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Abstract. Hyperclique patterns are groups of objects which are strongly
related to each other. Indeed, the objects in a hyperclique pattern have a
guaranteed level of global pairwise similarity to one another as measured
by uncentered Pearson’s correlation coefficient. Recent literature has pro-
vided the approach to discovering hyperclique patterns over data sets
with binary attributes. In this paper, we introduce algorithms for mining
maximal hyperclique patterns in large data sets containing quantitative
attributes. An intuitive and simple solution is to partition quantitative
attributes into binary attributes. However, there is potential information
loss due to partitioning. Instead, our approach is based on a normaliza-
tion scheme and can directly work on quantitative attributes. In addition,
we adopt the algorithm structures of three popular association pattern
mining algorithms and add a critical clique pruning technique. Finally,
we compare the performance of these algorithms for finding quantitative
maximal hyperclique patterns using some real-world data sets.

1 Introduction

A hyperclique pattern [11, 5] is a new type of association pattern that contains
items which are highly affiliated with each other. More specifically, the pres-
ence of an item in one transaction strongly implies the presence of every other
item that belongs to the same hyperclique pattern. Conceptually, the problem
of mining hyperclique pattern in transaction data sets can be viewed as finding
approximately all-one sub-matrix in a 0-1 matrix where each column may corre-
spond to an item and each row may correspond to a transaction. For the rest of
this paper, we refer to this problem as the binary hyperclique mining problem.

However, in many business and scientific domains, there are data sets which
contain quantitative attributes (e.g. income, gene expression level). How to de-
fine and efficiently identify hyperclique patterns in data sets with quantitative
attributes remains a big challenge in the literature. To this end, the focus of this
paper is to address the quantitative hyperclique pattern mining problem.

To the best of our knowledge, there is no previous work on developing al-
gorithms for finding quantitative maximal hyperclique patterns. Our approach
for mining quantitative hyperclique patterns is built on top of the normalization
scheme [9]. A side effect of the normalization scheme is that there is no support



pruning for single items. To meet with this computational challenge, we design a
clique pruning method to dramatically remove a large number of items which
are weakly related to each other, and thus effectively improving the overall com-
putational performance for finding quantitative hyperclique patterns. We adopt
structures of three popular association pattern mining algorithms including FP-
tree [6], diffEclat [12], and Mafia [3] as the bases of our algorithms. The purpose
of these algorithms is to find quantitative maximal hyperclique pattern, which
is a more compact representation of quantitative hyperclique patterns and is
desirable for many applications, such as pattern preserving clustering [10]. A
hyperclique pattern is a maximal hyperclique pattern if no superset of this pat-
tern is a hyperclique pattern. Finally, we briefly introduce the results of using
our approach on some real-world data sets.

2 Normalization and Quantitative Hyperclique Patterns

Normalization. In this paper, we adopt the normalization method proposed
in [9]. For a vector x =< x1, x2, . . . , xn >, our normalization will turn the vec-
tor as x′ =< x′
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i∈T (min{T (i, j)|j ∈ I})2, where T(i, j) means the
normalized value of item j in the transaction i.

One advantage of this normalization is that the resulting support is a number
between 0 and 1. Such normalization is natural in many domains, e.g., text
documents. However, a side-effect of this is that individual items can no longer
be pruned using a support threshold since all single items have a support of 1.

Quantitative Hyperclique Patterns. A traditional binary hyperclique
pattern [11] is a frequent itemset with the additional constraint that every item
in the itemset implies the presence of the remaining items with a minimum level
of confidence known as the h-confidence. Specifically, we have the following:

Definition 1. A set of attributes, X, forms a hyperclique pattern with a partic-
ular level of h-confidence, where h-confidence is defined as

hconf(X) = min
i∈X

{conf({i} → {X − {i}})} = σ(X)/max
i∈X

{σ(i)} (1)

Where σ is the standard support function [1].

H-confidence, just like standard support, is in the interval [0, 1] and it has the
anti-monotone property; that is, the h-confidence of an itemset is greater than
or equal to that of its any superset. Also, hyperclique patterns have the high
affinity property, i.e., items in a pattern with a high h-confidence are guaranteed
to have a high pairwise similarity as measured by the cosine metric. Additionally,
there is an important relationship between h-confidence of binary hyperclique
patterns and the support function σmin, L2

2
(X). In particular, since σmin, L2

2
(X) is

equivalent to standard support for binary data, we can substitute σmin, L2
2
(X) for

the standard support function σ(X) in Equation 1. It is then interesting to note



that if we normalize all attributes to have an L2 norm of 1, i.e., σmin, L2
2
(i) = 1 for

all items i, then, by Equation 1, hconf(X) = σmin, L2
2
(X), since the normalization

sets the support of all the item to 1, we get maxi∈X{σ(i)} = support(i) =1.
In a nutshell, finding continuous hyperclique patterns first proceeds by nor-

malizing the attributes to have an L2 norm of 1. Then, for each row, we take
the minimum of the specified attributes. Finally, we square each of these values
and add them up. The resulting value is the h-confidence and is a lower bound
on the pairwise cosine similarity.

3 Algorithm Descriptions

Here, we present the algorithms for mining quantitative maximal hyperclique
patterns. Our algorithms are built on top of three state-of-the-art association
pattern mining algorithms including FPTree [6], diffEclat [12], and Mafia [3].

Clique Pruning. We design a clique pruning method for eliminating weakly
related single items. Specifically, we first compute h-confidence of all item pairs
on the normalized data. For each item, we then identify the maximum h-confidence
value among all pairs including this item. Finally, for a user-specified threshold,
we prune all items whose maximum h-confidence is less than this threshold.

Algorithm based on FP-Tree: FP-Tree [6] is a compact tree structure
which allows to identify frequent patterns without generating the candidate pat-
terns. Here, we adopt the FP-tree algorithm for finding quantitative maximal
hyperclique patterns. First, we store float values instead of integer values, since
the support of the normalized data are continuous. Second, the support values
should be squared before added to the FP-Tree since they have an L2 Norm.
Finally, we need to split squared transactions and make the support of preceding
item not less than the successor item, before adding them into the FP-Tree.

Algorithm based on MAFIA. MAFIA [3] is a depth-first searching algo-
rithm for mining maximal frequent patterns. For the data set with continuous
attributes, we change the algorithm to store not only the tidset, but also the
support (normalized data) for each transaction. For this purpose, the algorithm
needs a float vector to store the support information. Each element in the vector
presents the support for each transaction in order.

Algorithm based on DiffEclat. DiffEclat uses a vertical data represen-
tation, called diffset, for efficiently mining maximal frequent patterns[12]. The
diffset only store the different set of transaction ID between the pattern and its
parant pattern. The key modification that we made is to store both transac-
tion IDs and the support information. However, for diffset, we store the support
different between a pattern and its parent pattern instead of the support itself.

4 Experimental Evaluation

Experimental Setup Our experiments were performed on two real-life gene
expression data sets, Colon Cancer and NCI [2, 7]. Table 1 shows some charac-
teristics of these gene expression data sets.



DATASET Colon Cancer NCI

# Gene 2000 9905
# Sample 62 68
# Class 2 9

CLASS NAME # SAMPLE

C1 Tumor 40
C2 Normal 22

Table 1. The Characteristics of Gene Expression Data Sets

A Performance Comparison. Figure 1 (a) shows the running time of three
algorithms on the Colon Cancer data set. As can be seen, when the h-confidence
threshold is less than 0.35, the FP-Tree can be an order of magnitude faster
than Mafia and DiffEclat is not very efficient and become unscalable when the
h-confidence threshold is low. Also, Figure 1 (b) shows the performance of the
proposed algorithms for mining sample patterns on the NCI data set. Similar
to the observation from the Colon Cancer data set, we can also observe that
when the h-confidence threshold is less than 0.5, the FPTree can be an order of
magnitude faster than Mafia. However, MAFIA has a better performance when
the h-confidence threshold is high. Another observation is that the performance
DiffEclat is not scalable when the h-confidence threshold is low.
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Fig. 1. The Performance Comparison on Colon and NCI data sets.
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Fig. 2. The Effect of Clique Pruning on Colon Cancer and NCI Data Sets.

The Effect of Clique Pruning. Figure 2 demonstrate the effect of clique
pruning on Colon and NCI data sets using the algorithm based on Mafia. As



can be seen from both figures, with the increase of the clique pruning ratio,
the running time is reduced significantly. The running time can be orders of
magnitude faster if we target on hyperclique patterns with high affinity. Another
benefit is that, the proposed algorithm can even identify patterns at a very low
level support when the clique pruning ratio is at a certain level.

5 Conclusions

In this paper, we addressed the problem of mining quantitative maximal hyper-
clique patterns in the data sets with continuous attributes. Instead of mapping
continuous attributes into binary attributes, we applied a data normalization
method. Also, we provided algorithms for finding quantitative maximal hyper-
clique patterns. These algorithms are built on top of three state-of-the-art asso-
ciation pattern mining algorithms and have included a clique pruning method to
perform pruning for individual items. Finally, the performance of the algorithms
have been demonstrated using real-world data sets.
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