A Framework for Discovering Co-location Patterns in Data Sets with Extended Spatial Objects

Hui Xiong

Department of Computer Science & Engineering
University of Minnesota - Twin Cities
Overview

- Introduction
 - General Problems
 - Related Works
 - Research Motivations
- A Buffer-based Model
- A Filter-and-Refine Co-location Pattern Mining Framework
- Experimental Evaluation
- Conclusions and Future Work
Introduction & Background
Examples of Co-location Patterns

<table>
<thead>
<tr>
<th>Domains</th>
<th>Example Features</th>
<th>Example Co-location Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecology</td>
<td>Species</td>
<td>(Nile crocodile, Egyptian plover)</td>
</tr>
<tr>
<td>Earth science</td>
<td>climate and disturbance events</td>
<td>(wild fire, hot, dry, lightning)</td>
</tr>
<tr>
<td>Economics</td>
<td>industry types</td>
<td>(suppliers, producers, consultants)</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>disease types and environmental events</td>
<td>(West Nile disease, stagnant water sources, dead birds, mosquitoes)</td>
</tr>
<tr>
<td>Location-based service</td>
<td>service type requests</td>
<td>(tow, police, ambulance)</td>
</tr>
<tr>
<td>Weather</td>
<td>fronts, precipitation</td>
<td>(cold front, warm front, snow fall)</td>
</tr>
<tr>
<td>Transportation</td>
<td>delivery service tracks</td>
<td>(US Postal Service, UPS, newspaper delivery)</td>
</tr>
</tbody>
</table>
Related Works

- Spatial Statistics
 - Use measures of spatial correlation to characterize the relationship between spatial features
 * the cross-K function with Monte Carlo simulation
 * mean nearest neighbor distance
 * spatial regression model
 - Computationally expensive

- Data Mining Approaches
 - A clustering based approach by Estivill-Castro et al.
 * Features can be completely spatially random or declustered.
 * Sensitive to the choices of clustering algorithms.
 - Association-rule based approaches.
Related Works - Cont.

- Association-rule based approaches.
 - Transaction-based approaches.
 * A reference-feature centric model by Koperski et al.
 - Generalizing this paradigm to the case where no reference feature is specified is non-trivial.
 - May yield duplicate counts for many candidate associations.
 - Distance-based approaches.
 * k-neighboring class sets by Morimoto.
 - the number of instances for each pattern is used as the prevalence measure
 * an event centric model by Shekhar et al.
 - All these approaches are for point spatial features.
Motivation

- Identifying co-location patterns in data sets with extended spatial objects (e.g. polygons and line strings).
 - Highway often have frontage road nearby in large metropolitan.
 - nomandale Road \Rightarrow highway 100
Problem Formulation

- Given:
 - A set T of K spatial feature types $T = \{f_1, f_2 \ldots, f_k\}$ and spatial data types can be point as well as other extended spatial objects, such as line strings and polygons.
 - A set of N instances $P = \{p_1 \ldots p_N\}$, each $p_i \in P$ is a vector $<\text{instance-id}, \text{spatial feature type}, \text{location}>$ where spatial feature type $\in T$ and location \in spatial framework S.
 - A buffer size, a minimum prevalence threshold, a minimum conditional probability threshold.

- Find: Co-location Patterns and Co-location Rules.

- Objective: Computational Efficiency.

- Constraints: Correctness and Completeness.
A Buffer-based Model

Definition 1 Buffer is a zone of specified distance around spatial objects. The boundary of the buffer is the isoline of equal distance to the edge of the objects.

- Motivation
 - Objects in space frequently have sort of impact on the objects and areas around them
 - freeways create “noise pollution” that can be heard blocks away.
 - factories emit fumes that can affect people for miles around.
A Buffer-based Model

Definition 2 $N(p)$, the size-d Euclidean neighborhood of a point location p, is a circle of side d with p as its center.

Definition 3 $N(o)$, the size-d neighborhood of an extended spatial object (e.g. polygon, line-string), is defined by the buffer operation.
A Buffer-based Model - Cont.

Definition 4 The coverage ratio $Pr(f_1 f_2 \ldots f_k)$ for a co-location $C = \{f_1, \ldots, f_k\}$ is $\frac{N(f_1 f_2 \ldots f_k)}{\text{The total area of the plane}}$, where $N(f_1 f_2 \ldots f_k)$ is the Euclidean neighborhood of the co-location C.

Definition 5 The conditional probability $Pr(C_2|C_1)$ of a co-location rule $C_1 \rightarrow C_2$ is the probability of finding the neighborhood of C_2 in the neighborhood of C_1. It can be computed as $\frac{N(C_1 \cup C_2)}{N(C_1)}$ using the neighborhoods of co-locations C_1 and $C_1 \cup C_2$.

Lemma 1 The coverage ratio for co-location patterns is monotonically non-increasing with the size of the co-location pattern increasing.
A Coarse-Level Co-location Pattern Mining Framework

Definition 6 $BN(o)$, the bounding neighborhood of a spatial object is defined as $MBBR(Buffer(MOBR(Spatial Object O), d))$, where MOBR is the minimum object bounding box, Buffer is the buffer operation with a buffer size as d, and MBBR is the minimum buffer bounding box.

Definition 7 The Euclidean bounding neighborhood $BN(f_j)$ of a spatial feature f_j is the union of $BN(i_l)$ for every instance i_l of the spatial feature f_j.
Definition 8 The Euclidean bounding neighborhood $BN(f_1 f_2 \ldots f_k)$ for a coarse-level co-location pattern $CC = \{f_1, \ldots, f_k\}$ is the intersection of $BN(f_i)$ for every spatial feature f_i in CC.

Definition 9 The coarse-level coverage ratio $CPr(f_1 f_2 \ldots f_k)$ for a coarse-level co-location pattern $CC = \{f_1, \ldots, f_k\}$ is $\frac{BN(f_1 f_2 \ldots f_k)}{The \ total \ area \ of \ the \ plane}$, where $BN(f_1 f_2 \ldots f_k)$ is the Euclidean bounding neighborhood of the coarse-level co-location pattern CC.
A Coarse-Level Co-location Pattern Mining Framework - Cont.

Lemma 2 The coarse-level coverage ratio for coarse-level co-location patterns is monotonically non-increasing with the size of the coarse-level co-location pattern increasing.

Lemma 3 For any spatial feature set $F = \{f_1, f_2, \ldots, f_k\}$, the coarse-level coverage ratio $CPr(F)$ is larger than or equal to the coverage ratio $Pr(F)$.
A Coarse-Level Co-location Pattern Mining Framework - Cont.

- $CP^r(A) = \frac{BN(A)}{\text{The total area of the plane}} = \frac{35}{200} = 0.175$

- $CP^r(AB) = \frac{BN(AB)}{\text{The total area of the plane}} = \frac{12}{200} = 0.06$.
Lemma 3 For any n spatial events A_1, \ldots, A_n,

$$\bigcup_{i=1}^{n} BN(A_i) = \sum_{i=1}^{n} BN(A_i) - \sum_{i<j} BN(A_iA_j) + \sum_{i<j<k} BN(A_iA_jA_k) - \sum_{i<j<k<l} BN(A_iA_jA_kA_l) + \ldots + (-1)^{n+1} BN(A_1A_2\ldots A_n).$$

(c) University of Minnesota - Twin Cities
April 8, 2004
Geometric Challenges and Solutions - Cont.

Theorem 2 Given any \(n \) spatial events \(A_1, A_2, \ldots, A_n \) and the corresponding bounding neighborhoods \(((x_{1lb}, y_{1lb}), (x_{1rt}, y_{1rt})) \), \(((x_{2lb}, y_{2lb}), (x_{2rt}, y_{2rt})) \), \ldots, \(((x_{nlb}, y_{nlb}), (x_{nrt}, y_{nrt})) \), where the bounding neighborhood of the event \(A_i \), \(1 \leq i \leq n \), is represented by the left bottom point \((x_{ilb}, y_{ilb}) \) and the right top point \((x_{irt}, y_{irt}) \), if the bounding neighborhoods of these \(n \) spatial events have the common intersection area, then this intersection area can be computed by Equation 2.

\[
BN(A_1A_2\ldots A_n) = (X_2 - X_1) \times (Y_2 - Y_1)
\]

where

\[
X_2 = \min\{x_{1rt}, x_{2rt}, \ldots, x_{nrt}\},
\]

\[
X_1 = \max\{x_{1lb}, x_{2lb}, \ldots, x_{nlb}\},
\]

\[
Y_2 = \min\{y_{1rt}, y_{2rt}, \ldots, y_{nrt}\},
\]

\[
Y_1 = \max\{y_{1lb}, y_{2lb}, \ldots, y_{nlb}\}.
\]
• DCS: A Direct Combinatorial Search Algorithm.
• EXCOM: An Extended Co-location Mining Algorithm.
Experimental Setup

- **Experimental Data Set**: MN/DOT base map.
- **Experimental Design**

 ![Diagram]

 - **Candidates**: DCS, EXCOM
 - **Parameters**: Coverage Ratio, Buffer Size
 - **Co-location ratio analysis for line-string co-location patterns**
 - **Summary**
The geometric filter can speed up the prevalence-based pruning approach by a fact of 30 - 40.
Line-String Co-location Patterns for Test Route Selection

- Evaluate the positional accuracy of digital roadmap databases.

- Co-located roads are the most challenging test sites for evaluating the ability of global positioning systems (GPS) systems to identify correct roads from a digital roadmap.
Contributions

- Generalize the concept of co-location patterns to extended spatial objects, e.g. polygons and line-strings.
- Propose a novel buffer-based model for mining co-location pattern. This model has three advantages over the event centric model and is transaction-free.
- Propose a geometric filter-and-refine co-location mining framework.
- Experiment evaluation with a real data set shows that the geometric filter-and-refine approach can speed up the prevalence-based pruning approach by a fact of 30 to 40.
- The application of applying line-string co-location patterns for selecting test routes has been provided to show the usefulness of co-location patterns.
Conclusions and Future Work

- Extending the notion of co-location pattern
 - de-colocation pattern
 - co-incidence pattern
- Applications of Co-location Pattern