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Abstract

Given a collection of boolean spatial features, the co-location pattern discovery process finds the subsets of

features frequently located together. For example, the analysis of an ecology dataset may reveal symbiotic species.

The spatial co-location rule problem is different from the association rule problem, since there is no natural notion

of transactions in spatial data sets which are embeded in continuous geographic space. In this paper, we provide

a transaction-free approach to mine co-location patterns by using the concept of proximity neighborhood. A new

interest measure, a participation index, is also proposed for spatial co-location patterns. The participation index is

used as the measure of prevalence of a co-location for two reasons. First, this measure is closely related to the

cross-
�

function, which is often used as a statistical measure of interaction among pairs of spatial features. Second,

it also possesses an anti-monotone property which can be exploited for computational efficiency. Furthermore, we

design an algorithm to discover co-location patterns. This algorithm includes a novel multi-resolution pruning

technique. Finally, experimental results are provided to show the strength of the algorithm and design decisions

related to performance tuning.
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I. INTRODUCTION

Co-location patterns represent subsets of Boolean spatial features whose instances are often located in

close geographic proximity. Figure 1 shows a dataset consisting of instances of several Boolean spatial

features, each represented by a distinct shape. A careful review reveals two co-location patterns, i.e.,

�
‘+’,’ � ’ � and

�
‘o’,‘*’ � . Real-world examples of co-location patterns include symbiotic species, e.g., the

Nile Crocodile and Egyptian Plover in ecology. Boolean spatial features describe the presence or absence

of geographic object types at different locations in a two dimensional or three dimensional metric space,

such as the surface of the Earth. Examples of Boolean spatial features include plant species, animal

species, road types, cancers, crime, and business types.
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Fig. 1. Co-location Patterns Illustration.

Co-location rules are models to infer the presence of spatial features in the neighborhood of instances

of other spatial features. For example, “Nile Crocodiles � Egyptian Plover” predicts the presence of

Egyptian Plover birds in areas with Nile Crocodiles.

We formalize the co-location rule mining problem as follows: Given 1) a set � of � spatial feature

types ��� �
	���
�	
��
�������
�	�� � and their instances ��� ������
�����
�������
��! � , each
�#"%$

I is a vector & instance-id,
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spatial feature type, location ' where location
$

spatial framework ( and 2) a neighbor relation ) over

instances in � , efficiently find all the co-located spatial features in the form of subsets of features or rules.

A. Related Work:

Approaches to discovering co-location rules in the literature can be categorized into two classes, namely

spatial statistics and data mining approaches. Spatial statistics-based approaches use measures of spatial

correlation to characterize the relationship between different types of spatial features. Measures of spatial

correlation include the cross- � function with Monte Carlo simulation [6], mean nearest-neighbor distance,

and spatial regression models [5]. Computing spatial correlation measures for all possible co-location

patterns can be computationally expensive due to the exponential number of candidate subsets given a

large collection of spatial Boolean features.

Data mining approaches can be further divided into a clustering-based map overlay approach and

association rule-based approaches. A clustering-based map overlay approach [9], [8] treats every spatial

attribute as a map layer and considers spatial clusters (regions) of point-data in each layer as candidates

for mining associations. Given * and + as sets of layers, a clustered spatial association rule is defined as

*-, +/.102( 
 0204365 , for *879+ = : , where CS is the clustered support, defined as the ratio of the area

of the cluster (region) that satisfies both * and + to the total area of the study region ( , and 0;0;3 is

the clustered confidence, which can be interpreted as 0;0;3 of areas of clusters (regions) of * intersect

with areas of clusters (regions) of + .

Association rule-based approaches can be divided into transaction-based approaches and distance-based

approaches. Transaction based approaches focus on defining transactions over space so that an Apriori-like

algorithm [2] can be used. Transactions over space can be defined by a reference-feature centric model

[12]. Under this model, transactions are created around instances of one user-specified spatial feature.

The association rules are derived using the Apriori [2] algorithm. The rules found are all related to the

reference feature. However, generalizing this paradigm to the case where no reference feature is specified
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is non-trivial. Also, defining transactions around locations of instances of all features may yield duplicate

counts for many candidate associations.

A distance-based approach was proposed concurrently by Morimoto [15] and us [19]. Morimoto

defined distance-based patterns called k-neighboring class sets. In his work, the number of instances

for each pattern is used as the prevalence measure, which does not possess an anti-monotone property by

nature. However, Morimoto used a non-overlapping-instance constraint to get the anti-monotone property

for this measure. In contrast, we developed an event centric model, which does away with the non-

overlapping-instance constraint. We also defined a new prevalence measure called the participation index.

This measure possesses the desirable anti-monotone property. A more detailed comparison of these two

works is presented in Section VI.

B. Contributions:

This paper extends our work [19] on the event centric model and makes the following contributions.

First, we refine the definition of distance-based spatial co-location patterns by providing an interest measure

called the participation index. This measure not only possesses a desirable anti-monotone property for

efficiently identifying co-location patterns but also allows for formalizing the correctness and completeness

of the proposed algorithm. Furthermore, we show the relationship between the participation index and a

spatial statistics interest measure, the cross-K function. More specifically, we show that the participation

index is an upper-bound of the cross-K function. Second, we provide an algorithm to discover co-location

patterns from spatial point datasets. This algorithm includes a novel multi-resolution filter, which exploits

the spatial auto-correlation property of spatial data to effectively reduce the search space. An experimental

evaluation on both synthetic and real-world NASA climate datasets is provided to compare alternative

choices for key design decisions.
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C. Outline and Scope:

Section II describes our approach for modeling co-location patterns. Section III proposes a family of

algorithms to mine co-location patterns. We show the relationship between the participation index and an

estimator of the cross-K function and provide an analysis of the algorithms in the area of correctness,

completeness, and computational efficiency in section IV. In section V, we present the experimental setup

and results. Section VI provides a comparison between our work and the work by Morimoto [15]. Finally,

in section VII, we present the conclusion and future work.

This paper does not address issues related to the edge effects or the choice of the neighborhood size

and interest measure thresholds. Quantitative association, e.g. .#< 
 <=5 and quantitative association rules,

e.g. ( <>, < ), are beyond the scope of this paper.

II. OUR APPROACH FOR MODELING CO-LOCATION PATTERNS

This section defines the event centric model, our approach to modeling co-location patterns. We use

Figure 2 as an example spatial dataset to illustrate the model. In the figure, each instance is uniquely

identified by � �?� , where � is the spatial feature type and
�

is the unique id inside each spatial feature

type. For example, @ �BA represents the instance 2 of spatial feature @ . Two instances are connected by

edges if they have a spatial neighbor relationship.

A co-location is a subset of boolean spatial features. A co-location rule is of the form: C � ,DC � .FE 
 C!EG5 ,
where C � and C � are co-locations, C � 7 C � �>: , E is a number representing the prevalence measure, and C!E
is a number measuring conditional probability.

An important concept in the event centric model is proximity neighborhood. Given a reflexive and

symmetric neighbor relation ) over a set ( of instances, a ) -proximity neighborhood is a set �IH>( of

instances that form a clique [4] under the relation ) . The definition of neighbor relation ) is an input and

should be based on the semantics of the application domains. The neighbor relation ) may be defined

using spatial relationships (e.g. connected, adjacent [1]), metric relationships (e.g. Euclidean distance
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Fig. 2. Spatial Dataset to Illustrate the Event Centric Model

[15]) or a combination (e.g. shortest-path distance in a graph such as a road-map). The ) -proximity

neighborhood concept is different from the neighborhood concept in topology [14] since some supersets

of a ) -proximity neighborhood may not qualify to be ) -proximity neighborhoods.

Two ) -proximity neighborhoods � � and � � are ) -reachable to each other if � �KJ � � is a ) -proximity

neighborhood. A ) -proximity neighborhood � is a row instance (denoted by LNM�O �1P�Q�R�STP C�UV.#C�5 ) of a

co-location C if � contains instances of all the features in C and no proper subset of � does so. For

example,
� < �XWY
 @ �?Z[
 0 �]\ � is a row instance of co-location

� < 
 @ 
 0^� in the spatial dataset shown in

Figure 2. But
� < �_A`
 < �_WY
 @ �aZ[
 0 �]\ � is not a row instance of co-location

� < 
 @ 
 0�� because its proper

subset
� < �XWY
 @ �?Z[
 0 �b\ � contains instances of all features in

� < 
 @ 
 0�� . In another example,
� < �_A`
 < �?Z �

is not a row instance of co-location
� <2� because its proper subset

� < �_A � (or
� < �?Z � ) contains instances

of all the features in
� <c� . The table instance,

R�Sed�f U �!PgQ�R�S�P ChUV.iC�5 , of a co-location C is the collection of

all row instances of C . In Figure 2, t1, t2, t3, t4, t5, t6, and t7 represent table instances. For instance, t5=

���
A.1, C.2 � , �

A.3, C.1 ��� is a table instance of the co-location
�
A, C � .

The participation ratio EKLY.#C 
�	�" 5 for feature type
	�"

in a size-k co-location C>� �
	V��
������g
�	kj � is

the fraction of instances of feature
	k" ) -reachable to some row instance of co-location C=l �
	k" � . The
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participation index E � .#C�5 of a co-location C9� �
	m��
�������
�	
j � is n �!P
j"]op� � EKL`.#C 
q	�" 5�� . The participation

index is used as the measure of prevalence of a co-location for two reasons. First, the participation

index is closely related to the cross- � function [16], [17] which is often used as a statistical measure of

interaction among pairs of spatial features. Second, it also possesses an anti-monotone property which can

be exploited for computational efficiency. The participation ratio can be computed as rhsut1vxw y{z}|x~B�
"����
y{z
���
��v
�#�
ww y]z}|x~_�

"����
y{z
���
��vF� t

�
w ,

where � is the relational projection operation with duplication elimination. For example, in Figure 2, row

instances of co-location
� < 
 @6� are

��� < �]\T
 @ �]\ � 
G� < �_A`
 @ �?Z � 
�� < �XWY
 @ �?Z ��� . Only two ( @ �]\ and @ �?Z ) out

of five instances of spatial feature @ participate in co-location
� < 
 @6� . So EKLY. � < 
 @6� 
 @^5�� A��N� ��� �aZ .

Similarly, EKLY. � < 
 @6� 
 <�5 is 0.75. The participation index E � . � < 
 @6�N5 = min(0.75, 0.4) = 0.4.

The conditional probability C�E%.iC � , C � 5 of a co-location rule C � , C � is the fraction of row instances

of C � ) -reachable to some row instance of C � . It is computed as w r�����v_y{z}|x~B�
"����
y{z
���
��v{�
�
���
�i�����b�

ww y{z}|x~B�
"����
y{z
���
��v{�
�
�
���
w , where � is the

relational projection operation with duplication elimination. For example, in the co-location rule <>, 0
in Figure 2, the conditional probability of this rule is equal to w rh�`v_y{z}|x~B�

"����
y{z
���
��v{�#� ���

���b�
ww y]z}|x~_�

"����
y]z
���
��v{�1�

��� �
�� � � �V3 �

III. CO-LOCATION MINING ALGORITHM

In this section, we introduce a co-location mining algorithm. Note that the prevalence measure used in

Figure 3 is the participation index and that a co-location pattern is prevalent if the values of its participation

index is above a user specified threshold.

As shown in Figure 3, the algorithm takes a set �c� of spatial event types, a set � of event instances,

user-defined functions representing spatial neighborhood relationships as well as thresholds for interest

measures, i.e. prevalence and conditional probability. The algorithm outputs a set of prevalent co-location

rules with the values of the interest measures above the user defined thresholds.

The initialization steps (i.e., steps 1 and 2 in Figure 3) assign starting values to various data-structures

used in the algorithm. We note that the value of the participation index is 1 for all co-locations of size

1. In other words, all co-locations of size 1 are prevalent and there is no need for either the computation

of a prevalence measure or prevalence-based filtering. Thus, the set 0 � of candidate co-locations of size
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Input: (a) � = � Event-ID, Event-Type, Location in Space � representing a set of events
(b) ��� = � Set of

�
boolean spatial event types �

(c) Spatial relationship �
(d) Minimum prevalence threshold   and conditional probability threshold ¡ .
Note that participation index is the measure of prevalence.

Output: A set of co-locations with prevalence and conditional probability values greater
than user-specified minimum prevalence and conditional probability thresholds.

Variables: k: co-location size¢g£
: set of candidate size- ¤ co-locations� £ : set of table instances of co-locations in

¢�£¥ £
: set of prevalent size- ¤ co-locations¦ £
: set of co-location rules of size- ¤� ¢g£

: set of coarse-level table instances of size-k co-locations in
¢§£

Steps:
1. Co-location size ¤©¨«ª ; ¢%¬ ¨­�®� ;

¥ ¬ ¨­�®� ;
2. � ¬ =generate table instance(

¢¯¬
, E);

3. if (fmul=TRUE) then
4. � ¢%¬

=generate table instance(
¢%¬

,multi event( � ));
5. Initialize data structure

¢�£h° � £�° ¥ £h° ¦ £�° � ¢g£
to be empty for ª�±²¤´³ � ;

6. while(not empty
¥ £

and ¤µ± � ) do �
7.

¢g£�¶`¬
= generate candidate colocation(

¢�£
, k);

8. if(fmul=TRUE) then
9.

¢g£�¶Y¬
=multi resolution pruning(   , ¢g£�¶`¬�° � ¢·£

,multi rel( � ));
10. � £�¶`¬ =generate table instance(   , ¢�£�¶Y¬ , � £ , � );
11.

¥ £�¶`¬
=select prevalent colocation(   , ¢g£�¶`¬ , � £�¶Y¬ );

12.
¦ £�¶Y¬

=generate colocation rule( ¡ ,
¥ £�¶`¬

, � £�¶Y¬ );
13. ¤©¨¸¤º¹­ª ;
14. �
15. return union(

¦º» °�¼�¼�¼V° ¦ £�¶`¬
);

Fig. 3. Overview of the Algorithms

1 as well as the set ½ � of prevalent co-locations of size 1 are initialized to �c� , the set of event types.

The set � � of table instances of size 1 co-location is created by sorting the set � of event instances by

event types. If a multi-resolution pruning step is desired, the set of events are discretized into coarse level

instances. The set � 0 � of coarse-level table instances of size 1 co-locations is generated by sorting the

coarse-level event instances by event types.

The proposed algorithms for mining co-location rules iteratively perform four basic tasks, namely

generation of candidate co-locations, generation of table instances of candidate co-locations, pruning, and

generation of co-location rules. These tasks are carried out inside a loop iterating over the size of the

co-locations. Iterations start with size 2 since our definition of prevalence measure allows no pruning for

co-locations of size 1.
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A. Generation of Candidate Co-locations

We could rely on a combinatorial approach and use
S EKL � M�L � ¾ U P [2] to generate size ¿;À \

candidate

co-locations from size ¿ prevalent co-locations.

The apriori-gen function takes as argument ½ j , the set of all prevalent size ¿ co-locations. The function

works as follows. First, in the ÁVM �1P step, we join ½ j with ½ j . This step is specified in a SQL-like syntax

as follows:

insert into ÂqÃ#Ä �select Å .f � , Å .f � , Æ!Æ!Æ , Å .f Ã , Ç .f Ã , Å
Æ ÈuÉ�ÊiËFÌ Í]ÎNÏ!ÈuÉ�Î
Ð!Ì ÍbÑ , Ç�Æ ÈuÉ�ÊÒË{Ì Í]ÎNÏ!ÈuÉ�ÎkÐ!Ì ÍbÑ
from ÓVÃcÅ , ÓVÃ6Ç
where Å .f � = Ç .f � , Æ�Æ!Æ , Å .f Ã�Ô � = Ç .f Ã�Ô � , Å .f Ã/ÕÖÇ .f Ã ;

Next, in the EKLk× P U step, we delete all co-locations C $ 0 j such that some size ¿cl \
subset of C is not

in ½ j :

forall co-location ÐpØ�ÂqÃ#Ä � do
forall size Ù§Ú2Û subsets Ï of Ð do

if ( Ï®ÜØ©Ó�Ã ) then delete Ð from Â[Ã1Ä � ;

Note that the column
	�"

of ½ j refers to the
�

feature of co-locations in table ½ j and the column

table instance id of table ½ j refers to table instances of appropriate co-locations.

B. Generation of Table Instances of Candidate Co-locations

Computation for generating size ¿^À \
candidate co-locations can be expressed as the following join

query:

forall co-location ÐpØ�ÂqÃ#Ä �insert into Ý � /* Ý � is the table instance of co-location Ð */
select Å .instance � , Å .instance � , Æ�Æ!Æ , Å .instance Ã , Ç .instance Ã
from Ð .table instance id � Å , Ð .table instance id

� Ç
where Å .instance � = Ç .instance � , Æ!Æ!Æ , Å .instance Ã�Ô � = Ç .instance Ã�Ô � , (Å .instance Ã ,Ç .instance Ã ) ØßÞ ;

end;

The query takes the size ¿®À \
candidate co-location set 0 j}àp� and table instances of the size ¿ prevalent

co-locations as arguments and works as follows: C �?R�Sed�f U �1P�Q�R�STP C�U ��á[� and C �?R�Sed�f U �!PgQ�R�S�P ChU ��áV� specify
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the table instances of the two co-locations joined in
S EKL � M�L � ¾ U P to produce C . Here, a sort-merge join

is preferred because the table instances of each iteration can be kept sorted for the next iteration. This

follows from a similar property of apriori-gen [2]. Sort order is based on an ordering of the set of feature

types to order feature types in a co-location to form the sort-field. Finally, all co-locations with empty

table instances will be eliminated from 0 j�àp� .
The join computation for generating table instances has two constraints, a spatial neighbor relationship

constraint ((E �a�1PgQ�R�STP ChU jT
}âm�a�1PgQ�R�STP ChU j 5 $ ) ) and a combinatorial distinct event-type constraint (E �?�1P�Q�R�STP C�U � �
âm�?�!PgQ�R�S�P ChU �h
�������
 E �a�1P�Q�R�STP C�U j�ãK� � âe�?�1P�Q�R�STP C�U j�ãK� ). We examine three strategies for computing this join:

a geometric strategy, a combinatorial strategy, and a hybrid strategy. These are described in forthcoming

subsections. Exploration of other join strategies is beyond the scope of this paper but we may explore

such strategies in future work.

Geometric Approach: The geometric approach can be implemented by neighborhood relationship-based

spatial joins of table instances of prevalent co-locations of size ¿ with table instance sets of prevalent

co-locations of size 1. In practice, spatial join operations are divided into a filter step and a refinement

step [18] to efficiently process complex spatial data types such as point collections in a row instance. In

the filter step, the spatial objects are represented by simpler approximations such as the MBR - Minimum

Bounding Rectangle. There are several well-known algorithms, such as plane sweep [3], space partition

[11] and tree matching [13], which can then be used for computing the spatial join of MBRs using the

overlap relationship; the answers from this test form the candidate solution set. In the refinement step,

the exact geometry of each element from the candidate set and the exact spatial predicates are examined

along with the combinatorial predicate to obtain the final result.

Combinatorial Approach: The combinatorial join predicate (i.e. E �a�1PgQ�R�STP ChU � � âm�a�1PgQ�R�STP ChU �h
 E �a�1PgQ�R�STP ChU �
� âm�a�1PgQ�R�STP ChU ��
g�����g
 E �?�1P�Q�R�STP C�U j�ãK� � âe�?�1P�Q�R�STP C�U j�ãK� ) can be processed efficiently using a sort-merge join
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strategy [10], since the set of feature types is ordered and tables C �aR�Smd�f U �1PgQ�R�STP ChU ��áq� and C �?R�Smd�f U �1P�Q�R�STP C�U ��áV�
are sorted. The resulting tuples are checked for the spatial condition ((E �?�1P�Q�R�STP C�U jT
}âe�?�1P�Q�R�STP C�U j 5 $ ) ) to

get the row-instance in the result. In Figure 2, table 4 of co-location
� < 
 @6� and table 5 of co-location

� < 
 0�� are joined to produce the table instance of co-location
� < 
 @ 
 0^� because co-location

� < 
 @6� and

co-location
� < 
 0�� were joined in apriori gen to produce co-location

� < 
 @ 
 0�� in the previous step. In

the example, row instance
�kWY
�Z � of table 4 and row instance

�kWY
�\ � of table 5 are joined to generate row

instance
�kWY
�Z[
�\ � of co-location

� < 
 @ 
 0^� (Table 7). Row instance
�m\N
�\ � of table 4 and row instance

�m\N
�A � of table 5 fail to generate row instance
�m\N
�\N
�A � of co-location

� < 
 @ 
 0�� because instance 1 of @
and instance 2 of 0 are not neighbors.

Hybrid Approach: The hybrid approach chooses the more promising of the spatial and combinatorial

approaches in each iteration. In our experiment, it picks the spatial approach to generate table instances for

co-location patterns of size 2 and the combinatorial approach for generating table instances for co-location

patterns of size 3 or more.

C. Pruning

Candidate co-locations can be pruned using the given threshold ä on the prevalence measure. In

addition, multi-resolution pruning can be used for spatial dataset with strong auto-correlation [6], i.e.,

where instances tend to be located near each other.

Prevalence-based Pruning: We first calculate the participation indexes for all candidate co-locations

in � j�àp� . Computation of the participation indexes can be accomplished by keeping a bitmap of size

cardinality(
	�"

) for each feature
	�"

of co-location C . One scan of the table instance of C will be enough

to put 1s in the corresponding bits in each bitmap. By summarizing the total number of 1s (E � t ) in each

bitmap, we obtain the participation ratio of each feature
	
"

(divide E � t by å instance of
	�" å ). In Figure

2 c), to calculate the participation index for co-location
� < 
 @æ� , we need to calculate the participation
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ratios for < and @ in co-location
� < 
 @6� . Bitmap

d
� = (0,0,0,0) of size four for < and bitmap

d�ç
=

(0,0,0,0,0) of size 5 for @ are initialized to zeros. Scanning of table 4 will result in
d
� = (1,1,1,0) and

d�ç
= (1,0,0,1,0). Three out of four instances of < (i.e., 1, 2, and 3) participate in co-location

� < 
 @6� , so the

participation ratio for < is .75. Similarly, the participation ratio for @ is .4. Therefore, the participation

index is min
�
.75, .4 � = .4.

After the participation indexes are determined, prevalence-based pruning is carried out and non-prevalent

co-locations are deleted from the candidate prevalent co-location sets. For each remaining prevalent co-

location C after prevalence-based pruning, we keep a counter to specify the cardinality of the table instance

of C . All the table instances of the prevalent co-locations in this iteration will be kept for generation of

the prevalent co-locations of size ¿cÀ A
and discarded after the next iteration.

Multi-resolution Pruning: Multi-resolution pruning is learned on a summary of spatial data at a coarse

resolution using a disjoint partitioning, e.g., pagination imposed by leaves of a spatial index or a grid. A

new neighbor relationship )
�

on partitions is derived from relationship ) so that two partitions are )
neighbors if any two instances from each of the two partitions are ) neighbors. We combine all instances

of a spatial feature
	

in each partition
Q

in the partitioning as a new coarse instance & QV
�	q
 n-' in the

coarse space, where n is the number of instances of spatial point feature
	

in cell
Q
. For each candidate

co-location generated by
S EKL � M�L � ¾ U P , we generate its coarse table instance using new coarse instances,

new neighbor relationship )
�
, and its coarse participation index based on the coarse table instance. Multi-

resolution pruning eliminates a co-location if its coarse participation indexes fall below the threshold,

because coarse participation never under-estimates the participation index, as shown in section 4.2.

We now illustrate multi-resolution pruning by using a simple recti-linear grid for simplicity. In Figure

4 a), different shapes represent different point spatial feature types. Every instance has a unique ID in its

spatial feature type and is labeled below it in the figure. Two instances are defined as neighbors if they

are in a common
á � á

square. A grid with uniform cell size
á

is super-imposed on the dataset. Cells
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Fig. 4. Co-location Miner Algorithm with Multi-resolution Pruning Illustration

(i,j) refer to cells with an x-axis index of i and a y-axis index of j. In this grid, two cells are coarse-

neighbors if their centers are in a common square of size
á � á , which imposes an 8-neighborhood (North,

South, East, West, North East, North West, South East, South West) on the cells. For example, cell-pairs

� .i� 
}W 5 
 .i� 
�Z 5}5 
 .�.#� 
}W 5 
 . \T
}W 5�� and
� .#� 
�Z 5 
 . \T
}W 5�� illustrate coarse-neighbors. This coarse-neighborhood

definition guarantees that two cells are neighbors if there exists a pair of points from each of the two cells

which are neighbors in the original dataset. The process of multi-resolution pruning is shown as follows.

First, we generate coarse table instances of candidate co-locations of size ¿;À \
by joining the coarse

table instances with the coarse-neighbor relationships.

Next, we calculate the participation indexes for all candidate co-locations based on the coarse table

instances. For each spatial feature
	�"

, we add up all the counts of point instances in each coarse instance

with 1s in its corresponding bitmap (E � t ) and divide this by å instance of
	�" å to get the coarse-participation

ratio of feature
	�"

. For example, in Figure 4 a), coarse EKLY.�.xè 
qé 5 
 èY5²� Ze�Tê
since there are 2 coarse
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row instances of
� è 
�é � , each containing 2 fine-grain instances of è and totally 7 fine-grain instances

of è . Similarly, coarse EKLY. � è 
qé � 
qé 5ë� Ze��Z � \
, yielding coarse participation index E � . � è 
[é �N5ë�

n �1P . Zm�Têe
eZe��Z 5 = 4/7. Figure 4 b) shows coarse table instances of co-locations
� è 
[ì � 
·� è 
qé � and

�Nìæ
qé � .
If the threshold for prevalence is set to 0.6, then co-location C�í and C�î can be pruned by multi-resolution

pruning. We also note that the sizes of coarse table instances are smaller than the sizes of table instances

at fine resolution. This shows the possibility of computation cost saving via multi-resolution pruning

for clustered datasets. Finally, the examples in Figure 4 b) show that the coarse participation ratios and

participation indexes never underestimate the true participation indexes of the original dataset.

D. Generating Co-location Rules

The generate colocation rule function generates all the co-location rules with the user defined condi-

tional probability threshold ï from the prevalent co-locations and their table instances. The conditional

probability of a co-location rule C � , C � in the event centric model is the probability of C � reachable to a

) -proximity neighborhood containing all the features in C � . It can be calculated as: w rh�x��v_y]z}|x~_�
"����
y]z
���
��v
�
���
� � �b�

ww y]z}|x~_�
"����
y]z
���
��v
�
�
�
w ,

where � is a projection operation with duplication elimination. Bitmaps or other data structures can be

used for efficient computation using the same strategies for prevalence-based pruning.

IV. ANALYSIS OF THE CO-LOCATION MINING ALGORITHMS

Here, we analyze the co-location mining algorithms in the areas of statistical interpretation of co-location

patterns, completeness, correctness, and computational complexity.

A. Statistical Interpretation of the Co-location Patterns

In spatial statistics [6], interest measures such as the cross- � function, a generalization of Ripley’s � -

function [16], [17] (and variations such as the ð -function and ñ function) are used to identify co-located

spatial feature types. The cross- � function �ò.!ó[5 for binary spatial features is defined as follows: � "Xô .1óq5��
õ ãK�ô �÷ö number of type Á instances within distance ó of a randomly chosen type

�
instance ø , where

õ ô
is
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the density (number per unit area) of type Á instances and ó is the distance. Without edge effects [7],

the cross- � -function could be estimated by: ù� "Xô .1óq5c�
�ú t ú}û�üþý j ý ~ ��ÿV.

á . ��j

 Á ~ 5}5 , where
á . ��j

 Á ~ 5 is the

distance between the ¿ ’th instance of type
�

and the
f
’th instance of type Á , �kÿ is the indicator function

assuming value 1 if the distance between instance
��j

and Á ~
á . ��j

 Á ~ 5��>ó , and value 0 otherwise, and �

is the area of the study region.
õ ô � ù� "Xô .1ó[5 estimates the expected number of type Á instances within

distance ó of a type
�

instances. The variance of the cross- � function can be estimated by Monte Carlo

simulation [6] in general and by a close form equation under special circumstances [6]. In Figure 5, the

cross- � functions of the two pairs of spatial features, i.e.,
�
‘+’,‘x’ � and

�
‘o’,‘*’ � , are well above the

spatial complete randomness curve �6�����¯ó
�
, while the cross- � functions of the other random two pairs

of spatial features, i.e.,
�
‘*’,‘x’ � and

�
‘*’,‘+’ � , are very close to complete spatial randomness. This figure

does not show the confidence band.
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Fig. 5. Ripley’s Cross-K Function

We compare the participation index with the cross- � function in an attempt to provide an independent

method for evaluating co-location patterns. In particular, we explore the correctness of co-locations using

the following characterization of the relationship between the cross- � function and co-locations.

Lemma 1: Participation index E � . � < 
 @6�N5 for co-location
� < 
 @æ� is an upper-bound on

�� ��� v ÿ
�

ü , where

ù� �
ç .!ó[5 is the estimation of the cross- � function of co-location

� < 
 @6� for a proximity neighborhood
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defined by distance �>ó , and � is the total area of the region.

Proof: From the definition of the participation index and the definition of cross- � function we have

E � . � < 
 @6�N5��
	���
 � w r � v_y{z}|x~B�
"����
y{z
���
��vB���

çq�b�
ww �Gw

 w r � v_y{z}|x~B�

"����
y{z
���
��vB���

çq�b�
ww

ç
w � and

�� ��� v ÿ
�

ü �
�ü��

�ú � ú � üþý j ý ~ �hÿV.
á .i< jN
 @ ~ 5}5®�

w y]z}|x~_�
"����
y]z
���
��vB���

çp�
ww �Gw��ew

ç
w . We need to show only that w r � v_y]z}|x~_�

"����
y{z
���
��vB���

çp�b�
ww �·w
� w y{z}|x~B�

"����
y{z
���
��vB���

çq�
ww �Gw��ew

ç
w and w r � v_y{z}|x~B�

"B���
y]z
���
��vB���

çp�b�
ww

ç
w

�

w y]z}|x~_�
"����
y]z
���
��vB���

çp�
ww �Gw��ew

ç
w . To prove the first inequality, we need to show only that å � � .

R�Smd�f U �1PgQ�R�STP ChUV. � < 
 @6�N5}5�å �
w y]z}|x~_�

"����
y]z
���
��v{�1���

çp���
ww

ç
w . This is obvious because the total number of instances of < with at least one instance

of type @ nearby (left side) is always greater or equal to the average number of instances of type <
around an instance of type @ (right side). The second inequality could be proved in a similar manner.

Lemma 2: The table instance
R�Smd�f U �1P�Q�R�STP C�UV. � < 
 @6�N5 of a binary co-location

� < 
 @6� has enough

information to compute the estimator
�� ���Kv ÿ

�
ü of the cross- � function for ó/� á

, where distance
á

defines

the proximity neighborhood.

Proof: Since
�� ��� v ÿ

�
ü �

�ü �
�ú � ú � ü ý j ý ~ ��ÿ�.

á .i< j

 @ ~ 5}5�� w y]z}|x~_�
"����
y]z
���
��vB���

çp�
ww �Gw��ew

ç
w , this lemma holds.

Lemma 1 may be used to establish the correctness of co-location rules with respect to the threshold

defined by
�� ��� v ÿ

�
ü , and Lemma 2 may be used to establish the co-location miner as an algorithm to

efficiently compute ù� �
ç

for selected co-locations, particularly when the multi-resolution filter is effective.

We are at present aware of only the use of the cross- � function to characterize pairwise spatial interactions.

We plan to explore spatial statistics research literature to look for measures of spatial interaction among

more than two features and compare those measures to the participation index.

B. Completeness and Correctness

Lemma 3 (Anti-monotone): The participation ratio and participation index are anti-monotone (mono-

tonically non-increasing) as the size of the co-location increases.

Proof: The participation ratio is anti-monotonic because a spatial feature instance that participates in

a row instance of a co-location C also participates in a row instance of a co-location C�� where C���� C .
The participation index is also anti-monotonic because 1) the participation ratio is anti-monotonic and 2)

E � .iC J 	kj�àp� 5®��	���

j}àp�"]op� � EKLY.#C J 	
j}àp��
�	�" 5�����	���


j"]op� � EKLY.iC J 	
j}àp��
�	�" 5�����	���

j"]op� � EKLY.iC 
�	�" 5��c� E � .iC�5 .
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Lemma 4: The coarse participation index computed by multi-resolution pruning never underestimates

the participation indexes of the original dataset. The candidate co-location set found is a superset of the

prevalent co-location set on the original dataset.

Proof: When co-location size = 1, the value of the coarse participation index and the true participation

index is 1, so Lemma 4 is trivially true. Suppose Lemma 4 is true for co-locations size= ¿ . Let us consider

the case that co-location size is equal to ¿cÀ \
. For each candidate co-location C of size ¿cÀ \

generated

from the apriori gen by joining C � and C � of size ¿ , we generate its coarse instance table by joining the

coarse instance tables of C � and C � . Because Lemma 4 is true for co-locations of size ¿ , the candidate

co-location set of size ¿ found is a superset of the prevalent co-location set on the original dataset. Thus

C � and C � are in the candidate co-location set in the previous iteration and their coarse level table instances

are available to be joined to produce the coarse level table instance of C . The table join to produce the

coarse table instance of C has the following property: if ) .FE ��
 E � 5 is in the original dataset, then coarse

)
�
.#C�U fif C �h
 C�U fÒf C � 5 will be in the coarse-level dataset given E � $ C � and E �«$ C � . When we calculate

the coarse participation index, any spatial feature instance which participates in the co-location in the

original dataset will contribute to the counts during the coarse participation ratio calculation. So the coarse

participation ratios never underestimate the true participation ratios, implying that the coarse participation

index never underestimates the true participation index and that the pruning will not eliminate any truly

prevalent co-location. Thus the candidate co-location set after multi-resolution pruning is a superset of

the prevalent co-location set on the original dataset.

Lemma 5 (Completeness): The Co-location Miner algorithm is complete.

Proof: The schema level pruning using apriori gen is complete due to the monotonicity of the participation

index as proved in Lemma 3. Then we prove that the join of the table instances of C � and C � to produce

the table instance of C is complete. According to the proximity neighborhood definition, any subset of

a proximity neighborhood is a proximity neighborhood too. For any instance �¸� ������
������§
���j}àp� � of co-

location C , subsets � � � ������
�������
���j � and � � � ������
������g
���j�ãK��
���j}àp� � are neighborhoods,
��j

and
��j}àp�

are
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neighbors, and � � and � � are row instances of 0 � and 0 � respectively. Joining � � and � � will produce

� . Enumeration of the subsets of each of the prevalent co-locations ensures that no spatial co-location

rules with both high prevalence and high conditional probabilities are missed. We then prove that multi-

resolution pruning does not affect completeness. By Lemma 4, the co-location set found is a superset

of the prevalent co-location set on the original dataset. Thus multi-resolution pruning does not falsely

eliminate any prevalent co-location.

Lemma 6 (Correctness): The Co-location Miner is correct.

Proof: We will show only that the row instance of each co-location is correct, as that will imply the cor-

rectness of the participation index values and that of each co-location meeting the user specified threshold.

An instance � � � �����
�
��
�������
����

�
j � of C � � �
	T��
�������
�	
j}àp� � and an instance � � � �����

�
��
�������
����

�
j � of C � �

�
	T�h
�������
�	
j�ãK�h
�	
j}àp� � is joined to produce an instance � � �! � �����
�
��
�������
����

�
j

����

�
j � of Cµ� �
	���
�������
�	
j}àp� � if:

1) all elements of � � and � � are the same except
�}�
�
j

and
���
�
j
; 2)

���
�
j

and
���
�
j

are neighbors. The schema

of � � �! is apparently C , and elements in � � �! are in a proximity neighborhood because � � is a proximity

neighborhood and
���
�
j

is a neighbor of every element of � � .

C. Computational Complexity Analysis

This subsection examines the strategies for generating candidate co-locations, the evaluation of the multi-

resolution pruning strategy, and the effect of noise. First, there are two basic strategies for generating table

instances of candidate co-locations, namely the geometric approach and the combinatorial approach. For

generating size-2 co-locations, the combinatorial approach ends up being the nest-loop join strategy with

an asymptotic complexity of "6.$#
�
5 , while the geometric approach has the CPU cost % of "6.$# f M ¾ # À'&�5 ,

where # is the total number of instances of all features and M is the number of intersections. When the

dataset is sparse, the cost of the combinatorial approach will be much higher. However, when generating

table instances of co-locations of size 3 or more, the combinatorial approach becomes cheaper than the

(
The I/O costs of the geometric approach and the combinatorial approach are similar.
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geometric approach. This is due to its exploitation of the sort-merge join strategy while keeping each table

instance sorted. In a hybrid approach, we pick the cheaper of the two basic strategies in each iteration to

achieve the best overall cost.

Second, let us compare the cost of the Co-location Miner algorithm with and without the multi-resolution

pruning step. Let ��) � )�.1¿Y5 and � � )c.1¿Y5 represent the costs of iteration ¿ of the Co-location Miner algorithm

with and without the multi-resolution pruning.

��) � )�.!¿Y5��Ö� z$*,+
".-
+
" /
�
�
v � v *,+��!01�

j}�b� À � *2+43
�
��v � v

�
z
�65
�
j}àp�1�

�
/
+
".575
z�y]z
� À � *2+43

�
��v � v

�
3h|
�
z
�65
�
j}àp�1�

�
5
z�y{z
�

� � )�.!¿Y5®� � z$*,+
".-
+
" /
�
�
v � v *,+��!01�

j}�b� À � *2+43
�
��v � v

�
z
�65
�
j}àp�1�

�
5
z�y]z
� (1)

In Equation 1, � z$*2+
".-
+
" /
�
�
v � v *,+��!0��

j��b�
represents the cost of apriori gen based on the prevalent co-location

set of size k. Here, resolution is not relevant since apriori gen works on the spatial feature level only.

� *,+$3
�
��v � v

�
z
��5
�
j}àp�#�

�
/
+
".585
z�y{z
�

represents the cost for multi-resolution pruning on the coarse level dataset in

iteration k. After coarse-level pruning, we only need to search the leftover subset of the original dataset.

� *,+$3
�
��v � v

�
3h|
�
z
��5
�
j}àp�#�

�
5
z�y{z
�

represents the cost for fine level instance pruning on the leftover subsets of the

original dataset. In addition, � *2+43
�
��v � v

�
z
��5
�
j�àp�#�

�
5
z�y]z
�

represents the cost for fine level instance pruning on

the original dataset in iteration k.

The bulk of time is consumed in generating table instances and calculating the participation indexes;

thus the ratio can be simplified as:

��) � )�.!¿Y5
� � )�.!¿`5 9 � *2+43

�
��v � v

�
z
�65
�
j}àp�1�

�
/
+
".575
z�y]z
� À � *2+43

�
��v � v

�
3h|
�
z
��5
�
j�àp�#�

�
5
z�y]z
�

� *,+$3
�
��v � v

�
z
��5
�
j}àp�#�

�
5
z�y{z
� (2)

Furthermore, we assume that the average time to generate a table instance in the original dataset is

� - +
":/ .!¿Y5 for iteration k and the average time to generate a table instance in the grid dataset is � / +

".5 .!¿Y5 for

iteration ¿ . The number of candidate co-locations generated by the apriori gen is åa0 j�àp� å and the number

of candidate co-locations after the coarse instance level pruning is åa0 �j�àp� å , Equation 2 can be written as:

��) � )c.1¿Y5
� � )�.1¿Y5 9 åa0 j}àp� å`� � / +

".5 .1¿Y5gÀ åa0;�j}àp� å`�¸� - +
"</ .1¿Y5

åa0 j}àp� åe�¸� - +
"</ .!¿`5 � � / +

".5 .1¿Y5
� - +

":/ .!¿Y5 À
åa0=�j}àp� å
åa0 j}àp� å (3)
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The first term of the ratio is controlled by the “clumpiness” (the average number of instances of the spatial

features per grid cell) of the locations of spatial features. The second term is controlled by the filtering

efficiency of the coarse instance level pruning. When the locations of spatial features are clustered, the

sizes of the fine level table instances are much greater than the sizes of the coarse level table instances

and the time needed to generate fine level table instances is greater than the time needed to generate

coarse level table instances. In our experiments, as described in the next section, we use the parameter

n � ~>3 ) * , which controls the number of instances clumping together for each spatial feature, to evaluate

the first term, and we use the parameter n -
0}�!+�~Xz$* , which represents the possible false candidate ratios, to

evaluate the second term. From the formula, we can see that the co-location miner with multi-resolution

pruning is likely to be more efficient than the co-location miner without multi-resolution pruning when

the locations of spatial features are clustered and the false candidate ratio is high.

V. EXPERIMENTAL PERFORMANCE EVALUATION

Figure 6 describes the experimental setup to evaluate the impact of design decisions on the relative

performance of the co-location miner algorithm. We evaluated the performance of the algorithms with

synthetic and real-world NASA climate datasets. Synthetic datasets are generated using a methodology

similar to methodologies used to evaluate algorithms for mining association rules [2]. Synthetic datasets

allow better control towards studying the effects of interesting parameters.

Neighborhoods

Noise Model
Nco_loc,

Generate 
Co−locations

Generate 

D, d,

Add
Noise

Co−location
Algorithms

Analysis Measurements

Synthetic data sets

Candidate
Algorithms

Metrics

λ1, λ2, overlapm mclump

NASA climate
event data sets

Fig. 6. Experimental Setup and Design

A data-flow diagram of the data generation process is shown in Figure 6. The process began with the
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generation of core co-location subsets of spatial features. To generate a subset of features, we first chose

the size of the subset from a Poisson distribution with mean (
õ �

). Then a set of features for this core

co-location pattern was randomly chosen. For each core co-location, n -
0}�!+�~Xz$* maximal co-locations were

generated by appending one more spatial feature to a core co-location. The larger n -
0��!+!~_z$* is, the more

false candidate apriori gen generates. The size of each table instance of each co-location was chosen

from another Poisson distribution with mean
õ �

. Next, we generated the set of proximity neighborhoods

for co-locations instances using the size of their table instances from the previous step. n � ~>3 ) * point

locations for each feature in the co-location were embedded inside a proximity neighborhood of size
á
.

The locations of proximity neighborhoods were chosen at random in the overall spatial framework. For

simplicity, the shape of the overall spatial framework was a rectangle of size ? � �@? � and the size of

each proximity neighborhood was
á � á . The final step involved adding noise. The model for noise used

two parameters, namely the ratio of noise features L �6-1"]� � � and the number of noise instances E �6-#"]� �
�
.

Noise was added by generating a set of instances of features from a set of noise features disjoint with

the features involving generation of core co-locations and placing the instances at random locations in

the global spatial framework.

TABLE I

PARAMETERS USED TO GENERATE THE SYNTHETIC DATA

Parameter Definition C1 C2A�BDC E�CFB
The number of core co-locations 5 4G ¬
The parameter of the Poisson distribution to define the size of the core
co-locations

5 5

G »
The parameter of the Poisson distribution to define the size of the table
instance of each co-location when H BDE>I,J�K ¨«ª 50 50

L ¬NM L©»
The size of the spatial framework ªPORQ M

ªPO�Q 250
M

1,000S
The size of the square to define a co-location 10 10TPU CWV.XWY Z The ratio the of number of noise features over the number of features
involved in generating the maximal co-locations

.5 .5

TPU CWV.XWY U The number of noise instances 50,000 1,000
H C![\Y^]4E>_$K The number of co-location generated by appending one more spatial

feature for each core co-location
1 1

H B`E>I,J�K The number of instances generated for each spatial feature in a
proximity neighborhood for a co-location

1 1
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The real-world NASA climate data used in our experiments contain monthly measurements of various

monthly numeric climate variables, e.g., precipitation and sea surface temperature, over a period of twelve

years, starting in January 1982. Events, such as drought, wet, and hot, are defined via statistical thresholding

using mean and standard deviation as detailed in [20].

Our experiments were performed on a Sun Ultra 10 workstation with a 440 MHz CPU and 128 Mbytes

memory running the SunOS 5.7 operating system.

A. Comparing Strategies for Generating Table Instances

In this subsection, we compare the geometric, the combinatorial, and the hybrid strategies using synthetic

and real-world NASA climate datasets. The synthetic dataset, generated using parameter values in column

C1 of Table I, used a rectangle spatial framework of size
\ � î � \ � î , a square proximity neighborhood of

size 10 � 10, an average co-location size of 5, an average table instance size of 50 when n �
~>3 ) * �

\
, a

noise feature ratio of 0.5, a noise number of 50,000, and an overlapping degree of 1.

(a) (b)

Fig. 7. (a) Relative Performance of Geometric, Combinatorial, and Hybrid Algorithms on the synthetic dataset. (b) Relative Performance
of Geometric, Combinatorial, and Hybrid Algorithms on the NASA climate dataset.

Figure 7 (a) shows the execution times for the three candidates with the prevalence threshold set to

0.9. In the figure, the first column reports the execution time needed to discover co-locations of size

2. As can be seen, the geometric strategy is faster than the combinatorial strategy for generating size-2
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co-locations. Spatial-join data structures help the geometric algorithm in this step. Also, the remaining

columns in Figure 7 (a) report the total execution time to discover all the co-locations as well as the

time to discover co-locations of size 3 or more, given prevalent co-locations of size 2. In these cases, the

combinatorial algorithm is orders of magnitude faster than the geometric algorithm. A sort-merge join

strategy (e.g apriori-gen [2]) helps the combinatorial algorithm. The hybrid strategy uses the geometric

algorithm for discovering prevalent co-locations of size 2 and the combinatorial algorithm for discovering

larger co-locations. Thus, it is expected to achieve the best overall performance.

Similar trends were also observed for the NASA climate event dataset, as shown in Figure 7 (b). In

this experiment, the prevalence threshold is set to 0.3 and the grid size is 4 by 4. All events are extracted

at the threshold 1.5 using Z-score transformation.

B. Effect of the Filter

The effect of the multi-resolution pruning filter was evaluated with spatial datasets generated using

parameter values shown in column C2 of Table I. We used a rectangular spatial framework of size

AN� � � \ �T�N� , a square proximity neighborhood of size 10 � 10, an average co-location size of 5, an

average table instance size of 50 when n � ~>3 ) * �
\

a noise feature ratio of 0.5, a noise number of 1000,

a core co-location size of 4, and an overlapping degree of 1. Spatial framework sizes were proportional

to the total number of instances to avoid unexpected patterns created by overcrowding of instances. The

overlapping degree ( n -
0}�!+�~Xz$* ) was set from 2 to 8 and the clumpiness measure ( n � ~a3 ) * ) was set from 5

to 20 to generate other datasets. We ran the Co-location Miner with and without multi-resolution pruning

on these datasets. Prevalence thresholds were set to the estimation of the actual prevalences from the

generation of the datasets.

Figure 8 summarizes the performance gain by using multi-resolution pruning. The x-axis represents

the overlap degree, which controls the false candidates generated by apriori gen in the first figure or the

“clumpiness” of locations of instances of spatial feature type in the second figure. The y-axis represents

the ratio of run-time of the Co-location Miner without multi-resolution pruning to the run-time with multi-
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Fig. 8. Performance Ratio a) By Overlap Degree b) By Clumpiness Degree

resolution pruning. The results show that, as the degree of overlap and the number of false candidates

increase, the running time is reduced by a factor of 1 to 4.5.
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Fig. 9. Filter Time Ratio (a) By Overlap Degree (b) By Clumpiness Degree

Figure 9 summarizes the ratio of the computation time for multi-resolution pruning and for prevalence-

based pruning. The x-axis represents the overlap degree or the “clumpiness” of the locations of each feature

type. The overhead of multi-resolution pruning as a fraction of prevalence-based pruning decreases when

the degree of overlap or clumpiness increases. Clumpiness affects the overhead, reducing it from 0.45 to

0.1.
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C. Effect of Noise

The base dataset, generated using parameter values in column C1 of Table I, used a rectangle spatial

framework of size
\ � î � \ � î , a square proximity neighborhood of size 10 � 10, an average co-location

size of 5, an average table instance size of 50 when n � ~a3 ) * �
\
, a noise feature ratio of 0.5, a noise

number of 50,000, and an overlapping degree of 1. Then we increased the noise instances up to 800,000

and measured the performance, as shown in Figure 10. The execution time for discovering co-locations

of size 2 and 3+ are shown in the figure. The results show that noise level affects the execution time

to discover co-locations of size 2 but does not affect the execution time to discover larger co-locations

given co-locations of size 2. In other words, noise is filtered out during the determination of co-locations

of size 2.
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Fig. 10. Noise Effect on the Co-location Miner

VI. DISCUSSION

In this section, we present a detailed comparison of our approach with the closest related work [15]

for pattern semantics and algorithmic ideas.

b Pattern Semantics. Morimoto [15] defined distance-based patterns called k-neighboring class sets.

In this work, the number of instances for a pattern is used as its prevalence measure. However, this

measure may not possess an anti-monotone property if the instances overlap; that is, the number of

instances may increase with the increase of the pattern size. For example, in Figure 11, there are two
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Fig. 11. A spatial dataset with three features represented by circle, square, and triangle. This sample data set is from Morimoto’s paper
[15]. In total, there are eight instances for three features. An edge connects two instances if the distance between these two instances is less
than the distance threshold.

overlapping instances:
�
“2”, “8” � and

�
“1”, “8” � of the set

�
square, triangle � . These two instances

share one common instance
�
“8” � of the triangle feature. Indeed, there is only one instance of the

triangle feature. In other words, the number of instances of the set
�
square, triangle � is greater than

the number of instance of its subset
�
triangle � . To deal with this issue, Morimoto [15] used the

following constraint to get the anti-monotone property.

“any point object must belong to only one instance of a k-neighboring class set.”

As shown in Figure 11, with this constraint, only one instance
�
2, 8 � is specified for the 2-neighboring

class set
�
square, triangle � . However, this constraint may lead to the following difficulty as described

in [15].

“Instances of k-neighboring class set for k c 2 may (be) different depending on the order of the class as added

into the class set. Therefore, the support value of a k-neighboring class set for k c 2 may be slightly different”

Our approach does not need the constraint of “any point object must belong to only one instance”,

since we do not use the number of instances for a pattern as its prevalence measure. We propose the

participation index as the prevalence measure, which possesses a desirable anti-monotone property.

A unique subset of co-location patterns can be specified using a threshold on the participation index

without consideration of algorithmic details such as the order of examination of instances of a co-

location. In addition, the correctness and completeness of co-location mining algorithms can be

defined using the participation index.
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b Algorithmic Ideas. We have noted that a direct performance comparison of our algorithm with the

algorithm by Morimoto [15] is not very meaningful due to the difference in the prevalence measure,

and thus the set of identified patterns. Nonetheless, we provide a comparison of the algorithmic

ideas now. Morimoto [15] provided an iterative algorithm for mining neighboring class sets with

¿6À \
features from those with k features. In his algorithm, a nearest neighbor based spatial join

was applied in each iteration. More specifically, a geometric technique, a voronoi diagram, was

used to take advantage of the restriction that “any point object must belong to only one instance

of a k-neighboring class set”. This algorithm considers a pure geometric join approach. In contrast,

our co-location mining algorithm considers a combinatorial join approach in addition to a pure

geometric join approach to generate size k+1 co-location patterns from size-k co-location patterns.

Our experimental results show that a hybrid of geometric and combinatorial methods results in lower

computation cost than either a pure geometric approach or pure combinatorial approach. In addition,

we apply a multi-resolution filter to exploit the spatial auto-correlation property of spatial data for

effectively reducing the search space.

VII. CONCLUSION AND FUTURE WORK

In this paper, we formalized the co-location problem and showed the similarities and differences between

the co-location rules problem and the classic association rules problem as well as the difficulties in using

traditional measures (e.g. support, confidence) created by implicit, overlapping and potentially infinite

transactions in spatial datasets. We proposed the notion of user-specified proximity neighborhoods in

place of transactions to specify groups of items and defined interest measures that are robust in the face

of potentially infinite overlapping proximity neighborhoods. A key observation was that some properties

of proximity neighborhood cliques obey the downward inclusion property necessary for apriori-based rule

mining. The cardinality of table instances does not obey this property but the proposed participation index

does, allowing interactive pruning. In addition, the participation index has a spatial statistical interpretation

as an upper-bound on the cross- � function, a classical spatial statistical measure of association for binary
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spatial features. In contrast, related approaches [12], [15] have not provided spatial statistical interpretations

of their results.

The Co-location Miner, an algorithm for mining co-location patterns, was presented and analyzed for

correctness, completeness and computation cost. Design decisions in the proposed algorithm were evalu-

ated using theoretical and experimental methods. Empirical evaluation shows that the geometric strategy

performs much better than the combinatorial strategy when generating size-2 co-locations; however, it

becomes slower when generating co-locations with more than 2 features. The hybrid strategy integrates

the best features of the above two approaches. Furthermore, when the locations of the features tend to

be spatially clustered, which is often true for spatial data due to spatial-autocorrelation, the computation

cost of the co-location miner can be significantly reduced with a multi-resolution filter.

Several questions remain open. First, the choice of neighbor relation ) does impact the performance of

the proposed algorithms. We plan to examine statistical methods, e.g. inter-instance distance histograms, to

develop guidelines for the selection of ) . Second, the co-location mining problem should be investigated

to account for extended spatial data types, such as line segments and polygons. Also, we considered only

boolean features here. In the real world, the features can be categorical and continuous. There is a need

to extend the co-location mining framework to handle continuous features. Third, we plan to evaluate the

impact of multi-resolution filtering on overall performance of the proposed algorithms using real world

datasets which exhibit strong spatial auto-correlation. Finally, if locations of features change over time,

it is possible for us to identify some spatio-temporal association patterns. Quantitative association, e.g.,

(A,A), and quantitative association rules, e.g. ( <>, < ), may also be explored in the future.
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