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Abstract

Given a user-specified minimum correlation threshélédind a market basket database with items and
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I. INTRODUCTION

Given a large set of items and observation data sets abootaafing items, association analysis is
concerned with identification of strongly related (e.g. asasured by Pearson’s correlation coefficient
[22]) subsets of items. Association analysis is a core gmbin data mining and databases. It plays
an important role in many application domains such as mdréieket analysis [2], climate studies [25],
public health [8], and bioinformatics [17]. For instancesaciation analysis in market basket study can
reveal how the sales of a product are related with the saleghefr products. This type of information
can be useful for sales promotions, catalog design, ané &gout.

The focus of this paper is on computing afl-strong-pairs correlation quenthat returns pairs of
high positively correlated items (or binary attributeshe®ll-strong-pairs correlation queryproblem can
be formalized as follows: Given a user-specified minimunrelation threshold and a market basket
database withV items andT" transactions, an all-strong-pairs correlation query fialtistem pairs with
correlations above the minimum correlation threshéld,

However, as the number of items and transactions in the @édfageases, the computation cost for an
all-strong-pairs correlation query becomes prohibitivekpensive. For example, consider a database of
10° items, which may represent the collection of books avadlatlan e-commerce Web site. Answering
the all-strong-pairs correlation query from such a masdat@abase requires computing the correlations of
(126) ~ 0.5 x 102 possible item pairs. Thus, it may not be computationallifela to apply a brute-force

approach to compute correlations for all half trillion gaiparticularly when the number of transactions

in the data set is also very large.

A. Related Work

Jermaine [13] investigated the implication of incorpargtichi-square ¥?) [22] based queries to data
cube computations. He showed that finding the subcubes dhiafysstatistical tests such ag are inher-

ently NP-hard, but can be made more tractable using appatkimschemes. Jermaine [14] also presented
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an iterative procedure for high-dimensional correlatioralgsis by shaving off part of the database via
feedback from human experts. Finally, Brin [4] proposed“abased correlation rule mining strategy.
However,y? does not possess a desired upward closure property forimxglefficient computation [9].

This paper focuses on the efficient computation of stasistorrelation for all pairs of items. Given

n(n—1)
2

n items, a traditional brute force approach computes Pearsorrelation coefficient for al(g):
item pairs. This approach is often implemented using matigebra in a statistical software package as
the “correlation matrix” [15] function, which computes Pgan’s correlation coefficient for all pairs of
columns. This approach is applicable to but not efficientiiercase of Boolean matrices, which can model
market-basket-type data sets. Recently, llyas et al. [1@pgsed a more efficient method for identifying
correlated pairs. In this method, the sampling techniquesapplied to exploit efficient computation. As
a result, this method cannot avoid false-positive and fakggative correlations.

In contrast, unlike the correlation matrix approach, thehoé proposed in this paper does not need
to compute all(g) pairs. In particular, for market-basket-type data setd vaitZipf-like rank-support
distribution, we show that only a small portion of the itemrpaeeds to be examined. In the real world,
Zipf-like distributions have been observed in a variety pgplecation domains, including commercial retail
data, Web click-streams, and telecommunication data.,Al&show that our method is complete and

correct, since we do not apply any approximation schemesy as sampling techniques.

B. Contributions

In our preliminary work [28], we provide an upper bound of Rea’'s correlation coefficient for
binary variables. The computation of this upper bound is lmolkeaper than the computation of the
exact correlation, since this upper bound can be computea famction of the support of individual
items. Furthermore, we show that this upper bound has aapked monotone property which allows
elimination of many item pairs even without computing theper bounds, as shown in Figure 1. The
x-axis in the figure represents the set of items having a ldeesl of support than the support for

item x;. These items are sorted from left to right in decreasing roodig¢heir individual support values.
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The y-axis indicates the correlation between each item xit@md x;. Upperbound(z;, xz) represents the
upper bound ofcorrelation(x;,z) and has a monotone decreasing behavior. This behavior rgeasa

that an item pair(z;, z;) can be pruned if there exists an item such thatupperbound(z;, ;) < ¢ and

supp(zk) < supp(z;). N

items sorted in descending order by supp(item)

Fig. 1. lllustration of the Filtering Techniques. (The curves are only disedlustration purposes.)

A Two-stepAll-strong-Pairs corElation qudrky (TAPER) algorithm is proposed to exploit this 1-D
monotone property in a filter-and-refine manner which cdssi$ two steps: filtering and refinement.
In the filtering step, many item pairs are filtered out using #&asy-to-computepperbound(z;, z) and
its monotone property. In the refinement step, the exactelaion is computed for remaining pairs
to determine the final query results. In addition, we havevguothe completeness and correctness of
TAPER and provided an algebraic cost model to quantify thremdational savings. As demonstrated by
our experiments on both real and synthetic data sets, TARERbe an order of magnitude faster than
brute-force alternatives and the computational savingIARER is independent or improves when the

number of items is increased in data sets with common Zipf ¢29inear rank-support distributions.

upperbound(X, Xi)

(a) (b)

Fig. 2. (a) A Monotone Property of the Upper Bound (b) Illustration d» 24onotone Properties of the Upper Bound

In this paper, we identify that the upper bound of Pearsasrsetation coefficient for binary variables has

special 2-D monotone properties. Indeed, besides the 14btone property mentioned above, the upper
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bound has another 1-D monotone property as shown in Figuag. e x-axis in the figure represents a
sorted item list in ascending order of their individual sogpralues. The y-axis indicates the correlation
between itemz; and x. In this case, the item; is fixed and the upper bound ebrrelation(z, x;) is
monotonically decreasing with the increase of the suppaitiesof itemz.

Figure 2 shows 2-D monotone properties of the upper bounthdrigure, for an item lis{1, 2, 3, 4,

5, 6}, which is sorted by item support in non-increasing ordez,upper bound of item pairs is decreasing
following the arrow direction. For instance, the upper bbwf item pair{5, 6} is greater than that of
item pair {4, 5}. Also, the upper bound of item pafr, 2} is greater than that of item pafl, 3}.

With 2-D monotone properties of the upper bound, we can éurtiefine the TAPER algorithm by
reducing the upper-bound computation in the coarse fileg.atVe show that the number of upper-bound
computations is reduced frorﬁ’g;l) to 2n — 3 for the worst case. In addition, we present experimental
results to show this computational improvement.

Finally, the method proposed in this paper is not limited nalifng all pairs of high positively correlated
pairs. We show that the algorithmic ideas developed in th®HR algorithm can also be extended for
identifying pairs of high negatively correlated pairs ama éfficiently computing uncentered Pearson’s
correlation coefficient. To this end, we provide the thdogattbasis, algorithmic ideas, and experimental

results for such an extension.

C. Scope and Outline

The scope of the all-strong-pairs correlation query pnolpgoposed in this paper is restricted to market
basket databases with binary variables, and the correlabmputational form is Pearson’s correlation
coefficient for binary variables, which is also called theorrelation coefficient.

Note that the all-strong-pairs correlation query problendifferent from the standard association-rule
mining problem [1], [3], [4], [5], [6], [7], [10], [11], [19] [20], [21], [26]. Given a set of transactions,
the objective of association rule mining is to extract abbsets of items that satisfy a minimum support

threshold. Support measures the fraction of transactibas dontain a particular subset of items. The
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notions of support and correlation may not necessarilyeawi¢h each other. This is because item pairs
with high support may be poorly correlated while those that lsighly correlated may have very low
support. For instance, suppose we have an item pajrB}, where supp(A) = supp(B) = 0.8 and
supp(A, B) = 0.64. Both items are uncorrelated becausep(A, B) = supp(A)supp(B). In contrast, an
item pair{A, B} with supp(A) = supp(B) = supp(A, B) = 0.001 is perfectly correlated despite its low
support. Patterns with low support but high correlation aseful for capturing interesting associations
among rare anomalous events or rare but expensive itemsasugbld necklaces and earrings.

The remainder of this paper is organized as follows. Sedlipresents basic concepts. In section I, we
introduce the upper bound of Pearson’s correlation coefftcior binary variables. Section IV proposes
the TAPER algorithm. In section V, we analyze the TAPER dthar in the areas of completeness,
correctness, and computation gain. Section VI discussegdgeneralize our method. In section VII, we

present the experimental results. Finally, we draw commhssand suggest future work in section VIII.

Il. PEARSON S CORRELATION COEFFICIENT

In statistics, a measure of association is a numerical imdegh describes the strength or magnitude of a
relationship among variables. Although literally dozehsheasures exist, they can be categorized into two
broad groups: ordinal and nominal. Relationships amongnaldiariables can be analyzed with ordinal
measures of association such as Kendall’s Tau [16] and Bpeés Rank Correlation Coefficient [18].
In contrast, relationships among nominal variables cannadyaed with nominal measures of association
such as Pearson’s Correlation Coefficient and measures baseti&Gquare [22].

The ¢ correlation coefficient [22] is the computation form of Psmar's Correlation Coefficient for binary
variables. In this section, we describe theorrelation coefficient and show how it can be computed using
the support measure of association-rule mining [1].

In a 2 x 2 two-way table shown in Table I, the calculation of theorrelation coefficient reduces to

Plooy Py = Py Paoy
VPon Pany Poy Py

¢ = (1)
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B
Row Total
0 1
A 0 Poo) Po1) P+
1 Pao) Pay P+
Column Total P Py N
TABLE |

A TWO-WAY TABLE OF ITEM A AND ITEM B.

where FP;;, fori = 0, 1 and j = 0, 1, denote the number of samples which &ssified in theith
row andjth column of the table. Furthermore, we Igt_, denote the total number of samples classified
in the ith row, and we letP ;) denote the total number of samples classified in jfiecolumn. Thus,
Pivy = Y54 Pujy and P = Y,_y Puj- In the two-way table, given thaV is the total number of

samples, we can transform Equation 1 as follows.

P, P, P,
o= N = Pon = Paoy = Pan) Pany — Pon Py _ NPy = (Pay + Pao)Pon + Pan) _ 5 — -3
VP Pam) Paoy P VP P Poy P / Ben Pao Peoy Py

Hence, when adopting the support measure of associatienmiding [1], for two itemsA and B in a
market basket database, we havep(A) = Pu4)/N, supp(B) = P1)/N, andsupp(A, B) = Pu1)/N.
With support notations and the above new derivations of Egud, we can derive the support form of

the ¢ correlation coefficient as shown below in Equation 2.

_ supp(A, B) — supp(A)supp(B) )
v/ supp(A)supp(B)(1 — supp(A))(1 — supp(B))
(b) Item pairs with Pearson’s Correlation
Coefficient and Support
Pair | Correlation| Suppor
(a) A Market Basket Database {1, 2} 0.667 0.8
{1,3} | -0.333 0.4
TID | Items
{1, 4} 0.218 0.3
1 1,2,3
1,5} 0.167 0.2
2 1,2,3
{1,6}| 0111 0.1
3 1,3
2,3} -05 0.3
4 1,2
2,4y 0327 0.3
5 1,2
— {2,5)| 0.25 0.2
6 1,2
{2,6} | 0.167 0.1
7 1,2,3,4,56
{3,4} | -0.218 0.1
8 1,2,4,5
85| 0 0.1
9 1,2,4
{3,6} | 0.333 0.1
10 3
{4, 5} 0.764 0.2
{4,6} | 0.509 0.1
(5.6} | 0.667 0.1

Fig. 3. An Example Database.

Example 1:Consider the market basket database shown in Figure 3. Fuorltand item 2 in the

database, we can construct a two-way table as shown in Tablhén, by Equation 1, we get =
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{2}
0 1 Row Total
L 0 1 0 1
{2 1 1 8 9
Column Total 2 8 10
TABLE 1l

A TWO-WAY TABLE OF ITEM 1 AND ITEM 2.

% = 2. Also, sincesupp(1,2) = 0.8, supp(1) = 0.9, and supp(2) = 0.8, by Equation 2, we get

_ 0.8—0.8x0.9 —0.08 -2 . . .
o= —WM‘E‘? As can be seen, the results from the two equations are odenEinally, ¢
correlation coefficients for other item pairs can be comgienilarly. Figure 3 (b) shows correlation

coefficients for all item pairs.

I1l. PROPERTIES OF THa;b CORRELATION COEFFICIENT

In this section, we present some properties of gheorrelation coefficient. These properties are useful

for the efficient computation of all-strong-pairs corredatqueries.

A. An Upper Bound

In this subsection, we propose an upper bound of¢tlverrelation coefficient for a given pa{td, B}
in terms of the support value of itetd and the support value of iter.

Lemma 1:Given an item pai{ A, B}, the support valugupp(A) for item A, and the support value
supp(B) for item B, without loss of generality, letupp(A) > supp(B). The upper boundpper(¢a,zy)
of the ¢ correlation coefficient fo{ A, B} can be obtained whesupp(A, B) = supp(B) and

~ [supp(B) [1— supp(A)
upper(ia.my) = \/SUPP(A) \/1 — supp(B) ©)

supp(A,B)—supp(A)supp(B)

Proof. According to Equation 2, for an item paftA, B}, ¢a 5y = oA erm B) oA} G —sen(D)

When the support valuesupp(A) and supp(B) are fixed, ¢4 5y iS monotone increasing with the
increase of the support valuaipp(A, B). By the given conditionsupp(A) > supp(B) and the anti-

monotone property of the support measure, we get the maxipussible value ofupp(A, B) is supp(B).
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As a result, the upper bound uppgr( ;) of the ¢ correlation coefficient for an item pajr4, B} can

be obtained wherupp(A, B) = supp(B). Hence,upper(¢ga,py) = \/ Zﬂﬁ; \/ i:zﬁﬁgg%

As can be seen in Equation 3, the upper bound ofgtloerrelation coefficient for an item pa{rd, B}
relies only on the support value of ited and the support value of iterB. In other words, there is no
requirement to get the support valsepp(A, B) of an item pair{ A, B} for the calculation of this upper
bound. As already noted, when the number of iteMdecomes very large, it is difficult to store the
support of every item pair in the memory, sindg N — 1)/2 is a huge number. However, it is possible
to store the support of individual items in the main memorg. & result, this upper bound can serve

as a coarse filter to filter out item pairs which are of no irgeréhus saving I/O cost by reducing the

computation of the support values of those pruned pairs.

Pair | UPPER(®)| Correlation
{1, 2} 0.667 0.667
{1, 3} 0.333 | -0.333
{1, 4} 0.218 0.218
{1, 5} 0.167 0.167
{1, 6} 0.111 0.111

{2, 3} 0.5 -05
2,4 0.327 | 0327
{2, 5} 025 | 025

{2, 6} 0.167 | 0.167
{3, 4} 0.655 | -0.218
{3, 5} 0.5 0

{3, 6} 0.333 | 0.333
{4, 5} 0.764 | 0.764
{4, 6} 0.509 | 0.509
{5, 6} 0.667 | 0.667

Fig. 4. Al Pairs in the Example Database.

Example 2:Figure 4 shows all item pairs with their upper bound valuesthe example data set
shown in Figure 3. If we consider item pafil, 2}, then by Equation 3, we havepper(¢g ) =
\/iijifiﬁfi tjgﬁggi = \/%\/% = 0.667 as shown in Figure 4. Finally, upper bounds of the

correlation coefficient for other item pairs can be computed similar manner. Figure 4 shows the

upper bounds andg correlation coefficients for all item pairs.
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B. 2-D Monotone Properties

In this subsection, we present a conditional monotone ptpd the upper bound of the correlation
coefficient as shown below in Lemma 2
Lemma 2:For an item pair{ A, B}, if we let supp(A) > supp(B) and fix item A, the upper bound

upper(¢ga,py) Of {A, B} is monotone decreasing with the decrease of the suppore wdlitem 5.

. _ supp(B) 1—supp(A) : :
Proof: By Lemma 1, we getpper(¢a,53) = \/ S () \/ (). FOr any given two itemd3; and B;

with supp(A) > supp(B1) > supp(Bs), we need to provepper(pa,p,3) > upper(dga,p,}). This claim

can be proved as followgZ?(%14.50) _ \/S“””(Bl)\/ljs“””(&) > 1. This follows the given condition
upper(da,By}) supp(B2) \/ 1—supp(Bi1)

that supp(B;) > supp(Bs2) and (1 — supp(B1)) < (1 — supp(Bz)).

Along the same line of Lemma 2, we can also derive anotheritondl monotone property of the
upper bound of the correlation coefficient as follows.

Lemma 3:For a pair of items{ A, B}, let supp(A) > supp(B) and fix the itemB, the upper bound
upper(¢ga,py) of {A, B} is monotone increasing with the decreasing of the suppduevaf item A.

Example 3:This example illustrates Lemma 2 and Lemma 3. As shown inrEigu if item1 is fixed,
the upper bounds of item paifd, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6} are in a decreasing order, which
follows Lemma 2. Also, the upper bounds of item pajfis 6}, {2, 6}, {3, 6}, {4, 6}, {5, 6} are in an
increasing order. This follows Lemma 3.

Lemma 2 and Lemma 3 are 2-D monotone properties of the upperdbdhese two lemmas allow
us to push the upper bound into the search algorithm, thusesftly pruning the search space. In the

following section, we will introduce how this pruning wotks

IV. ALGORITHM DESCRIPTIONS

Here, we first present théwo-stepAll-strong-Pairs corElation qudry (TAPER) algorithm to exploit

the proposed upper bound and its monotone properties.
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TAPER ALGORITHM
Input: S’: an item list sorted by item supports in non-increasing prde

0. a user-specified minimum correlation threshold.
Output: P: the result of all-strong-pairs correlation guer
Variables: n: the size of item sét.

A: the item with larger support.

B: the item with smaller support.

CoarseFilter(S’, 0) /IThe filtering Step
1DFiltering(S’, 6) or 2DFiltering S’, 9)

Refing(A, B, 6) //The Refinement Step
Get the support supp(A, B) of item séA, B}
= supp(A,B) —supp(A) supp(B)

/supp(A)supp(B) (1—supp(A))(1—supp(B))
if ¢ <6 then

return @ //return NULL
else

return {{A, B}, ¢}

oo krw NPR

Fig. 5. The TAPER Algorithm

A. Overview

The TAPER algorithm is a filter-and-refine query processitrgtegy which consists of two steps:
filtering and refinement.

The Filtering Step: In this step, the TAPER algorithm applies two pruning tegaes. The first
technique uses the upper bound of theorrelation coefficient as a coarse filter. In other wordgshé
upper bound of the) correlation coefficient for an item pair is less than the sgEcified correlation
threshold, we can prune this item pair right way. The secamhipg technique prunes item pairs based
on special monotone properties of the upper bound ofstloerrelation coefficient.

The Refinement Step:In the refinement step, the TAPER algorithm computes thetexacelation for
each surviving pair from the filtering step and retrievesgh&s with correlations above the user-specified
minimum correlation threshold as the query results.

Figure 5 shows the pseudocode of the TAPER algorithm, wincludes the”'oarse Filter and Re fine
procedures. In th€'oarseFilter procedure, monotone properties of the upper bound oftberrelation
coefficient can be used in two different ways, namely 1D fiigrand 2D filtering. The details of these
two filtering techniques are introduced in the following settions.

ProcedureRe fine works as follows. Line 1 gets the support for the item pgi; B}. Note that the

I/O cost can be very expensive for line 1 when the number ofstés large since we cannot store the
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support of all item pairs in the memory. Line 2 calculates ¢xact correlation coefficient of this item
pair. If the correlation is greater than the user-specifi@imum correlation threshold, this item pair is

returned as a query result in line 6. Otherwise, the proeedeturns NULL in line 4.

B. TAPER 1D: TAPER with 1D filter

In this subsection, we illustrate TAPER with 1D filter, dezabtas TAPER 1D. The working mechanism
of 1D filtering is illustrated as the following Corollary.

Corollary 1. When searching for all pairs of items with correlations abaveser-specified threshold
g, if an item list{i, 4, ... ,4,} iS sorted by item supports in non-increasing order, an itam{g,, i.}
with supp(i,) > supp(i.) can be pruned ifipper(p{ia, iv}) < 6 and supp(i.) < supp(ip).

Proof: First, whensupp(i.) = supp(iy), we getupper(é(iq,ic)) = upper(¢(ia,ip)) < 0 according to
Equation 3 and the given conditiompper(¢{i,,ip}) < 0; then we can prune the item pajt,,i.}.
Next, we considesupp(i.) < supp(ip). Sincesupp(i,) > supp(ip) > supp(i.), by Lemma 2, we get

upper(Pp{ia, ic}) < upper(d{ia, iv}) < 6. Hence, the paifi,,i.} is pruned.

1DFiltering (57, 8) //The Filtering Step

1. n = size§’), P =0

2. for i from 1 to n-1

3. A= S

4. for j from i+1 to n

5. B = S5'[j]

6 upper(d) =/ SRR 5D

7. if (upper(¢) < 6) then //Pruning by the monotone property
8. break from inner loop

9. else

10. P=PU Refine(A, B,6)

Fig. 6. TAPER 1D: TAPER with a 1D filter

Figure 6 shows the pseudocode of 1D filtering, which workso#lews. Line 1 initializes the variables
and creates an empty query result SetLines 2 - 10 iteratively enumerate candidate pairs and fite
item pairs whose correlations are obviously less than tlee-gigecified correlation threshold This is
implemented by two loops. Line 2 starts an outer loop. Lingp&cties the reference item A, and line

4 starts a search within each branch. Line 5 specifies thetté#eggm B, and line 6 computes the upper
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bound of they correlation coefficient for item paiA, B}. In line 7, if this upper bound is less than the
user-specified correlation threshaldthe search within this loop can stop by exiting from the mioep,

as shown in line 8. The reason is as follows. First, the raeferdtem A is fixed in each branch and it
has the maximum support value due to the way we constructrmech. Also, items within each branch
are sorted based on their support in non-increasing ordem,Tby Lemma 2, the upper bound of the
correlation coefficient for the item pa{A, B} is monotone decreasing with the decrease of the support
of item B. Hence, if we find the first target item B which resulisan upper boundpper (¢4, 5;) that

is less than the user-specified correlation thresHolde can stop the search. Line 10 calls the procedure
Refine to compute the exact correlation for each surviving candigeir and continues to check the

next target item until no target item is left.

TID | Items ltem | Support Pair | UPPER(®) | Computed Correlation| Compute
111,23 1 0.9 {1, 2} 0.667 Yes 0.667 Yes
211,23 2 0.8 {1, 3} 0.333 Yes -0.333 No
3113 3 0.5 {1, 4} 0.218 No 0.218 No
41,2 4 0.3 {1, 5} 0.167 No 0.167 No
5| 1,2 5 0.2 {1, 6} 0.111 No 0.111 No
6| 1,2 6 0.1 {2,3} 0.5 Yes -0.5 Yes
711,23,4,5,6 (b) 2 4 0.327 Yes 0.327 No
811,245 {2, 5} 0.25 No 0.25 No
911,24 {2, 6} 0.167 No 0.167 No

10| 3 {3, 4} 0.655 Yes -0.218 Yes
(a) {3, 5} 0.5 Yes 0 Yes

{3, 6} 0.333 Yes 0.333 No

{4, 5} 0.764 Yes 0.764 Yes

{4, 6} 0.509 Yes 0.509 Yes

{5, 6} 0.667 Yes 0.667 Yes

¢ (c)

Item —>{1} {2} } {6}

-
{3} {43 {5
% /(7)\ (K ()\ (XZ) -

(1.2} (18} (E4HE5HE6H2,3} (2412, 5H2:6H3:4) 3.5} (3.6} 145} (4.6} (5.6}
Fig. 7. lllustration of the filter-and-refine strategy of the TAPER algorithith WD filter.

Example 4:To illustrate the TAPER algorithm with 1D filter, consider atabase shown in Figure 7.
To simplify the discussion, we use an item ligt, 2, 3, 4, 5, 6 which is sorted by item support in non-
increasing order. For a given correlation threshold 0.36can use Rymon’s generic set-enumeration tree
search framework [24] to demonstrate how filter-and-refineryg processing works. For instance, for the
branch starting from item 1, we identify that the upper boohthe ¢ correlation coefficient for the item

pair {1, 3} is 0.333, which is less than the given correlation threslBdd®. Hence, we can prune this item
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pair immediately. Also, since the item li§tl, 2, 3, 4, 5, 6 is sorted by item supports in non-increasing
order, we can prune paifd, 4}, {1, 5}, and{1, 6} by Lemma 2 without any further computation cost.
In contrast, for the traditional filter-and-refine paradjghe coarse filter can only prune the item péiy,
3}. There is no technique to prune item p&ls4}, {1, 5}, and{1, 6}. Finally, in the refinement step,
only seven item pairs are required to compute the exactlatime coefficients, as shown in Figure 7 (c).
More than half of the item pairs are pruned in the filter stepnethough the correlation threshold is as
low as 0.36. Please note that the Rymon’s set-enumeratienidrased for illustration purposes. In our

algorithm, there is no requirement to construct such a treetsre.

C. TAPER 2D: TAPER with 2D Filter

The coarse filter step of TAPER 1D can be improved by redudiwegnumber of upper bounds to be
computed; this leads to TAPER 2D. Indeed, we can reduce tmpgtation of upper bounds in each inner
loop and produce an improved coarse filter step as shown uré-8) The key difference between TAPER
1D and TAPER 2D is that TAPER 2D records the break point in #% inner loop and starts computing
upper bounds from the recorded point instead of going tHroaigery candidate pair. The correctness of

this additional filtering is guaranteed by the following Citany.

2DFiltering (S’, 9) /IThe Filtering Step

1. n = size@’), P =0

2. startposi = 2

3. for i from 1 to n-1

4, A= S

5. for j from i+1 to n

6. flag=0

7. B = 5'[j]

8. if(j > startposi)

9. upper(s) = /2 1=

10. if (upper(¢) < 6) then //Pruning by the monotone property
11. if (j > i+1 || startposi == n)}hen //Reducing the Computation of Upper Bounfds
12. startposi = j

13. else

14. startposi = j + 1

15. break from inner loop

16. P=PU Refine(A, B,6)

17. if(startposi == (i+1) && flag ==0) startposi ++

Fig. 8. TAPER 2D: TAPER with a 2D filter
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Corollary 2: Given an item list{iy,s,... ,%,}, wWhich is sorted by item supports in non-increasing
order, the upper-bound computation of an item dair, i.} with supp({i.}) > supp({i.}) can be saved
it upper(¢{io—1,ic}) > 0, wheresupp({io—1}) > supp({i.}).

Proof: First, we havesupp({i,_1}) > supp({i.}), Since items are sorted by support in non-increasing
order. Also, by Lemma 3, we haveper(¢{io—1,i.}) < upper(¢{ia,i.}). Thereforeupper(p{iaz,ic}) >
6. As a result, we do not need to compute the upper boundof.}.

TAPER 2D is an improvement over TAPER 1D. The following Lemthahows that the number of
upper bound computations is reduced fr&@ in TAPER 1D to2n-3 in TAPER 2D for the worst
case.

Lemma 4:The number of upper bounds required to compute in the codisediep of TAPER 2D is
2n — 3, wheren is the number of objects in the data set.

Proof: Figure 8 shows that the number of upper bounds to be compstddtermined by the value.
For each outer loop, there is an inner loop where the uppend@icomputedk starts from 2 and ends
at n. In each outloop;, there are at most; — k;_; + 1 number of upper bound computations. In total,

there areZ?;ll(ki — k;_1 + 1) = 2n — 3 number of upper bounds to be computed.

1 2 3 4 5 6 1 2 3 4 5 6

: : e S i : : e S ettty | : :
1 © 0.667 =™ 0.3337 > 0.2187=> 0.167 ™= 0.111 ! 1 © 0.667 =™ 0.3337 > 0.2187>,0.167 = 0.111 !

05— 0327 025~ 0.167.

3 : : © 0.655— 0.5?/63/333 3 : : © 0.655— 0.5:*»:0.3333
« cwieese 4« ome-oss
(a) TAPER 1D (b) TAPER 2D

Fig. 9. TAPER 1D vs. TAPER 2D.

Example 5:This example illustrates the coarse filter steps of the TAREf®rithm with 1D and 2D
filtering. Here, we use the data set shown in Figure 7. Fortdma list {1, 2, 3, 4, 5, 6, which is sorted
by item support in non-increasing order, if the correlatibreshold i9).2, the coarse filter step of TAPER

1D is illustrated in Figure 9 (a). In the figure, the dot linglitates the item pairs whose upper bounds
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need to be computed. As can be seen, there are 14 upper-bompli@tions. In contrast, as shown in
Figure 9 (b), TAPER 2D computes upper bounds for 2n-3x6 — 3 = 9 number of item pairs, which

are{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 5}, {2, 6}, {3, 6}, {4, 6}, and {5, 6}.

V. ANALYSIS OF THE TAPERALGORITHM

In this section, we analyze TAPER in the areas of completger@srectness, and computation savings.

Note that TAPER here will stand for both TAPER 1D and TAPER 2D3simplify the discussion.

A. Completeness and Correctness

Lemma 5: The TAPER algorithm is complete. In other words, this altdon finds all pairs which have
correlations above a user-specified minimum correlatioasthold.
Proof: The completeness of the TAPER algorithm can be shown by therviag two facts. The first
is that all item pairs in the database have the opportunitheachecked during the iteration process.
The second fact is that the filtering step only prunes itemspéithe upper bounds of the correlation
coefficient for these pairs are less than the user-specifiectlation threshold. This is guaranteed by
Corollary 1 as well as Corollary 2. Also, the refinement stepy gnlines item pairs whose correlations
are less than the user-specified correlation threshold.s€hend fact guarantees that all the pruned item
pairs cannot have correlations above the user-specifieanmm correlation threshold.

Lemma 6: The TAPER algorithm is correct. In other words, every paatthoth algorithms find has a
correlation above a user-specified minimum correlatioershold.
Proof: The correctness of the TAPER algorithm can be guaranteethdyefinement step of these two
algorithms, since the exact correlation of each candidaiteip calculated in the refinement step and every

pair with a correlation lower than the user-specified catreh threshold will be pruned.

B. Quantifying the Computation Savings

This section presents analytical results for the amountoafputational savings obtained by TAPER.

First, we illustrate the relationship between the choideth® minimum correlation threshold and the size
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of the reduced search space (after performing the filterieg)sKnowing the relationship gives us an
idea of the amount of pruning achieved using the upper-bdunction of correlation.

Figure 10 illustrates a 2-dimensional plot for every pdgssdmmbination of support pairsupp(z) and
supp(y). If we impose the constraint thatpp(x) < supp(y), then all item pairs must be projected to
the upper left triangle since the diagonal line represdmsconditionsupp(z) = supp(y).

To determine the size of the reduced search space, let udrstarthe upper bound of the correlation.

upper (1) = \/ s 2 \/ S < § — supp(x)(1 — supp(y)) < B2supp(y)(1 — supp(x)).

= supp(y) > 62 + (1 — 0?)supp(x)

The above inequality provides a lower bound @rpp(y) such that any item pair involving andy
can be pruned using the conditional monotone property ofuthger bound function. In other words,
any surviving item pair that undergoes the refinement stegt minlate the condition given in Equation
4. These item pairs are indicated by the shaded region showigure 10. During the refinement step,
TAPER has to compute the exact correlation for all item ptieg fall in the shaded region between the

diagonal and the polyline drawn by Equation 5.

supp(x) (5)

SUPPY) = G5 = ) supp(a)

As can be seen from Figure 10, the size of the reduced seaack siepends on the choice of minimum
correlation threshold. If we increase the threshold frof 1. 0.8, the search space for the refinement
step is reduced substantially. When the correlation thitdskdl.0, the polyline from Equation 5 overlaps
with the diagonal line. In this limit, the search space fa tkfinement step becomes zero.

The above analysis shows only the size of the reduced sepatke shat must be explored during the
refinement step of the TAPER algorithm. The actual amountrahipg achieved by TAPER depends
on the support distribution of items in the database. Tolifa® our discussion, we first introduce the

definitions of several concepts used in the remainder ofgidsion.
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Fig. 10. An illustration of the reduced search space for the refinenteptcad the TAPER algorithm. Only item pairs within the shaded
region must be computed for their correlation.

Definition 1: The pruning ratio of the TAPER algorithm is defined by thedwaling equation.

’7(6) = T (6)

whered is the minimum correlation threshold,#) is the number of item pairs which are pruned before
computing their exact correlations at the correlationshodd ¢, and 7T is the total number of item pairs
in the database. For a given databdBds a fixed number and is equal (q) = @ wheren is the
number of items.

Definition 2: For a sorted item list, the rank-support functiffk) is a discrete function which presents
the support in terms of the rank

For a given database, |ét= {A;, A, ... , A,,} be an item list sorted by item supports in non-increasing
order. Then itemA; has the maximum support and the rank-support funcfigh) = supp(Ax), V 1 <
k < n, which is monotone decreasing with the increase of the kafflo quantify the computation savings
for a given itemA; (1 < j < n) at the threshold, we need to find only the first item; (j < [ < n) such
that upper(dya;,.4,)) < 0. By Lemma 2, ifupper(¢pa,.4,) < 0, we can guarantee thapper(dia; a;;),
wherel < i < n, is less than the correlation thresha@ldin other words, all these — [ + 1 pairs can be
pruned without a further computation requirement. Acaogdio Lemma 1, we get

_ [supp(A;) |1 — supp(A;) supp(A;) _ f) O
upper (o ay) = \/SUPP(AJ‘) \/1 ~supp(A)) © \/SUPP(AJ') \/f(j) <= G) = ’

Since the rank-support functiofi’k) is monotone decreasing with the increase of the ranke get
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[ > f~Y6*f(5)). To make the computation simple, we let f~'(6?f(j))+ 1. Therefore, for a given item
A; (1 < j < n), the computation cost fdm — (62 f(j))) item pairs can be saved. As a result, the total
computation savings of the TAPER algorithm is shown beloviEquation 7. Note that the computation

savings shown in Equation 7 is an underestimated value od¢heved computation savings.

$O) =3 {n= @O} (7)

Finally, we conduct computation savings analysis on thex datts with some special rank-support
distributions. Specifically, we consider three speciakranpport distributions: a uniform distribution, a
linear distribution, and a generalized Zipf distributid®2®], as shown in the following three cases.

CASE I: A Uniform Distribution: In this case, the rank-support functigitt) = C, whereC' is a
constant. According to Equation 3, the upper bound ofdluerrelation coefficient for any item pair is 1,
which is the maximum possible value for the correlation. ¢&grfor any given item4;, we cannot find
an itemA4; (j < 1 < n) such thatupper(¢a, .4,;) < 0, whered < 1. As a result, the total computation
savingsS(0) is zero.

CASE II: A Linear Distribution: In this case, the rank-support function has a linear distioin and
f(k) = a — mk, wherem is the absolute value of the slope amds the intercept.

Lemma 7:When a database has a linear rank-support distribufidn and f(k) = a — mk (a > 0,

m > 0), for a user-specified minimum correlation threshé)dhe pruning ratio of the TAPER algorithm
increases with the decrease of the ratjon, the increase of the correlation threshéldand the increase
of the number of items, whereé< 0 < 1.

Proof: For the given database, lét = {A;, As,... , A,} be the item list sorted by item support in
non-increasing order. Then the itey has the maximum support. Also, let the rank-support functio
f(k) = a —mk, wherem is the absolute value of the slope amds the intercept. From the rank-support

function f(k), we can derive the inverse functiofr!(y) = “2. Thus, f~'(62f(j)) = =le=mi) —

m
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£(1—6%) + j6*. According to Equation 7, we can get:

S(0) = Z{n — 7RO F(5))}

S SERCR 37

Jj=2 =2
=n(n—1)— %(n -y -z Vet
e R

—(22—(n+2))(1-62

Since the pruning ratig(6) = 5 and 7 = 20— (g) = "2 ). Also, we know

n

supp(An) = f(n) =a—mn >0, = 2% >2n> (n+2), when n > 2.

Thus, we can derive three rules as follows:

rulel: § /= (1-6%) \,= 7(0) /
rule2: a/m N\, = (2%4%2)) N = y(0) S
rule3: n /= (2%—(n+2))/n = (0 S
Therefore, the claim that the pruning ratio of the TAPER athm is increased with the decrease of the
ratio a/m, the increase of the correlation threshéldand the increase of the number of items holds.
CASE IlI: A Generalized Zipf Distributionin this case, the rank-support function has a generalized
Zipf distribution and f(k) = ;5, wherec and p are constants ang > 1. Whenp is equal to 1, the
rank-support function has a Zipf distribution.
Lemma 8:When a database has a generalized Zipf rank-support distribyi(k) and f(k) = .5, for
a user-specified minimum correlation threshéldthe pruning ratio of the TAPER algorithm increases
with the increase op and the correlation thresholt] where0 < 6 < 1. Furthermore, the pruning ratio

is independent when the number of items is increased.

Proof: Since the rank-support functiofi(k) = -, the inverse functionf~'(y) = (5)%. Accordingly,

FHOf()) = (Gch%)% — (95)%. Applying Equation 7, we get:
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Since the pruning ratig(d) = 22 and7 = "0 = () = 2 — 22 L
Thus, we can derive three rules as follows:

n+2 1
n g
n+21

2
n  @»

rulel: 0 /' = No= (0) S
rule2: p /= N = v(0) S

. o n+21 1
ruled: n — oo = lim — = —

o

Therefore, the claim that the pruning ratio of the TAPER &thm increases with the increase pf
and the correlation threshol holds. Also, rule 3 indicates that the pruning ratio is inslegent when

the number of items is increased in data sets \Withf distributions.

C. Dominance Zone Analysis

Here, we provide simple algebraic cost models for the coatmrtal cost of the brute-force algorithm
and the TAPER algorithm. We assume that the total number gictbin the data set is.

The main cost of the brute-force algorithm is the cost of cotimg @ number of exact correlation
coefficients. LetC.,,., indicate the cost of computing the correlation coefficiemtdn item pair. The cost

model of the brute-force algorithm is given as follows.

COStBrute = O(n2> * Ccorr (8)

The main cost of the TAPER algorithm consists of three péhis:sorting cost denoted ly,,,., the cost
of computing upper bounds denoted 6Y,,.., and the cost of computing exact correlation coefficients

denoted byC;.. The cost mode of the TAPER algorithm is given as follows.

C'OSﬁTAPER = Csort + Cupper + th = O(nlogn) + O(n) * Cupper + (1 - ’7(9))0(’”2) * Ccorr

We haveCost e — Costraprr = 7(0)O(n?) % Ceprr — O(nlogn) — O(n) * Coupper-
With the increase of:, the computation savings can be more dramatic for the TAPIERrithm,

particularly for data sets with non-uniform rank-suppoigtidbutions, such as Zipf distributions. Note
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that C.,,, is much larger thart,,,.., Since there is a very expensive computation cost of findumpgpsrt
values for item pairs when computing exact correlation foa@ehts. Indeed, when the number of objects
is large, we cannot store the support values of all item paitke memory; that is, we may need to scan

the whole data set once in order to find the support value alyaetem pair.

VI. DISCUSSION

In this section, we extend our algorithm for finding item pawith strong negative correlations and
demonstrate that the algorithmic ideas developed here IsEnbe applied to some other association

measures, such as uncentered Pearson’s correlation moeffic

A. Negative Correlations

In this paper, our focus is to find all pairs of high positivadgrrelated items. However, in some
application domains, there may be interest in knowing pairkigh negatively correlated items [27]. In
the following, we present a lower bound of thecorrelation coefficient.

Lemma 9:Given a pair of itemgq A, B}, without loss of generality, letupp(A) > supp(B). The lower

bound,lower(¢;a,5;), Of the ¢ correlation coefficient is equal to

supp(A) supp(B) if supp(A) + supp(B) < 1

 /(—supp(A)(1—supp(B))

V(l*Supp(A))(l,supp(B)) )
B if A B> 1
\/supp(A)supp(B) supp(A) + supp(B)

Proof: According to Equation 2, for an item pajtd, B}:

supp(A, B) — supp(A)supp(B)
v/ supp(A)supp(B)(1 — supp(A))(1 — supp(B))

b{a,B) =

When the support valuesupp(A) and supp(B) are fixed, ¢4 5y iS monotone decreasing with the

decrease ofupp(A, B). Let us consider the following two cases:
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CASE L if supp(A) + supp(B) < 1

The minimum possible value ofupp(A, B) is zero. Hence,

lower(épa.m) supp(A)supp(B) _ \/supp(A)supp(B) |
| supp(A)supp(B)(T — supp(A)) (1 — supp(B)) /(1 — supp(A))(1 — supp(B))

CASE 2: if supp(A) + supp(B) > 1

The minimum possible value ofupp(A, B) is equal tosupp(A) + supp(B) — 1. Hence,

lower(dyap) = — 2P + supp(B) = 1 = supp(A)supp(B) V(1 = supp(A))(1 - SUPP(B))'
R V/supp(A)supp(B)(1 — supp(A))(1 — supp(B)) \/supp(A)supp(B)

From the above, this Lemma holds.

We also present a conditional monotone property of the |dveemd of thep correlation coefficient.
Lemma 10:For a pair{A, B}, let supp(A) > supp(B). We have the following two cases: 1) If
supp(A)+supp(B) < 1 andsupp(A) is fixed, thelower(¢a,5y) is monotone increasing with the decrease
of supp(B). 2) If supp(A)+supp(B) > 1 andsupp(B) is fixed, thelower(¢ 4, 5;) is monotone increasing

with the increase ofupp(A).
Proof: Let us consider the following two cases:

CASE 1: supp(A) + supp(B) < 1 andsupp(A) is fixed. By Lemma 9, we havéower(épap) =

_ supp(A)supp(B)
\/(1=supp(A))(1—supp(B))

need to provdower(pa,p,y) < lower(pra,p,}). This claim can be proved as follows.

. For any given two item$3; and B, with supp(A) > supp(By) > supp(Bs), we

> 1

[ lower(¢gapy)| _ \/supp(Bo \/ 1 — supp(By)

| lower (¢4 p,y)] supp(Bz) "\ 1 — supp(Bi)

The above follows the given condition thaipp(B;) > supp(By) and (1 — supp(B;)) < (1 — supp(Bs)).
Sincelower(pra,py) < 0, we havelower(drap,y) < lower(dra,p,y)-

CASE 2: supp(A) + supp(B) > 1 and supp(B) is fixed. By Lemma 9, we havéower(éap) =

. \/(1—supp(A))(1—supp(B))
\/supp(A)supp(B)

. For any given two items!; and A, with supp(A;) > supp(As) > supp(B), we
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need to provdower(¢ga,,5y) > lower(¢pa, py). This claim can be proved as follows:

<1

| lower(¢ya,,8)]

| lower (¢(a,,5)] \/ supp(As) \/ 1 — supp(A,)

— supp(A) | 1= supp(Ay)

The above follows the conditions thatipp(A;) > supp(As) and (1 — supp(A1)) < (1 — supp(As)).
Sincelower(¢a,py) < 0, we getlower(dga, gy) > lower(¢ya, py)-

Based on Lemmas 9 and 10, we can extend the TAPER algorithmdallirpairs of high negatively
correlated items as well. Note that Pearson’s correlatoefficient has some limitations when captur-
ing negative correlation between items with low supportwieer, in this paper, our focus is on the

computational perspective of Pearson’s correlation aoefft.

B. An Extension to Uncentered Pearson’s Correlation Coefficie

Here, we present how to extend the algorithmic ideas deedlap this paper for uncentered Pearson’s
correlation coefficient, also known as the cosine measus¢ [2sing the support notation, uncentered

Pearson’s correlation coefficient is defined as the follgnaquation.

uncentered({A, B}) = supp(i4, BY) 9)

 /supp(A)supp(B)

Indeed, similar to the correlation coefficient, uncentered Pearson’s correlatioefficient has an upper
bound and this upper bound has a conditional monotone ggopershown in the following.

Lemma 11:Given an item paif A, B}, the support valueupp(A) for item A, and the support value
supp(B) for item B, without loss of generality, letupp(A) > supp(B). The upper boundpper(uncentered

({A, B})) of uncentered Pearson’s correlation coefficient for an ipain { A, B} can be obtained when

supp(A, B) = supp(B) and upper(uncentered({A, B})) = Zzgigﬁg

Proof: According to Equation 9, for an item pajAA, B}, uncentered({A, B}) = %. By the
supp(A)supp

given conditionsupp(A) > supp(B) and the anti-monotone property of the support measure, gperu

bound upper(uncentered(, B})) of uncentered Pearson’s correlation coefficient can dailéd when
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supp(A, B) = supp(B). Hence,upper(uncentered({A, B})) = ,/%.

Lemma 12:For a pair of items{A, B}, if we let supp(A) > supp(B) and fix item A, the upper
bound of uncentered Pearson’s correlation coefficienier (uncentered({A, B}) for item pair{A, B}
is monotone decreasing with the decrease of the support wdlitem B.
Proof: Sinceupper(uncentered({A, B})) = @/%, if item A is fixed, theupper(uncentered({A, B}))
becomes one variable function with supp(B) as the variablean be seen that this function is monotone
decreasing with the decrease of supp(B).

Lemma 11 and Lemma 12 are analogous to Lemma 1 and Lemma 2 fehia the basis of the TAPER
algorithm. Therefore, the algorithmic ideas in the TAPERBoathm can also be applied to efficiently

compute uncentered Pearson’s correlation coefficient.

VII. EXPERIMENTAL RESULTS

In this section, we present the results of experiments tduata the performance of the TAPER
algorithm. Specifically, we demonstrate: (1) a performacmmparison between TAPER 1D and a brute-
force approach, (2) the effectiveness of the proposed edgebost model, (3) the scalability of the TAPER
algorithm, (4) a performance evaluation of the choices betwl-D and 2-D monotone properties in the
coarse filter step of TAPER, and (5) the extension of algoiithdeas developed in TAPER for computing
negative correlation as well as the uncentered Pearsorrslaton coefficient.

TABLE 1lI
PARAMETERS OF THESYNTHETIC DATA SETS.

Data set name T N CcC |P
P1l.tab 2000000| 1000| 0.8 | 1
P2.tab 2000000| 1000 | 0.8 | 1.25
P3.tab 2000000| 1000| 0.8 | 1.5
P4.tab 2000000| 1000| 0.8 | 1.75
P5.tab 2000000| 1000| 0.8 | 2

A. The Experimental Setup

Our experiments were performed on both real-life and syitth#ata sets. Synthetic data sets were

generated such that the rank-support distributions follapi’s law, as shown in Figure 11. Note that, in
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Fig. 11. The plot of the Zipf rank-support distributions of synthetic dats & log-log scale.
TABLE IV
REAL-LIFE DATA SET CHARACTERISTICS
Data set | #ltem | #Transaction| Source
Pumsb 2113 49046 IBM Almaden
Pumsb 2089 49046 IBM Almaden

Chess 75 3196 UCI Repository
Mushroom| 119 8124 UCI Repository
Connect 127 67557 UCI Repository

LA1 29704 3204 TREC-5
Retail 14462 57671 Retail Store

log-log scales, the rank-support plot of a Zipf distribatiwill be a straight line with a slope equal to the
exponentP in the Zipf distribution. A summary of the parameter settinggsed to generate the synthetic
data sets is presented in Table Ill, where T is the numberaoistictions, N is the number of items, C is
the constant of a generalized Zipf distribution, and P isegkgonent of a generalized Zipf distribution.

The real-life data sets were obtained from several diffeagplication domains. Table IV shows some
characteristics of these data sets. The first five data setiseirtable, i.e.punsb, punsb*, chess,
mushr oom andconnect are often used as benchmarks for evaluating the performainassociation
rule algorithms on dense data sets. Tharsb and punsb* data sets correspond to binarized versions
of a census data set from IBMThe difference between them is thatinsb* does not contain items
with support greater than 80%. Thhess, nushr oom andconnect data sets are benchmark data
sets from the UCI machine learning reposiforfhe LA1 data set is part of the TREC-5 collection
(http://trec.nist.gov) and contains news articles fromltles Angeles Times. Finally,et ai | is a masked
data set obtained from a large mail-order company.

These data sets were obtained from IBM Almaden at http://www.almadexdomcs/quest/demos.html (June 2005)
2These data sets and data content descriptions are available at http://wusivécsi~mlearn/MLRepository.html (June 2005)
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Experimental Platform: We implemented TAPER using C++ and all experiments were padd on

a Sun Ultra 10 workstation with a 440 MHz CPU and 128 Mbytes ommiy running the SunOS 5.7

operating system.
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B. TAPER 1-D vs. the Brute-force Approach.
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In this subsection, we present a performance comparisevebatTAPER 1D and a brute-force approach

using several benchmark data sets from IBM, a UCI machineilggnepository, and some other sources,

such as retail stores. The implementation of the brutesfapproach is similar to that of TAPER 1D except

that the filtering mechanism implemented in TAPER 1D is netuded in the brute-force approach.
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Figure 12 shows the relative computation performance ofHRR-D and the brute-force approach on
thepunsb, punsb*, andr et ai | data sets. As can be seen, the performance of the brutedppreach
does not change much for any of the three data sets. Howéeegxecution time of TAPER 1-D can
be an order of magnitude faster than the brute-force appreaen if the minimum correlation threshold
is low. For instance, as shown in Figure 12 (a), the execuiime of TAPER 1D on thepunsb data
set is one order of magnitude less than that of the bruteefapproach at the correlation threshold 0.4.
Also, when the minimum correlation threshold increases,dkecution time of TAPER 1D dramatically
decreases on theunsb data set. Similar computation effects can also be obseruethepunsb* and
retail data sets although the computation savings orr #eai | data set is not as significant as it is
on the other two data sets.

To better understand the above computation effects, wepatsent the pruning ratio of TAPER (both
TAPER 1D and TAPER 2D) on these data sets. As illustrateddgnriéi 13, the pruning ratio of TAPER on
ther et ai | data set is much smaller than that on thexsb andpunsb* data sets. This smaller pruning
ratio explains why the computation savingsrogt ai | is less than that on the other two data sets. Also,
Figure 20 shows the pruning ratio of TAPER on the W@nnect , nushr oom andchess data sets.
The pruning ratios achieved on these data sets are comeawéhl the pruning ratio we obtained on the
punsb data set. This indicates that TAPER also achieves muchrlgsiteputation performance than the

brute-force approach on UCI benchmark data sets.

C. The Effect of Correlation Thresholds

In this subsection, we present the effect of correlatiorgholds on the computation savings of TAPER
(both TAPER 1D and TAPER 2D). Recall that our algebraic costl@hehows that the pruning ratio of
TAPER increases with increases of the correlation threshébr data sets with linear and Zipf-like
distributions. Figure 13 shows such an increasing trendh@fpruning ratio on theunsb, punsb*, and
retail data sets as correlation thresholds increase. Also, F@urghows a similar increasing trend of

the pruning ratio on the UCI benchmark datasets includinghr oom chess, andconnect .
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Fig. 15. The rank-support distributions of the retail data set and its tteeegroups with a linear regression fitting line (trendline).
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Fig. 16. Pruning ratios with the decrease of a/m for data sets with linearstgoport distribution.

One common feature of all the above data sets is the skewadenaittheir rank-support distributions.
As a result, these experimental results still exhibit adremilar to that of the proposed algebraic cost

model although the rank-support distributions of thesa dats do not follow Zipf's law exactly.

TABLE V
GROUPS OF ITEMS FOR THERETAI L DATA SET
Group 1 17 117

# ltems 4700 | 4700 | 4700
# Transactiong 57671 | 57671 | 57671
a/m 10318 | 8149 | 4778

D. The Effect of the Slope:

Recall that the algebraic cost model for data sets with adireak-support distribution provides rules
which indicate that the pruning ratio of TAPER (both TAPER abd TAPER 2D) increases with the

decrease of the ratio/m and the pruning ratio increases with the increase of theeladion threshold.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , VOL. XNO. X, XXX 200X 30

In this subsection, we empirically evaluate the effect &f thtioa/m on the performance of the TAPER
algorithm for data sets with a linear rank-support disttidou

First, we generated three groups of data from the retail sitthy sorting all the items in the data set in
non-decreasing order and then partitioning them into feougs. Each of the first three groups contains
4700 items and the last group contains 362 items. The firsetgroups are the group data sets shown in
Table V. Figure 15 (a) shows the plot of the rank-supportrithstion of the retail data set and Figure 15
(b), (c), and (d) shows the plots of the rank-support distidns of three groups of data generated from
the retail data set. As can be seen, the rank-support distis of the three groups approximately follow
a linear distribution. Table V lists some of the characterssof these data set groups. Each group has
the same number of items and transactions but a differemt ratio. Group | has the highest/m ratio
and Group lll has the lowest/m ratio. Since the major difference among these three datgreefps
is the ratioa/m, we can apply these data sets to show the impact olufhe on the performance of
the TAPER algorithm. Figure 16 shows the pruning ratio of TA@ER algorithm on the data set with
linear rank-support distributions. As expected, the prgniatio increases as the'm ratio decreases at
different correlation thresholds. The pruning ratio alsoréases as correlation thresholds are increased.

These experimental results confirm the trend exhibited bycttst model as shown in Lemma 7.
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Fig. 17. The increase of pruning ratios with the increase of p for datangtt<Zipf-like distribution.

E. The Effect of the Exponept

In this subsection, we examine the effect of the exporitah the performance of TAPER (both TAPER

1D and TAPER 2D) for data sets with a generalized Zipf ranipsut distribution. We used the synthetic
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data sets presented in Table Il for this experiment. All $yathetic data sets in the table have the same
number of transactions and items. The rank-support digtabs of these data sets follow Zipf's law but
with different exponenf. Figure 17 displays the pruning ratio of the TAPER algoritbmdata sets with
different exponent’. Again, the pruning ratios of the TAPER algorithm increasthwhe increase of the
exponentP at different correlation thresholds. Also, we can obsehat the pruning ratios of the TAPER
algorithm increase with the increase of the correlatioegholds. Recall that the proposed algebraic cost
model for data sets with a generalized Zipf distributionsvides two rules which confirm the above two

observations.
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Fig. 18. (a) The plot of the rank-support distribution of the LAl dataisdbg-log scale. (b) The effect of database dimensions on the

pruning ratio for data sets with Zipf-like rank-support distributions. (beEffect of database dimensions on the execution time for data
sets with Zipf-like rank-support distributions.

F. What is the scalability of the TAPER algorithm with respectatabase dimensions?

In this subsection, we show the scalability of the TAPER athm with respect to database dimensions.
Figure 18 (a) shows the plot of the rank-support distributbdthe LA1 data set in log-log scale. Although
this plot does not follow Zipf's law exactly, it does show Figke behavior. In other words, the LAl
data set has an approximate Zipf-like distribution with ghgonentP = 1.406. In this experiment, we
generated three data sets, with 12000, 18000, and 24008 itespectively, from the LAl data set by
random sampling on the item set. Due to the random samplhegitiree data sets can have almost the
same rank-support distributions as the LA1 data set. Asdtrege used these three generated data sets
and the LA1 data set for our scale-up experiments.

For data sets with Zipf-like rank-support distributionggute 18 (b) shows the effect of database

dimensions on the performance of the TAPER algorithm. As lbanseen, the pruning ratios of the



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , VOL. XNO. X, XXX 200X 32

TAPER algorithm show almost no change or slightly increaiseierent correlation thresholds. This
indicates that the pruning ratios of the TAPER algorithm bammaintained when the number of items is
increased. Recall that the proposed algebraic cost modelatar sets with a generalized Zipf distribution
exhibits a similar trend as the result of this experiment.

Finally, in Figure 18 (c), we show that the execution timedar scale-up experiments increases linearly

with the increase of the number of items at several differemimum correlation thresholds.
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Fig. 19. TAPER 1D vs. TAPER 2D on thBumsb, Pumsb®, and retail data sets.

G. Evaluation of the choices between 1D and 2D Monotone Ptiggser

Here, we present a performance evaluation of the Choicesebet@D and 2D monotone properties
in the coarse filter step of the TAPER algorithm. Figure 19shthe execution time of TAPER 1D and
TAPER 2D on the UCIconnect, nushroom andchess data sets. In the figure, we can see that
the execution time of TAPER 2D can be 10-15% less than thatAéfER 1D for the various different
correlation thresholds. This computation savings is duthéofact that TAPER 2D reduces the number

of upperbounds that need to be computed as demonstratednmné el.
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Fig. 20. The pruning effect for uncentered Pearson’s correlatefficient on UCIConnect, Mushroom, Chess data sets.
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Fig. 21. The pruning effect for negative correlation computation on UGnnect, Mushroom, Chess data sets.

H. The Extension of Algorithmic Ideas Developed in TAPER

In this subsection, we present experimental results to gsheweffectiveness of extending algorithmic
ideas developed in the TAPER algorithm for computing thensomeasure as well as negative correlation
coefficients. Figure 20 shows the pruning ratios for commguthe cosine measure on the U&innect ,
mushr oom and chess data sets. Once again, the pruning ratios achieved on thatse seéts are
quite significant. This indicates that the algorithmic isleeveloped in TAPER can also achieve good
computation performance for computing the cosine meastunally, Figure 21 shows the pruning ratios
for computing negative correlation on the U€dnnect , mrushr oom andchess data sets. The pruning

ratios achieved in this case are even better than those foputing positive correlation.

VIIl. CONCLUSIONS ANDFUTURE WORK

In this paper, we designed an efficient two-step filter-agfdie algorithm, called TAPER, to search
all the item pairs with correlations above a user-specifiéggimum correlation threshold. TAPER uses
an upper bound of the correlation coefficient, which shows 2-D monotonic progsttin addition, we
provided algebraic cost models to measure the computatoionmnance of the TAPER algorithms. As
demonstrated by our experimental results on both real amithaic data sets, the pruning ratio of TAPER
can be maintained or even increases with the increase obakdadimensions, and the performance
of TAPER confirms the proposed algebraic cost model. Finally showed that the algorithmic ideas
developed in the TAPER algorithm can be extended to effigi@impute uncentered Pearson’s correlation

coefficients as well as negative correlation.
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There are several potential directions for future resedralst, we are interested in studying how to
specify statistically meaningful correlation threshol@econd, we plan to efficiently compute the top-
k correlated item pairs. Finally, we will investigate an @#nt solution for correlation detection using

Bayesian and Markov models.
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