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ABSTRACT
Given a user-specified minimum correlation threshold θ and
a market basket database with N items and T transactions,
an all-strong-pairs correlation query finds all item pairs with
correlations above the threshold θ. However, when the num-
ber of items and transactions are large, the computation cost
of this query can be very high. In this paper, we identify
an upper bound of Pearson’s correlation coefficient for bi-
nary variables. This upper bound is not only much cheaper
to compute than Pearson’s correlation coefficient but also
exhibits a special monotone property which allows prun-
ing of many item pairs even without computing their upper
bounds. A Two-step All-strong-Pairs corrElation queRy
(TAPER) algorithm is proposed to exploit these proper-
ties in a filter-and-refine manner. Furthermore, we provide
an algebraic cost model which shows that the computation
savings from pruning is independent or improves when the
number of items is increased in data sets with common Zipf
or linear rank-support distributions. Experimental results
from synthetic and real data sets exhibit similar trends and
show that the TAPER algorithm can be an order of magni-
tude faster than brute-force alternatives.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Pearson’s Correlation Coefficient, Statistical Computing

1. INTRODUCTION
With the wide spread use of statistical techniques for data

analysis, it is expected that many such techniques will be
made available in a database environment where users can
apply the techniques more flexibly, efficiently, easily, and
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with minimal mathematical assumptions. Our research is
directed towards developing such techniques.

More specifically, this paper examines the problem of com-
puting correlations efficiently from large databases. Correla-
tion analysis plays an important role in many application do-
mains such as market-basket analysis, climate studies, and
public health. Our focus, however, is on computing an all-
strong-pairs correlation query that returns pairs of high posi-
tively correlated items (or binary attributes). This problem
can be formalized as follows: Given a user-specified mini-
mum correlation threshold θ and a market basket database
with N items and T transactions, an all-strong-pairs corre-
lation query finds all item pairs with correlations above the
minimum correlation threshold, θ.

However, as the number of items and transactions in-
creases, the computation cost for an all-strong-pairs corre-
lation query becomes prohibitively expensive. For example,
consider a database of 106 items, which may represent the
collection of books available at an e-commerce Web site.
Answering the all-strong-pairs correlation query from such
a massive database requires computing the correlations of`

106

2

´
≈ 0.5 × 1012 possible item pairs. Thus, it may not be

computationally feasible to apply a brute-force approach to
compute correlations for all half trillion item pairs, particu-
larly when the number of transactions is also large.

Note that the all-strong-pairs correlation query problem is
different from the standard association-rule mining problem
[1, 3, 5, 9, 14]. Given a set of transactions, the objective of
association rule mining is to extract all subsets of items that
satisfy a minimum support threshold. Support measures the
fraction of transactions that contain a particular subset of
items. The notions of support and correlation may not nec-
essarily agree with each other. This is because item pairs
with high support may be poorly correlated while those that
are highly correlated may have very low support. For in-
stance, suppose we have an item pair {A, B}, where supp(A)
= supp(B) = 0.8 and supp(A,B) = 0.64. Both items are
uncorrelated because supp(A,B) = supp(A)supp(B). In
contrast, an item pair {A, B} with supp(A) = supp(B) =
supp(A,B) = 0.001 is perfectly correlated despite its low
support. Patterns with low support but high correlation
are useful for capturing interesting associations among rare
anomalous events or rare but expensive items such as gold
necklaces and earrings.

In this paper, we focus on the efficient computation of
statistical correlation for all pairs of items with high pos-



itive correlation. More specifically, we provide an upper
bound of Pearson’s correlation coefficient for binary vari-
ables. The computation of this upper bound is much cheaper
than the computation of the exact correlation, since this up-
per bound can be computed as a function of the support of
individual items. Furthermore, we show that this upper
bound has a special monotone property which allows elim-
ination of many item pairs even without computing their
upper bounds, as shown in Figure 1. The x-axis in the fig-
ure represents the set of items having a lower level of support
than the support for item xi. These items are sorted from
left to right in decreasing order of their individual support
values. The y-axis indicates the correlation between each
item x and item xi. Upperbound(xi, x) represents the upper
bound of correlation(xi, x) and has a monotone decreas-
ing behavior. This behavior guarantees that an item pair
(xi, xk) can be pruned if there exists an item xj such that
upperbound(xi, xj) < θ and supp(xk) < supp(xj).
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Figure 1: Illustration of the Filtering Techniques.
(The curves are only used for illustration purposes.)

A Two-step All-strong-Pairs corrElation queRy (TAPER)
algorithm is proposed to exploit these properties in a filter-
and-refine manner which consists of two steps: filtering and
refinement. In the filtering step, many item pairs are fil-
tered out using the easy-to-compute upperbound(xi, x) and
its monotone property. In the refinement step, the exact
correlation is computed for remaining pairs to determine
the final query results.

In addition, we have proved the completeness and cor-
rectness of the TAPER algorithm and provided an alge-
braic cost model to quantify its computational savings. As
demonstrated by our experiments on both real and synthetic
data sets, TAPER can be an order of magnitude faster than
brute-force alternatives and the computational savings by
TAPER is independent or improves when the number of
items is increased in data sets with common Zipf [18] or
linear rank-support distributions.

1.1 Related Work
Related literature can be grouped into two categories.

One category has focused on statistical correlation measures.
Jermaine [10] investigated the implication of incorporat-

ing chi-square (χ2) [15] based queries to data cube com-
putations. He showed that finding the subcubes that sat-
isfy statistical tests such as χ2 are inherently NP-hard, but
can be made more tractable using approximation schemes.
Also, Jermaine presented an iterative procedure for high-
dimensional correlation analysis by shaving off part of the
database via feedback from human experts [11]. Finally,

Brin [3] proposed a χ2-based correlation rule mining strat-
egy. However, χ2 does not possess a desired upward closure
property for exploiting efficient computation [7].

In this paper, we focus on the efficient computation of
statistical correlation for all pairs of items with high pos-
itive correlation. Given n items, a traditional brute force
approach computes Pearson’s correlation coefficient for all`
n
2

´
= n(n−1)

2
item pairs. This approach is often implemented

using matrix algebra in statistical software package as the
“correlation matrix” [12] function, which computes Pear-
son’s correlation coefficient for all pairs of columns. This
approach is applicable to but not efficient for the case of
Boolean matrices, which can model market-basket-type data
sets. The approach proposed in this paper does not need to
compute all

`
n
2

´
pairs. In particular, for market-basket-type

data sets with a Zipf-like rank-support distribution, we show
that only a small portion of the item pairs needs to be ex-
amined. In the real world, Zipf-like distributions have been
observed in a variety of application domains, such as retail
data and Web click-streams.

Another category of related work is from the association-
rule mining framework [1], namely constraint-based associa-
tion pattern mining [2, 4, 6, 8, 13]. Instead of using statisti-
cal correlation measures as the constraints, these approaches
use some other measures (constraints), such as support, lift,
and the Jaccard measure, for efficiently pruning the pattern
search space and identifying interesting patterns.

1.2 Overview and Scope
The remainder of this paper is organized as follows. Sec-

tion 2 presents basic concepts. In section 3, we introduce
the upper bound of Pearson’s correlation coefficient for bi-
nary variables. Section 4 proposes the TAPER algorithm.
In section 5, we analyze the TAPER algorithm in the areas
of completeness, correctness, and computation gain. Section
6 presents the experimental results. Finally, in section 7, we
draw conclusions and suggest future work.

The scope of the all-strong-pairs correlation query prob-
lem proposed in this paper is restricted to market basket
databases with binary variables, and the correlation compu-
tational form is Pearson’s correlation coefficient for binary
variables, which is also called the φ correlation coefficient.
Furthermore, we assume that the support of items is be-
tween 0 and 1 but not equal to either 0 or 1. These boundary
cases can be handled separately.

2. PEARSON’S CORRELATION
In statistics, a measure of association is a numerical in-

dex which describes the strength or magnitude of a relation-
ship among variables. Although literally dozens of measures
exist, they can be categorized into two broad groups: or-
dinal and nominal. Relationships among ordinal variables
can be analyzed with ordinal measures of association such
as Kendall’s Tau and Spearman’s Rank Correlation Coef-
ficient. In contrast, relationships among nominal variables
can be analyzed with nominal measures of association such
as Pearson’s Correlation Coefficient, the Odds Ratio, and
measures based on Chi Square [15].

The φ correlation coefficient [15] is the computation form
of Pearson’s Correlation Coefficient for binary variables. In
this section, we describe the φ correlation coefficient and
show how it can be computed using the support measure of
association-rule mining [1].



In a 2 × 2 two-way table shown in Figure 2, the calculation
of the φ correlation coefficient reduces to

φ =
P(00)P(11) − P(01)P(10)p
P(0+)P(1+)P(+0)P(+1)

, (1)

where P(ij), for i = 0, 1 and j = 0, 1, denote the number of
samples which are classified in the ith row and jth column of
the table. Furthermore, we let P(i+) denote the total number
of samples classified in the ith row, and we let P(+j) denote
the total number of samples classified in the jth column.
Thus, P(i+) =

P1
j=0 P(ij) and P(+j) =

P1
i=0 P(ij)

P
0
1

Column Total

1
P (01)

0
P

P
P (+0)

(10)

(00)

Row

(11)

P (+1)

Total

P (0+)

P (1+)

N

A

B

Figure 2: A two-way table of item A and item B.

In the two-way table, N is the total number of samples.
Furthermore, we can transform Equation 1 as follows.

φ =
(N − P(01) − P(10) − P(11))P(11) − P(01)P(10)p

P(0+)P(1+)P(+0)P(+1)

φ =
NP(11) − (P(11) + P(10))(P(01) + P(11))

p
P(0+)P(1+)P(+0)P(+1)

φ =

P(11)

N
− P(1+)

N

P(+1)

Nq
P(0+)

N

P(1+)

N

P(+0)

N

P(+1)

N

Hence, when adopting the support measure of association
rule mining [1], for two items A and B in a market basket
database, we have supp(A) = P(1+)/N , supp(B) = P(+1)/N ,
and supp(A,B) = P(11)/N . With support notations and
the above new derivations of Equation 1, we can derive the
support form of the φ correlation coefficient as shown below
in Equation 2.

φ =
supp(A,B)− supp(A)supp(B)p

supp(A)supp(B)(1− supp(A))(1 − supp(B))
(2)

3. PROPERTIES OF φ CORRELATION
In this section, we present some properties of the φ corre-

lation coefficient. These properties are useful for the efficient
computation of all-strong-pairs correlation query.

3.1 An Upper Bound
In this subsection, we reveal that the support measure is

closely related with the φ correlation coefficient. Specifically,
we prove that an upper bound of the φ correlation coefficient
for a given pair {A, B} exists and is determined only by the
support value of item A and the support value of item B, as
shown below in Lemma 1.

Lemma 1. Given an item pair {A, B}, the support value
supp(A) for item A, and the support value supp(B) for item
B, without loss of generality, let supp(A) ≥ supp(B). The
upper bound upper(φ{A,B}) of the φ correlation coefficient
for an item pair {A, B} can be obtained when supp(A, B) =
supp(B) and

upper(φ{A,B}) =

s
supp(B)

supp(A)

s
1− supp(A)

1− supp(B)
(3)

Proof: According to Equation 2, for an item pair {A, B}:

φ{A,B} =
supp(A,B) − supp(A)supp(B)p

supp(A)supp(B)(1− supp(A))(1− supp(B))

When the support values supp(A) and supp(B) are fixed,
φ{A,B} is monotone increasing with the increase of the sup-
port value supp(A, B). By the given condition supp(A) ≥
supp(B) and the anti-monotone property of the support
measure, we get the maximum possible value of supp(A,
B) is supp(B). As a result, the upper bound upper(φ{A,B})
of the φ correlation coefficient for an item pair {A, B} can
be obtained when supp(A, B) = supp(B). Hence,

upper(φ{A,B}) =
supp(B) − supp(A)supp(B)p

supp(A)supp(B)(1 − supp(A))(1 − supp(B))

=

s
supp(B)

supp(A)

s
1 − supp(A)

1− supp(B)
.

As can be seen in Equation 3, the upper bound of the
φ correlation coefficient for an item pair {A, B} relies only
on the support value of item A and the support value of
item B. In other words, there is no requirement to get the
support value supp(A, B) of an item pair {A, B} for the
calculation of this upper bound. As already noted, when
the number of items N becomes very large, it is difficult to
store the support of every item pair in the memory, since
N(N − 1)/2 is a huge number. However, it is possible to
store the support of individual items in the main memory.
As a result, this upper bound can serve as a coarse filter
to filter out item pairs which are of no interest, thus saving
I/O cost by reducing the computation of the support values
of those pruned pairs.

3.2 Conditional Monotone Property
In this subsection, we present a conditional monotone

property of the upper bound of the φ correlation coefficient
as shown below in Lemma 2

Lemma 2. For a pair of items {A, B}, if we let supp(A) >
supp(B) and fix the item A, the upper(φ{A,B}) of pair {A,
B} is monotone decreasing with the decrease of the support
value of item B.

Proof: By Lemma 1, we get:

upper(φ{A,B}) =

s
supp(B)

supp(A)

s
1 − supp(A)

1 − supp(B)

For any given two items B1 andB2 with supp(A) > supp(B1) >
supp(B2), we need to prove upper(φ{A,B1}) > upper(φ{A,B2}).
This claim can be proved as follows:

upper(φ{A,B1})

upper(φ{A,B2})
=

s
supp(B1)

supp(B2)

s
1− supp(B2)

1− supp(B1)
> 1

The above follows the given condition that supp(B1) >
supp(B2) and (1− supp(B1)) < (1 − supp(B2)).

Lemma 2 allows us to push the upper bound of the φ cor-
relation coefficient into the search algorithm, thus efficiently
pruning the search space.

Corollary 1. When searching for all pairs of items with
correlations above a user-specified threshold θ, if an item list
{i1, i2, . . . , im} is sorted by item supports in non-increasing
order, an item pair {ia, ic} with supp(ia) > supp(ic) can be
pruned if upper(φ{ia, ib}) < θ and supp(ic) ≤ supp(ib).



Proof: First, when supp(ic) = supp(ib), we get upper(φ(ia, ic))
= upper(φ(ia, ib)) < θ according to Equation 3 and the
given condition upper(φ{ia, ib}) < θ, then we can prune the
item pair {ia, ic}. Next, we consider supp(ic) < supp(ib).
Since supp(ia) > supp(ib) > supp(ic), by Lemma 2, we get
upper(φ{ia, ic}) < upper(φ{ia, ib}) < θ. Hence, the pair
{ia, ic} is pruned.

4. THE TAPER ALGORITHM
In this section, we present the Two-step All-strong-Pairs

corrElation queRy (TAPER) algorithm. The TAPER algo-
rithm is a two-step filter-and-refine query processing strat-
egy which consists of two steps: filtering and refinement.

The Filtering Step: In this step, the TAPER algorithm
applies two pruning techniques. The first technique uses
the upper bound of the φ correlation coefficient as a coarse
filter. In other words, if the upper bound of the φ correlation
coefficient for an item pair is less than the user-specified
correlation threshold, we can prune this item pair right way.
The second pruning technique prunes item pairs based on
the conditional monotone property of the upper bound of the
φ correlation coefficient. The correctness of this pruning is
guaranteed by Corollary 1 and the process of this pruning is
illustrated in Figure 1 as previously noted in introduction.
In summary, the purpose of the filtering step is to reduce
false positive item pairs and further processing cost.

The Refinement Step: In the refinement step, the TA-
PER algorithm computes the exact correlation for each sur-
viving pair from the filtering step and retrieves the pairs
with correlations above the user-specified minimum correla-
tion threshold as the query results.

Figure 3 shows the pseudocode of the TAPER algorithm,
including the CoarseF ilter and Refine procedures.

Procedure CoarseF ilter works as follows. Line 1 initial-
ize the variables and creates an empty query result set P .
Lines 2 - 10 use Rymon’s generic set-enumeration tree search
framework [16] to enumerate candidate pairs and filter out
item pairs whose correlations are obviously less than the
user-specified correlation threshold θ. Line 2 starts an outer
loop. Each outer loop corresponds to a search tree branch.
Line 3 specifies the reference item A, and line 4 starts a
search within each branch. Line 5 specifies the target item
B, and line 6 computes the upper bound of the φ correla-
tion coefficient for item pair {A, B}. In line 7, if this upper
bound is less than the user-specified correlation threshold
θ, the search within this branch can stop by exiting from
the inner loop, as shown in line 8. The reason is as follows.
First, the reference item A is fixed in each branch and it has
the maximum support value due to the way we construct the
branch. Also, items within each branch are sorted based on
their support in non-increasing order. Then, by Lemma 2,
the upper bound of the φ correlation coefficient for the item
pair {A, B} is monotone decreasing with the decrease of the
support of item B. Hence, if we find the first target item
B which results in an upper bound upper(φ{A,B}) that is
less than the user-specified correlation threshold θ, we can
stop the search in this branch. Line 10 calls the procedure
Refine to compute the exact correlation for each surviving
candidate pair and continues to check the next target item
until no target item is left in the current search branch.

Procedure Refine works as follows. Line 11 gets the sup-
port for the item pair {A, B}. Note that the I/O cost can

TAPER ALGORITHM
Input: S′: an item list sorted by item supports in

non-increasing order.
θ: a user-specified minimum correlation threshold.

Output: P: the result of all-strong-pairs correlation query.
Variables: L: the size of item set S′.

A: the item with larger support.
B: the item with smaller support.

CoarseFilter(S′, θ) //The Filtering Step
1. L = size(S′), P = ∅
2. for i from 0 to L-1
3. A = S′[i]
4. for j from i+1 to L
5. B = S′[j]

6. upper(φ) =
q
supp(B)
supp(A)

q
1−supp(A)
1−supp(B)

7. if(upper(φ) < θ) then
//Pruning by the monotone property

8. break from inner loop
9. else
10. P=P ∪ Refine(A, B, θ)

Refine(A, B, θ) //The Refinement Step
11. Get the support supp(A, B) of item set {A, B}
12. φ = supp(A,B)−supp(A)supp(B)√

supp(A)supp(B)(1−supp(A))(1−supp(B))

13. if φ < θ then
14. return ∅ //return NULL
15. else
16. return {{A,B}, φ}

Figure 3: The TAPER Algorithm

be very expensive for line 11 when the number of items is
large since we cannot store the support of all item pairs in
the memory. Line 12 calculates the exact correlation coef-
ficient of this item pair. If the correlation is greater than
the user-specified minimum correlation threshold, this item
pair is returned as a query result in line 16. Otherwise, the
procedure returns NULL in line 14.

Example 1. To illustrate the TAPER algorithm, consider
a database shown in Figure 4. To simplify the discussion, we
use an item list {1, 2, 3, 4, 5, 6} which is sorted by item sup-
port in non-increasing order. For a given correlation thresh-
old 0.36, we can use Rymon’s generic set-enumeration tree
search framework [16] to demonstrate how two-step filter-
and-refine query processing works. For instance, for the
branch starting from item 1, we identify that the upper bound
of the φ correlation coefficient for the item pair {1, 3} is
0.333, which is less than the given correlation threshold 0.36.
Hence, we can prune this item pair immediately. Also, since
the item list {1, 2, 3, 4, 5, 6} is sorted by item supports in
non-increasing order, we can prune pairs {1, 4}, {1, 5}, and
{1, 6} by Lemma 2 without any further computation cost. In
contrast, for the traditional filter-and-refine paradigm, the
coarse filter can only prune the item pair {1, 3}. There is
no technique to prune item pairs{1, 4}, {1, 5}, and {1, 6}.
Finally, in the refinement step, only seven item pairs are re-
quired to compute the exact correlation coefficients, as shown
in Figure 4 (c). More than half of the item pairs are pruned
in the filter step even though the correlation threshold is as
low as 0.36.
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-0.218

0
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0.764
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0.667

0.667

0.333

NC

NC

NC

0.5

0.327

NC

NC

0.655

0.5

0.333

0.764

0.509

0.667

Figure 4: Illustration of the filter-and-refine strat-
egy. NC means there is no computation required.

5. ANALYSIS OF THE TAPER ALGORITHM
In this section, we analyze TAPER in the areas of com-

pleteness, correctness, and the computation savings.

5.1 Completeness and Correctness

Lemma 3. The TAPER algorithm is complete. In other
words, this algorithm finds all pairs which have correlations
above a user-specified minimum correlation threshold.

Proof: This lemma proof as well as some following lemma
proofs are presented in our Technical Report [17].

Lemma 4. The TAPER algorithm is correct. In other
words, every pair this algorithm finds has a correlation above
a user-specified minimum correlation threshold.

5.2 Quantifying the Computation Savings
This section presents analytical results for the amount of

computational savings obtained by TAPER. First, we illus-
trate the relationship between the choices of the minimum
correlation threshold and the size of the reduced search space
(after performing the filtering step). Knowing the relation-
ship gives us an idea of the amount of pruning achieved using
the upper-bound function of correlation.

Figure 5 illustrates a 2-dimensional plot for every possible
combination of support pairs, supp(x) and supp(y). If we
impose the constraint that supp(x) ≤ supp(y), then all item
pairs must be projected to the upper left triangle since the
diagonal line represents the condition supp(x) = supp(y).

To determine the size of the reduced search space, let us
start from the upper bound function of correlation.

upper(φ{x,y}) =

s
supp(x)

supp(y)

s
1 − supp(y)

1 − supp(x)
< θ

=⇒ supp(x)(1− supp(y)) < θ2supp(y)(1− supp(x))

=⇒ supp(y) >
supp(x)

θ2 + (1− θ2)supp(x)
(4)

The above inequality provides a lower bound on supp(y)
such that any item pair involving x and y can be pruned us-
ing the conditional monotone property of the upper bound
function. In other words, any surviving item pair that un-
dergoes the refinement step must violate the condition given
in Equation 4. These item pairs are indicated by the shaded
region shown in Figure 5. During the refinement step, TA-
PER has to compute the exact correlation for all item pairs
that fall in the shaded region between the diagonal and the
polyline drawn by Equation 5.

supp(y) =
supp(x)

θ2 + (1− θ2)supp(x)
(5)

As can be seen from Figure 5, the size of the reduced
search space depends on the choice of minimum correlation
threshold. If we increase the threshold from 0.5 to 0.8, the
search space for the refinement step is reduced substantially.
When the correlation threshold is 1.0, the polyline from
Equation 5 overlaps with the diagonal line. In this limit,
the search space for the refinement step becomes zero.

0.4 0.6 0.80.2

0.2

1
0

0

0.4

0.6

0.8

1

Supp(x)

Su
pp

(y
)

θ = 0.5

θ = 0.8

θ = 1

Figure 5: An illustration of the reduced search space
for the refinement step of the TAPER algorithm.
Only item pairs within the shaded region must be
computed for their correlation.

The above analysis shows only the size of the reduced
search space that must be explored during the refinement
step of the TAPER algorithm. The actual amount of prun-
ing achieved by TAPER depends on the support distribu-
tion of items in the database. To facilitate our discussion,
we first introduce the definitions of several concepts used in
the remainder of this section.

Definition 1. The pruning ratio of the TAPER algo-
rithm is defined by the following equation.

γ(θ) =
S(θ)

T
, (6)

where θ is the minimum correlation threshold, S(θ) is the
number of item pairs which are pruned before computing
their exact correlations at the correlation threshold θ, and
T is the total number of item pairs in the database. For
a given database, T is a fixed number and is equal to

`
n
2

´

= n(n−1)
2

, where n is the number of items.

Definition 2. For a sorted item list, the rank-support
function f(k) is a discrete function which present the support
in terms of the rank k.



For a given database, let I = {A1, A2, . . . , An} be an
item list sorted by item supports in non-increasing order.
Then item A1 has the maximum support and the rank-
support function f(k) = supp(Ak), ∀ 1 ≤ k ≤ n, which
is monotone decreasing with the increase of the rank k.
To quantify the computation savings for a given item Aj
(1 ≤ j < n) at the threshold θ, we need to find only the
first item Al (j < l ≤ n) such that upper(φ{Aj,Al}) < θ.

By Lemma 2, if upper(φ{Aj,Al}) < θ, we can guarantee that

upper(φ{Aj ,Ai}), where l ≤ i ≤ n, is less than the correla-
tion threshold θ. In other words, all these n − l + 1 pairs
can be pruned without a further computation requirement.
According to Lemma 1, we get

upper(φ{Aj ,Al}) =

s
supp(Al)

supp(Aj)

s
1− supp(Aj)
1− supp(Al)

<

s
supp(Al)

supp(Aj)
=

s
f(l)

f(j)
< θ

Since the rank-support function f(k) is monotone decreasing
with the increase of the rank k, we get

l > f−1(θ2f(j))

To make the computation simple, we let l = f−1(θ2f(j))+
1. Therefore, for a given item Aj (1 < j ≤ n), the compu-
tation cost for (n − f−1(θ2f(j))) item pairs can be saved.
As a result, the total computation savings of the TAPER
algorithm is shown below in Equation 7. Note that the com-
putation savings shown in Equation 7 is an underestimated
value of the real computation savings which can be achieved
by the TAPER algorithm.

S(θ) =
nX

j=2

{n− f−1(θ2f(j))} (7)

Finally, we conduct computation savings analysis on the
data sets with some special rank-support distributions. Specif-
ically, we consider three special rank-support distributions:
a uniform distribution, a linear distribution, and a general-
ized Zipf distribution [18], as shown in the following three
cases.

CASE I: A Uniform Distribution.
In this case, the rank-support function f(k) = C, where C
is a constant. According to Equation 3, the upper bound of
the φ correlation coefficient for any item pair is 1, which is
the maximum possible value for the correlation. Hence, for
any given item Aj , we cannot find an item Al (j < l ≤ n)
such that upper(φ{Aj,Al}) < θ, where θ ≤ 1. As a result,
the total computation savings S(θ) is zero.

CASE II: A Linear Distribution.
In this case, the rank-support function has a linear distribu-
tion and f(k) = a −mk, where m is the absolute value of
the slope and a is the intercept

Lemma 5. When a database has a linear rank-support
distribution f(k) and f(k) = a −mk (a > 0, m > 0), for a
user-specified minimum correlation threshold θ, the pruning
ratio of the TAPER algorithm increases with the decrease
of the ratio a/m, the increase of the correlation threshold θ,
and the increase of the number of items, where 0 < θ ≤ 1.

CASE III: A Generalized Zipf Distribution.
In this case, the rank-support function has a generalized Zipf
distribution and f(k) = c

kp
, where c and p are constants and

p ≥ 1. When p is equal to 1, the rank-support function has
a Zipf distribution.

Lemma 6. When a database has a generalized Zipf rank-
support distribution f(k) and f(k) = c

kp
, for a user-specified

minimum correlation threshold θ, the pruning ratio of the
TAPER algorithm increases with the increase of p and the
correlation threshold θ, where 0 < θ ≤ 1. Furthermore, the
pruning ratio is independent when the number of items is
increased.

Proof: Since the rank-support function f(k) = c
kp

, the

inverse function f−1(y) = ( c
y

)
1
p . Accordingly,

f−1(θ2f(j)) = (
c

θ2 c
jp

)
1
p =

j

(θ2)
1
p

Applying Equation 7, we get:

S(θ) =
nX

j=2

{n − f−1(θ2f(j))}

= n(n − 1)−
nX

j=2

j

(θ2)
1
p

= n(n − 1)− (n− 1)(n+ 2)

2

1

θ
2
p

Since the pruning ratio γ(θ) = S(θ)
T

and T = n(n−1)
2

,

⇒ γ(θ) = 2− n+ 2

n

1

θ
2
p

Thus, we can derive three rules as follows:

rule 1 : θ ↗ ⇒ n + 2

n

1

θ
2
p

↘ ⇒ γ(θ) ↗

rule 2 : p ↗ ⇒ n+ 2

n

1

θ
2
p

↘ ⇒ γ(θ) ↗

rule 3 : n → ∞ ⇒ lim
n→∞

n+ 2

n

1

θ
2
p

=
1

θ
2
p

Therefore, the claim that the pruning ratio of the TAPER
algorithm increases with the increase of p and the correlation
threshold θ holds. Also, rule 3 indicates that the pruning
ratio is independent when the number of items is increased
in data sets with Zipf distributions.

6. EXPERIMENTAL RESULTS
In this section, we present the results of extensive experi-

ments to evaluate the performance of the TAPER algorithm.
Specifically, we demonstrate: (1) a performance comparison
between the TAPER algorithm and a brute-force approach,
(2) the effectiveness of the proposed algebraic cost model,
and (3) the scalability of the TAPER algorithm.

Experimental Data Sets: Our experiments were per-
formed on both real and synthetic data sets. Synthetic data
sets were generated such that the rank-support distributions
follow Zipf’s law, as shown in Figure 6. Note that, in log-log
scales, the rank-support plot of a Zipf distribution will be
a straight line with a slope equal to the exponent P in the
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Figure 7: TAPER vs. a brute-force approach on the Pumsb, Pumsb∗, and retail data sets.
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Figure 8: The pruning effect of TAPER on Pumsb, Pumsb∗, and retail data sets.

Table 1: Parameters of Synthetic Data Sets.
Data set name T N C P

P1.tab 2000000 1000 0.8 1
P2.tab 2000000 1000 0.8 1.25
P3.tab 2000000 1000 0.8 1.5
P4.tab 2000000 1000 0.8 1.75
P5.tab 2000000 1000 0.8 2
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Figure 6: The plot of the Zipf rank-support distri-
butions of synthetic data sets in log-log scale.

Zipf distribution. A summary of the parameter settings used
to generate the synthetic data sets is presented in Table 1,
where T is the number of transactions, N is the number of
items, C is the constant of a generalized Zipf distribution,
and P is the exponent of a generalized Zipf distribution.

The real data sets were obtained from several different
application domains. Table 2 shows some characteristics of
these data sets. The first five data sets in the table, i.e.,
pumsb, pumsb∗, chess, mushroom, and connect are of-
ten used as benchmark for evaluating the performance of
association rule algorithms on dense data sets. The pumsb

Table 2: Real Data Set Characteristics.
Data set #Item #Record Source
Pumsb 2113 49046 IBM Almaden
Pumsb∗ 2089 49046 IBM Almaden
Chess 75 3196 UCI Repository

Mushroom 119 8124 UCI Repository
Connect 127 67557 UCI Repository

LA1 29704 3204 TREC-5
Retail 14462 57671 Retail Store

and pumsb∗ data sets correspond to binarized versions of a
census data set from IBM1. The difference between them is
that pumsb∗ does not contain items with support greater
than 80%. The chess, mushroom, and connect data sets
are benchmark data sets from UCI machine learning repos-
itory 2. The LA1 data set is part of the TREC-5 collection
(http://trec.nist.gov) and contains news articles from the
Los Angeles Times. Finally, retail is a masked data set
obtained from a large mail-order company.
Experimental Platform: We implemented TAPER using
C++ and all experiments were performed on a Sun Ultra
10 workstation with a 440 MHz CPU and 128 Mbytes of
memory running the SunOS 5.7 operating system.

6.1 TAPER vs. the Brute-force Approach.
In this subsection, we present a performance comparison

between the TAPER algorithm and a brute-force approach
using several benchmark data sets from IBM, a UCI machine
learning repository, and some other sources, such as retail
stores. The implementation of the brute-force approach is

1These data sets are obtained from IBM Almaden at
http://www.almaden.ibm.com/cs/quest/demos.html.
2These data sets and data content descriptions are available
at http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Figure 9: The pruning effect of TAPER on UCI Connect, Mushroom, Chess data sets.

similar to that of the TAPER algorithm except that the
filtering mechanism implemented in the TAPER algorithm
is not included in the brute-force approach.

Figure 7 shows the relative computation performance of
the TAPER algorithm and the brute-force approach on the
pumsb, pumsb∗, and retail data sets. As can be seen, the
performance of the brute-force approach does not change
much for any of the three data sets. However, the execution
time of the TAPER algorithm can be an order of magnitude
faster than the brute-force approach even if the minimum
correlation threshold is low. For instance, as shown in Figure
7 (a), the execution time of TAPER on the pumsb data
set is one order of magnitude less than that of the brute-
force approach at the correlation threshold 0.4. Also, when
the minimum correlation threshold increases, the execution
time of TAPER dramatically decreases on the pumsb data
set. Similar computation effects can also be observed on the
pumsb∗ and retail data sets although the computation
savings on the retail data set is not as significant as it is
on the other two data sets.

To better understand the above computation effects, we
also present the pruning ratio of the TAPER algorithm on
these data sets in Figure 8. As can be seen, the pruning ra-
tio of TAPER on the retail data set is much smaller than
that on the pumsb and pumsb∗ data sets. This smaller prun-
ing ratio explains why the computation savings on retail
is less than that on the other two data sets. Also, Fig-
ure 9 shows the pruning ratio of TAPER on UCI connect,
mushroom, and chess data sets. The pruning ratio achieved
on these data sets are comparable with the pruning ratio we
obtained on the pumsb data set. This indicates that TA-
PER also achieves much better computation performance
than the brute-force approach on UCI benchmark data sets.

6.2 The Effect of Correlation Thresholds
In this subsection, we present the effect of correlation

thresholds on the computation savings of the TAPER al-
gorithm. Recall that our algebraic cost model shows that
the pruning ratio of the TAPER algorithm increases with in-
creases of the correlation thresholds for data sets with linear
and Zipf-like distributions. Figure 8 shows such an increas-
ing trend of the pruning ratio on the pumsb, pumsb∗, and
retail data sets as correlation thresholds increase. Also,
Figure 9 shows a similar increasing trend of the pruning ra-
tio on the UCI benchmark datasets including mushroom,
chess, and connect.

One common feature of all the above data sets is the
skewed nature of their rank-support distributions. As a re-

sult, these experimental results still exhibit a similar trend
as the proposed algebraic cost model although the rank-
support distributions of these datasets do not follow Zipf’s
law exactly.

Table 3: Groups of items for the Retail data set
Group I II III

# Items 4700 4700 4700
# Transactions 57671 57671 57671

a/m 10318 8149 4778
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Figure 10: The plot of the rank-support distribu-
tions of the retail data set and its three item groups
with a linear regression fitting line (trendline).

6.3 The Effect of the Slope m

Recall that the algebraic cost model for data sets with
a linear rank-support distribution provides rules which in-
dicate that the pruning ratio of the TAPER algorithm in-
creases with the decrease of the ratio a/m and the pruning
ratio increases with the increase of the correlation threshold.
In this subsection, we empirically evaluate the effect of the
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Figure 11: Pruning ratios with the decrease of a/m
for data sets with linear rank-support distribution.

ratio a/m on the performance of the TAPER algorithm for
data sets with a linear rank-support distribution.

First, we generated three groups of data from the re-
tail data set by sorting all the items in the data set in
non-decreasing order and then partitioning them into four
groups. Each of the first three groups contains 4700 items
and the last group contains 362 items. The first three groups
are the group data sets shown in Table 3. Figure 10 (a)
shows the plot of the rank-support distribution of the retail
data set and Figure 10 (b), (c), and (d) shows the plots of the
rank-support distributions of three groups of data generated
from the retail data set. As can be seen, the rank-support
distributions of the three groups approximately follow a lin-
ear distribution. Table 3 lists some of the characteristics of
these data set groups. Each group has the same number of
items and transactions but a different a/m ratio. Group I
has the highest a/m ratio and Group III has the lowest a/m
ratio. Since the major difference among these three data
set groups is the ratio a/m, we can apply these data sets
to show the impact of the a/m on the performance of the
TAPER algorithm. Figure 11 shows the pruning ratio of the
TAPER algorithm on the data set with linear rank-support
distributions. As can be seen, the pruning ratio increases as
the a/m ratio decreases at different correlation thresholds.
The pruning ratio also increases as correlation thresholds
are increased. These experimental results confirm the trend
exhibited by the cost model.
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Figure 12: The increase of pruning ratios with the
increase of p for data sets with Zipf-like distribution.

6.4 The Effect of the Exponent p
In this subsection, we examine the effect of the exponent

P on the performance of the TAPER algorithm for data
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Figure 13: The plot of the rank-support distribution
of the LA1 data set in log-log scale.

sets with a generalized Zipf rank-support distribution. We
used the synthetic data sets presented in Table 1 for this ex-
periment. All the synthetic data sets in the table have the
same number of transactions and items. The rank-support
distributions of these data sets follow Zipf’s law but with
different exponent P . Figure 12 displays the pruning ratio
of the TAPER algorithm on data sets with different expo-
nent P . Again, the pruning ratios of the TAPER algorithm
increase with the increase of the exponent P at different cor-
relation thresholds. Also, we can observe that the pruning
ratios of the TAPER algorithm increase with the increase
of the correlation thresholds. Recall that the proposed al-
gebraic cost model for data sets with a generalized Zipf dis-
tributions provides two rules which confirm the above two
observations.
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Figure 14: The effect of database dimensions on
the pruning ratio for data sets with Zipf-like rank-
support distributions.

6.5 The Scalability of TAPER
In this subsection, we show the scalability of the TAPER

algorithm with respect to database dimensions. Figure 13
shows the plot of the rank-support distribution of the LA1
data set in log-log scale. Although this plot does not follow
Zipf’s law exactly, it does show Zipf-like behavior. In other
words, the LA1 data set has an approximate Zipf-like dis-
tribution with the exponent P = 1.406. In this experiment,
we generated three data sets, with 12000, 18000, and 24000
items respectively, from the LA1 data set by random sam-
pling on the item set. Due to the random sampling, the three
data sets can have almost the same rank-support distribu-
tions as the LA1 data set. As a result, we used these three
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Figure 15: The effect of database dimensions on
the execution time for data sets with Zipf-like rank-
support distributions.

generated data sets and the LA1 data set for our scale-up
experiments.

For data sets with Zipf-like rank-support distributions,
Figure 14 shows the effect of database dimensions on the
performance of the TAPER algorithm. As can be seen, the
pruning ratios of the TAPER algorithm show almost no
change or slightly increase at different correlation thresh-
olds. This indicates that the pruning ratios of the TAPER
algorithm can be maintained when the number of items is
increased. Recall that the proposed algebraic cost model
for data sets with a generalized Zipf distribution exhibits a
similar trend as the result of this experiment.

Finally, in Figure 15, we show that the execution time
for our scale-up experiments increases linearly with the in-
crease of the number of items at several different minimum
correlation thresholds.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed using an upper bound of the

φ correlation coefficient, which shows a conditional mono-
tonic property. Based on this upper bound, we designed an
efficient two-step filter-and-refine algorithm, called TAPER,
to search all the item pairs with correlations above a user-
specified minimum correlation threshold. In addition, we
provided an algebraic cost model to quantify the computa-
tion savings of TAPER. As demonstrated by our experimen-
tal results on both real and synthetic data sets, the pruning
ratio of TAPER can be maintained or even increases with
the increase of database dimensions, and the performance of
TAPER confirms the proposed algebraic cost model.

There are several potential directions for future research.
First, we plan to generalize the TAPER algorithm as a stan-
dard algorithm for efficient computation of other measures
of association. In particular, we will examine the potential
upper bound functions of other measures for their monotone
property. Second, we propose to extend our methodology to
answer correlation-like queries beyond pairs of items. Fi-
nally, we will extend the TAPER algorithm to find all pairs
of high negatively correlated items.
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