ISCUSSION

In this section, we extend our algorithm for finding item pairs with strong negative correlations and

demonstrate that the algorithmic ideas developed here can also be applied to some other association

measures, such as uncentered Pearson’s correlation coefficients.

A. Negative Correlations

In this paper, our focus is to find all pairs of high positivelycorrelated items. However, in some

application domains, there may be interest in knowing pairsof high negatively correlated items [27]. In

the following, we present a lower bound of theφ correlation coefficient.

Lemma 9:Given a pair of items{A, B}, without loss of generality, letsupp(A) ≥ supp(B). The lower

bound,lower(φ{A,B}), of the φ correlation coefficient is equal to























−
√

supp(A)supp(B)√
(1−supp(A))(1−supp(B))

if supp(A) + supp(B) ≤ 1

−
√

(1−supp(A))(1−supp(B))√
supp(A)supp(B)

if supp(A) + supp(B) > 1

Proof: According to Equation 2, for an item pair{A, B}:

φ{A,B} =
supp(A,B) − supp(A)supp(B)

√

supp(A)supp(B)(1 − supp(A))(1 − supp(B))

When the support valuessupp(A) and supp(B) are fixed,φ{A,B} is monotone decreasing with the

decrease ofsupp(A,B). Let us consider the following two cases:
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CASE 1: if supp(A) + supp(B) ≤ 1

The minimum possible value ofsupp(A,B) is zero. Hence,

lower(φ{A,B}) = − supp(A)supp(B)
√

supp(A)supp(B)(1 − supp(A))(1 − supp(B))
= −

√

supp(A)supp(B)
√

(1 − supp(A))(1 − supp(B))
.

CASE 2: if supp(A) + supp(B) > 1

The minimum possible value ofsupp(A,B) is equal tosupp(A) + supp(B) − 1. Hence,

lower(φ{A,B}) =
supp(A) + supp(B) − 1 − supp(A)supp(B)

√

supp(A)supp(B)(1 − supp(A))(1 − supp(B))
= −

√

(1 − supp(A))(1 − supp(B))
√

supp(A)supp(B)
.

From the above, this Lemma holds.

We also present a conditional monotone property of the lowerbound of theφ correlation coefficient.

Lemma 10:For a pair {A, B}, let supp(A) > supp(B). We have the following two cases: 1) If

supp(A)+supp(B) ≤ 1 andsupp(A) is fixed, thelower(φ{A,B}) is monotone increasing with the decrease

of supp(B). 2) If supp(A)+supp(B) > 1 andsupp(B) is fixed, thelower(φ{A,B}) is monotone increasing

with the increase ofsupp(A).

Proof: Let us consider the following two cases:

CASE 1: supp(A) + supp(B) ≤ 1 and supp(A) is fixed. By Lemma 9, we havelower(φ{A,B}) =

−
√

supp(A)supp(B)√
(1−supp(A))(1−supp(B))

. For any given two itemsB1 andB2 with supp(A) > supp(B1) > supp(B2), we

need to provelower(φ{A,B1}) < lower(φ{A,B2}). This claim can be proved as follows.

| lower(φ{A,B1})|
| lower(φ{A,B2})|

=

√

supp(B1)

supp(B2)
.

√

1 − supp(B2)

1 − supp(B1)
> 1

The above follows the given condition thatsupp(B1) > supp(B2) and(1− supp(B1)) < (1− supp(B2)).

Sincelower(φ{A,B}) < 0, we havelower(φ{A,B1}) < lower(φ{A,B2}).

CASE 2: supp(A) + supp(B) > 1 and supp(B) is fixed. By Lemma 9, we havelower(φ{A,B}) =

−
√

(1−supp(A))(1−supp(B))√
supp(A)supp(B)

. For any given two itemsA1 andA2 with supp(A1) > supp(A2) > supp(B), we
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need to provelower(φ{A1,B}) > lower(φ{A2,B}). This claim can be proved as follows:

| lower(φ{A1,B})|
| lower(φ{A2,B})|

=

√

supp(A2)

supp(A1)
.

√

1 − supp(A1)

1 − supp(A2)
< 1

The above follows the conditions thatsupp(A1) > supp(A2) and (1 − supp(A1)) < (1 − supp(A2)).

Sincelower(φ{A,B}) < 0, we getlower(φ{A1,B}) > lower(φ{A2,B}).

Based on Lemmas 9 and 10, we can extend the TAPER algorithm to find all pairs of high negatively

correlated items as well. Note that Pearson’s correlation coefficient has some limitations when captur-

ing negative correlation between items with low support. However, in this paper, our focus is on the

computational perspective of Pearson’s correlation coefficient.

B. An Extension to Uncentered Pearson’s Correlation Coefficient

Here, we present how to extend the algorithmic ideas developed in this paper for uncentered Pearson’s

correlation coefficient, also known as the cosine measure [23]. Using the support notation, uncentered

Pearson’s correlation coefficient is defined as the following equation.

uncentered({A,B}) =
supp({A,B})

√

supp(A)supp(B)
(9)

Indeed, similar to theφ correlation coefficient, uncentered Pearson’s correlation coefficient has an upper

bound and this upper bound has a conditional monotone property as shown in the following.

Lemma 11:Given an item pair{A,B}, the support valuesupp(A) for item A, and the support value

supp(B) for itemB, without loss of generality, letsupp(A) ≥ supp(B). The upper boundupper(uncentered

({A,B})) of uncentered Pearson’s correlation coefficient for an itempair {A,B} can be obtained when

supp(A, B) = supp(B) andupper(uncentered({A,B})) =
√

supp(B)
supp(A)

Proof: According to Equation 9, for an item pair{A, B}, uncentered({A,B}) = supp({A,B})√
supp(A)supp(B)

. By the

given conditionsupp(A) ≥ supp(B) and the anti-monotone property of the support measure, the upper

bound upper(uncentered({A, B})) of uncentered Pearson’s correlation coefficient can be obtained when
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supp(A,B) = supp(B). Hence,upper(uncentered({A,B})) =
√

supp(B)
supp(A)

.

Lemma 12:For a pair of items{A, B}, if we let supp(A) > supp(B) and fix item A, the upper

bound of uncentered Pearson’s correlation coefficientupper(uncentered({A,B}) for item pair {A, B}

is monotone decreasing with the decrease of the support value of itemB.

Proof: Sinceupper(uncentered({A,B})) =
√

supp(B)
supp(A)

, if item A is fixed, theupper(uncentered({A,B}))

becomes one variable function with supp(B) as the variable. It can be seen that this function is monotone

decreasing with the decrease of supp(B).

Lemma 11 and Lemma 12 are analogous to Lemma 1 and Lemma 2, which form the basis of the TAPER

algorithm. Therefore, the algorithmic ideas in the TAPER algorithm can also be applied to efficiently

compute uncentered Pearson’s correlation coefficient.

VII. E XPERIMENTAL RESULTS

In this section, we present the results of experiments to evaluate the performance of the TAPER

algorithm. Specifically, we demonstrate: (1) a performancecomparison between TAPER 1D and a brute-

force approach, (2) the effectiveness of the proposed algebraic cost model, (3) the scalability of the TAPER

algorithm, (4) a performance evaluation of the choices between 1-D and 2-D monotone properties in the

coarse filter step of TAPER, and (5) the extension of algorithmic ideas developed in TAPER for computing

negative correlation as well as the uncentered Pearson’s correlation coefficient.

TABLE III

PARAMETERS OF THESYNTHETIC DATA SETS.

Data set name T N C P
P1.tab 2000000 1000 0.8 1
P2.tab 2000000 1000 0.8 1.25
P3.tab 2000000 1000 0.8 1.5
P4.tab 2000000 1000 0.8 1.75
P5.tab 2000000 1000 0.8 2

A. The Experimental Setup

Our experiments were performed on both real-life and synthetic data sets. Synthetic data sets were

generated such that the rank-support distributions followZipf’s law, as shown in Figure 11. Note that, in
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Fig. 11. The plot of the Zipf rank-support distributions of synthetic data sets in log-log scale.
TABLE IV

REAL-LIFE DATA SET CHARACTERISTICS.

Data set #Item #Transaction Source
Pumsb 2113 49046 IBM Almaden
Pumsb∗ 2089 49046 IBM Almaden
Chess 75 3196 UCI Repository

Mushroom 119 8124 UCI Repository
Connect 127 67557 UCI Repository

LA1 29704 3204 TREC-5
Retail 14462 57671 Retail Store

log-log scales, the rank-support plot of a Zipf distribution will be a straight line with a slope equal to the

exponentP in the Zipf distribution. A summary of the parameter settings used to generate the synthetic

data sets is presented in Table III, where T is the number of transactions, N is the number of items, C is

the constant of a generalized Zipf distribution, and P is theexponent of a generalized Zipf distribution.

The real-life data sets were obtained from several different application domains. Table IV shows some

characteristics of these data sets. The first five data sets inthe table, i.e.,pumsb, pumsb∗, chess,

mushroom, andconnect are often used as benchmarks for evaluating the performanceof association

rule algorithms on dense data sets. Thepumsb andpumsb∗ data sets correspond to binarized versions

of a census data set from IBM1. The difference between them is thatpumsb∗ does not contain items

with support greater than 80%. Thechess, mushroom, andconnect data sets are benchmark data

sets from the UCI machine learning repository2. The LA1 data set is part of the TREC-5 collection

(http://trec.nist.gov) and contains news articles from the Los Angeles Times. Finally,retail is a masked

data set obtained from a large mail-order company.

1These data sets were obtained from IBM Almaden at http://www.almaden.ibm.com/cs/quest/demos.html (June 2005)
2These data sets and data content descriptions are available at http://www.ics.uci.edu/∼mlearn/MLRepository.html (June 2005)
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Experimental Platform: We implemented TAPER using C++ and all experiments were performed on

a Sun Ultra 10 workstation with a 440 MHz CPU and 128 Mbytes of memory running the SunOS 5.7

operating system.
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Fig. 12. TAPER 1D vs. a brute-force approach on thePumsb, Pumsb
∗, and retail data sets.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ru

nn
in

g 
R

at
io

Minimum Correlation Thresholds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ru

nn
in

g 
R

at
io

Minimum Correlation Thresholds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

ru
nn

in
g 

R
at

io
Minimum Correlation Thresholds

(a) Pumsb (b) Pumsb∗ (c) Retail

Fig. 13. The pruning effect of TAPER onPumsb, Pumsb
∗, and retail data sets.
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Fig. 14. The pruning effect of TAPER on UCIConnect, Mushroom, Chess data sets.

B. TAPER 1-D vs. the Brute-force Approach.

In this subsection, we present a performance comparison between TAPER 1D and a brute-force approach

using several benchmark data sets from IBM, a UCI machine learning repository, and some other sources,

such as retail stores. The implementation of the brute-force approach is similar to that of TAPER 1D except

that the filtering mechanism implemented in TAPER 1D is not included in the brute-force approach.
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Figure 12 shows the relative computation performance of TAPER 1-D and the brute-force approach on

thepumsb, pumsb∗, andretail data sets. As can be seen, the performance of the brute-forceapproach

does not change much for any of the three data sets. However, the execution time of TAPER 1-D can

be an order of magnitude faster than the brute-force approach even if the minimum correlation threshold

is low. For instance, as shown in Figure 12 (a), the executiontime of TAPER 1D on thepumsb data

set is one order of magnitude less than that of the brute-force approach at the correlation threshold 0.4.

Also, when the minimum correlation threshold increases, the execution time of TAPER 1D dramatically

decreases on thepumsb data set. Similar computation effects can also be observed on thepumsb∗ and

retail data sets although the computation savings on theretail data set is not as significant as it is

on the other two data sets.

To better understand the above computation effects, we alsopresent the pruning ratio of TAPER (both

TAPER 1D and TAPER 2D) on these data sets. As illustrated in Figure 13, the pruning ratio of TAPER on

theretail data set is much smaller than that on thepumsb andpumsb∗ data sets. This smaller pruning

ratio explains why the computation savings onretail is less than that on the other two data sets. Also,

Figure 20 shows the pruning ratio of TAPER on the UCIconnect, mushroom, andchess data sets.

The pruning ratios achieved on these data sets are comparable with the pruning ratio we obtained on the

pumsb data set. This indicates that TAPER also achieves much better computation performance than the

brute-force approach on UCI benchmark data sets.

C. The Effect of Correlation Thresholds

In this subsection, we present the effect of correlation thresholds on the computation savings of TAPER

(both TAPER 1D and TAPER 2D). Recall that our algebraic cost model shows that the pruning ratio of

TAPER increases with increases of the correlation thresholds for data sets with linear and Zipf-like

distributions. Figure 13 shows such an increasing trend of the pruning ratio on thepumsb, pumsb∗, and

retail data sets as correlation thresholds increase. Also, Figure20 shows a similar increasing trend of

the pruning ratio on the UCI benchmark datasets includingmushroom, chess, andconnect.
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Fig. 15. The rank-support distributions of the retail data set and its threeitem groups with a linear regression fitting line (trendline).
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Fig. 16. Pruning ratios with the decrease of a/m for data sets with linear rank-support distribution.

One common feature of all the above data sets is the skewed nature of their rank-support distributions.

As a result, these experimental results still exhibit a trend similar to that of the proposed algebraic cost

model although the rank-support distributions of these data sets do not follow Zipf’s law exactly.

TABLE V

GROUPS OF ITEMS FOR THERETAIL DATA SET

Group I II III
# Items 4700 4700 4700

# Transactions 57671 57671 57671
a/m 10318 8149 4778

D. The Effect of the Slopem

Recall that the algebraic cost model for data sets with a linear rank-support distribution provides rules

which indicate that the pruning ratio of TAPER (both TAPER 1Dand TAPER 2D) increases with the

decrease of the ratioa/m and the pruning ratio increases with the increase of the correlation threshold.
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In this subsection, we empirically evaluate the effect of the ratioa/m on the performance of the TAPER

algorithm for data sets with a linear rank-support distribution.

First, we generated three groups of data from the retail dataset by sorting all the items in the data set in

non-decreasing order and then partitioning them into four groups. Each of the first three groups contains

4700 items and the last group contains 362 items. The first three groups are the group data sets shown in

Table V. Figure 15 (a) shows the plot of the rank-support distribution of the retail data set and Figure 15

(b), (c), and (d) shows the plots of the rank-support distributions of three groups of data generated from

the retail data set. As can be seen, the rank-support distributions of the three groups approximately follow

a linear distribution. Table V lists some of the characteristics of these data set groups. Each group has

the same number of items and transactions but a differenta/m ratio. Group I has the highesta/m ratio

and Group III has the lowesta/m ratio. Since the major difference among these three data setgroups

is the ratioa/m, we can apply these data sets to show the impact of thea/m on the performance of

the TAPER algorithm. Figure 16 shows the pruning ratio of theTAPER algorithm on the data set with

linear rank-support distributions. As expected, the pruning ratio increases as thea/m ratio decreases at

different correlation thresholds. The pruning ratio also increases as correlation thresholds are increased.

These experimental results confirm the trend exhibited by the cost model as shown in Lemma 7.
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E. The Effect of the Exponentp

In this subsection, we examine the effect of the exponentP on the performance of TAPER (both TAPER

1D and TAPER 2D) for data sets with a generalized Zipf rank-support distribution. We used the synthetic
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data sets presented in Table III for this experiment. All thesynthetic data sets in the table have the same

number of transactions and items. The rank-support distributions of these data sets follow Zipf’s law but

with different exponentP . Figure 17 displays the pruning ratio of the TAPER algorithmon data sets with

different exponentP . Again, the pruning ratios of the TAPER algorithm increase with the increase of the

exponentP at different correlation thresholds. Also, we can observe that the pruning ratios of the TAPER

algorithm increase with the increase of the correlation thresholds. Recall that the proposed algebraic cost

model for data sets with a generalized Zipf distributions provides two rules which confirm the above two

observations.
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F. What is the scalability of the TAPER algorithm with respectto database dimensions?

In this subsection, we show the scalability of the TAPER algorithm with respect to database dimensions.

Figure 18 (a) shows the plot of the rank-support distribution of the LA1 data set in log-log scale. Although

this plot does not follow Zipf’s law exactly, it does show Zipf-like behavior. In other words, the LA1

data set has an approximate Zipf-like distribution with theexponentP = 1.406. In this experiment, we

generated three data sets, with 12000, 18000, and 24000 items respectively, from the LA1 data set by

random sampling on the item set. Due to the random sampling, the three data sets can have almost the

same rank-support distributions as the LA1 data set. As a result, we used these three generated data sets

and the LA1 data set for our scale-up experiments.

For data sets with Zipf-like rank-support distributions, Figure 18 (b) shows the effect of database

dimensions on the performance of the TAPER algorithm. As canbe seen, the pruning ratios of the
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TAPER algorithm show almost no change or slightly increase at different correlation thresholds. This

indicates that the pruning ratios of the TAPER algorithm canbe maintained when the number of items is

increased. Recall that the proposed algebraic cost model fordata sets with a generalized Zipf distribution

exhibits a similar trend as the result of this experiment.

Finally, in Figure 18 (c), we show that the execution time forour scale-up experiments increases linearly

with the increase of the number of items at several differentminimum correlation thresholds.
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Fig. 19. TAPER 1D vs. TAPER 2D on thePumsb, Pumsb

∗, and retail data sets.

G. Evaluation of the choices between 1D and 2D Monotone Properties

Here, we present a performance evaluation of the Choices between 1D and 2D monotone properties

in the coarse filter step of the TAPER algorithm. Figure 19 shows the execution time of TAPER 1D and

TAPER 2D on the UCIconnect, mushroom, and chess data sets. In the figure, we can see that

the execution time of TAPER 2D can be 10-15% less than that of TAPER 1D for the various different

correlation thresholds. This computation savings is due tothe fact that TAPER 2D reduces the number

of upperbounds that need to be computed as demonstrated by Lemma 4.
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Fig. 20. The pruning effect for uncentered Pearson’s correlation coefficient on UCIConnect, Mushroom, Chess data sets.
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Fig. 21. The pruning effect for negative correlation computation on UCI Connect, Mushroom, Chess data sets.

H. The Extension of Algorithmic Ideas Developed in TAPER

In this subsection, we present experimental results to showthe effectiveness of extending algorithmic

ideas developed in the TAPER algorithm for computing the cosine measure as well as negative correlation

coefficients. Figure 20 shows the pruning ratios for computing the cosine measure on the UCIconnect,

mushroom, and chess data sets. Once again, the pruning ratios achieved on these data sets are

quite significant. This indicates that the algorithmic ideas developed in TAPER can also achieve good

computation performance for computing the cosine measure.Finally, Figure 21 shows the pruning ratios

for computing negative correlation on the UCIconnect, mushroom, andchess data sets. The pruning

ratios achieved in this case are even better than those for computing positive correlation.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we designed an efficient two-step filter-and-refine algorithm, called TAPER, to search

all the item pairs with correlations above a user-specified minimum correlation threshold. TAPER uses

an upper bound of theφ correlation coefficient, which shows 2-D monotonic properties. In addition, we

provided algebraic cost models to measure the computation performance of the TAPER algorithms. As

demonstrated by our experimental results on both real and synthetic data sets, the pruning ratio of TAPER

can be maintained or even increases with the increase of database dimensions, and the performance

of TAPER confirms the proposed algebraic cost model. Finally, we showed that the algorithmic ideas

developed in the TAPER algorithm can be extended to efficiently compute uncentered Pearson’s correlation

coefficients as well as negative correlation.
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There are several potential directions for future research. First, we are interested in studying how to

specify statistically meaningful correlation thresholds. Second, we plan to efficiently compute the top-

k correlated item pairs. Finally, we will investigate an efficient solution for correlation detection using

Bayesian and Markov models.
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