K-means Clustering versus Validation Measures: A Data
Distribution Perspective

Hui Xiong
Rutgers University

hui@rbs.rutgers.edu

ABSTRACT

K-means is a widely used partitional clustering method.
While there are considerable research efforts to characterize
the key features of K-means clustering, further investigation
is needed to reveal whether and how the data distributions
can have the impact on the performance of K-means clus-
tering. Indeed, in this paper, we revisit the K-means clus-
tering problem by answering three questions. First, how the
“true” cluster sizes can make impact on the performance of
K-means clustering? Second, is the entropy an algorithm-
independent validation measure for K-means clustering? Fi-
nally, what is the distribution of the clustering results by K-
means? To that end, we first illustrate that K-means tends
to generate the clusters with the relatively uniform distri-
bution on the cluster sizes. In addition, we show that the
entropy measure, an external clustering validation measure,
has the favorite on the clustering algorithms which tend to
reduce high variation on the cluster sizes. Finally, our exper-
imental results indicate that K-means tends to produce the
clusters in which the variation of the cluster sizes, as mea-
sured by the Coefficient of Variation (CV), is in a specific
range, approximately from 0.3 to 1.0.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining; 1.5.3 [Pattern Recognition|: Clustering

General Terms

Algorithms, Experimentation
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1. INTRODUCTION

Cluster analysis [9] provides insight into the data by di-
viding the objects into groups (clusters) of objects, such that
objects in a cluster are more similar to each other than to
objects in other clusters. K-means [15] is a well-known and
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widely used partitional clustering method. In the literature,
there are considerable research efforts to characterize the key
features of K-means clustering. Indeed, people have identi-
fied some characteristics of data that may strongly affect
the K-means clustering analysis including high dimension-
ality, the size of the data, the sparseness of the data, noise
and outliers in the data, types of attributes and data sets,
and scales of attributes [20]. However, further investigation
is needed to reveal whether and how the data distributions
can have the impact on the performance of K-means clus-
tering. Along this line, in this paper, we revisit K-means
clustering by answering three questions.

1. How can the distribution of “true” cluster sizes make
impact on the performance of K-means clustering?

2. Is the entropy an algorithm-independent validation mea-
sure for K-means clustering?

3. What is the distribution of the clustering results by
K-means?

The answers to these questions can guide us for the bet-
ter understanding and the use of K-means. This is note-
worthy since, for document data, K-means has been shown
to perform as well or better than a variety of other clus-
tering techniques and has the appealing computational ef-
ficiency [19, 22]. To this end, we first illustrate that K-
means clustering tends to generate the clusters with the
relatively uniform distribution on the cluster sizes. Also,
we show that the entropy measure, an external clustering
validation measure, has the favorite on the clustering algo-
rithms, such as K-means, which tend to reduce the varia-
tion on the cluster sizes. In other words, entropy is not an
algorithm-independent validation measure.

In addition, we have conducted extensive experiments on
a number of real-world data sets from various different ap-
plication domains. Our experimental results show that K-
means tends to produce the clusters in which the variation
of the cluster sizes is in a specific range. This data variation
is measured by the Coefficient of Variation (CV) [2]. The
CV, described in more detail later, is a measure of dispersion
of a data distribution and is a dimensionless number that
allows comparison of the variation of populations that have
significantly different mean values. In general, the larger the
CV value is, the greater the variability in the data.

Indeed, as shown in our experimental results, for the data
sets with high variation on the “true” cluster size (e.g. CV >
1.0), K-means reduces this variation in the resulting cluster
sizes to less than 1.0. Meanwhile, for the data sets with low
variation on the “true” cluster size (e.g. CV < 0.3), K-means



increases the variation slightly in the resulting cluster sizes
to greater than 0.3 . In other words, for these two cases, K-
means produces the clustering results which are away from
the “true” cluster distributions.

2. RELATED WORK

People have investigated K-means clustering from various
perspectives. Many data factors, which may strongly affect
the performance of K-means, have been identified and ad-
dressed. In the following, we highlight some results which
are mostly related to the main theme of this paper.

First, people have studied the impact of the high dimen-
sionality on the performance of K-means and found that the
traditional Euclidean notion of proximity is not very effec-
tive for K-means on high-dimensional data sets, such as gene
expression data sets and document data sets. To meet this
challenge, one research direction is to employ dimensional-
ity reduction techniques, such as Multidimensional Scaling
(MDS) or Singular Value Decomposition(SVD). Another di-
rection is to redefine the notions of proximity, e.g., by the
Shared Nearest Neighbors (SNN) similarity [10].

Second, many clustering algorithms that work well for
small or medium-size data sets are unable to handle larger
data sets. Along this line, a discussion of scaling K-means
clustering to large data sets is provided by Bradley et al.
[1]. Also, Ghosh [5] discussed the scalability of clustering
methods in depth and a more broad discussion of specific
clustering techniques can be found in [16].

Third, outliers and noise in the data can also degrade the

performance of clustering algorithms, especially for prototype-

based algorithms such as K-means. There has been ser-

val techniques designed for handling this problem. For ex-

ample, DBSCAN automatically classifies low-density points

as noise and removes them from the clustering process [4].

Chameleon [12], SNN density-based clustering [3], and CURE
[6] explicitly deal with noise and outliers during the cluster-

ing process.

Finally, the researchers have identified some other data
factors, such as the types of attributes, the types of data sets,
and scales of attributes, which may have the impact on the
performance of K-means clustering. However, in this paper,
we target on understanding the impact of the distribution of
the “true” cluster size on the performance of K-means clus-
tering and the cluster distribution of the clustering results
by K-means. Also, we investigate the relationship between
K-means and the entropy measure.

3. THEJOINTEFFECT OF K-MEANS CLUS-
TERING AND THEENTROPY MEASURE

In this section, we illustrate the effect of K-means clus-
tering on the distribution of the cluster sizes, and show the
relationship between the entropy measure and K-means.

K-means [15] is a prototype-based, simple partitional clus-
tering technique which attempts to find a user-specified k
number of clusters. These clusters are represented by their
centroids (a cluster centroid is typically the mean of the
points in the cluster). The clustering process of K-means
is as follows. First, k initial centroids are selected, where
k is specified by the user and indicates the desired number
of clusters. Every point in the data is then assigned to the
closest centroid, and each collection of points assigned to a
centroid forms a cluster. The centroid of each cluster is then

updated based on the points assigned to the cluster. This
process is repeated until no point changes clusters.

In general, there are two kinds of clustering validation
techniques, which are based on external criteria and internal
criteria respectively. Entropy is a commonly used external
validation measures for K-means clustering [19, 22]. As an
external criteria, entropy uses external information — class
labels in this case. Indeed, entropy measures the purity of
the clusters with respect to the given class labels. Thus, if
every cluster consists of objects with only a single class label,
the entropy is 0. However, as the class labels of objects in a
cluster become more varied, the entropy value increases.

To compute the entropy of a set of clusters, we first cal-
culate the class distribution of the objects in each cluster,
i.e., for each cluster j we compute p;;, the probability that
a member of cluster j belongs to class i. Given this class
distribution, the entropy of cluster j is calculated using the
standard entropy, E; = — Y, pijlog(pi;), where the sum is
taken over all classes and the log is log base 2. The total
entropy, F = 27:1 %Ej, for a set of clusters is computed
as the weighted sum of the entropies of each cluster, where
n; is the size of cluster j, m is the number of clusters, and
n is the number of all data points.

In a similar fashion, we can compute the purity of a set
of clusters. First, we calculate the purity of each cluster.
For each cluster j, we have the purity P; = max;(n})/n;,
where n; is the number of objects in cluster j with class label
1. In other words, P; is the fraction of the overall cluster
size that the largest class of objects assigned to that cluster
represents. The overall purity of the clustering solution is
obtained as a weighted sum of the individual cluster purities
and is given as Purity = ;.":1 %JPj, where n; is the size of
cluster 7, m is the number of clusters, and n is the number
of all data points. In general, we believe that the larger the
value of purity, the better the clustering solution is.

3.1 Dispersion Degree of Data Distributions

Before we describe the joint effect of K-means clustering
and the entropy measure, we first introduce Coefficient of
Variation (CV) [2], which is a measure of dispersion for a
data distribution. CV is defined as the ratio of the standard
deviation to the mean. Given a set of data objects X =

_ ™z

{z1,%2,..., 20}, we have CV = 2, where z = %
n_ (x;—%)2
and s = 72“175_’1 ) .

Please note that there are some other statistics, such as
standard deviation and skewness, which can also be used
to characterize the dispersion degree of data distributions.
However, the standard deviation has no scalability; that is,
the dispersion degree of the original data and the stratified
sample data is not equal as indicated by standard devia-
tion, which does not agree with our intuition. Meanwhile,
skewness cannot catch the dispersion in the situation that
the data are symmetric but do have high variance. Indeed,
CV is a dimensionless number that allows comparison of
the variation of populations that have significantly different
mean values. In general, the larger the CV value, the greater
the variability is in the data.

3.2 The Effect of K-means Clustering on the
Distribution of the Cluster Sizes

In this section, we illustrate the effect of K-means cluster-
ing on the distribution of the cluster sizes.
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Figure 1: Clusters before K-means Clustering.
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Figure 2: Clusters after K-means Clustering.

Figure 1 shows a sample data set with three “true” clus-
ters. The numbers of points in Cluster 1, 2 and 3 are 96, 25
and 25, respectively. In this data, Cluster 2 is much closer
to Cluster 1 than Cluster 3. Figure 2 shows the cluster-
ing results by K-means on this data set. As can be seen,
three natural clusters could not be identified exactly. One
observation is that Cluster 1 is broken: part of Cluster 1 is
merged with Cluster 2 as new Cluster 2 and the rest of clus-
ter 1 forms new Cluster 1. However, the size distribution
of the resulting two clusters is more uniform now. This is
called the “uniform effect” of K-means on “true” clusters
with different sizes. Another observation is that Cluster 3
is precisely identified by K-means. It is due to the fact that
the objects in Cluster 3 are far away from Cluster 1. In
other words, the uniform effect has been dominated by the
large distance between two clusters. From the above, we
can notice that the uniform effect of K-means clustering on
“true” clusters with different sizes does exist. We will fur-
ther illustrate this in our experimental section.

Table 1: A Sample Document Data Set.
A Sample Document Data Set
Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports
Entertainment, Entertainment
Foreign, Foreign, Foreign, Foreign, Foreign
Metro, Metro, Metro, Metro, Metro, Metro, Metro, Metro,
Metro, Metro
Politics

[ CV=1.1187 ]

3.3 The Limitations of the Entropy Measure

In our practice, we have observed that the entropy mea-

sure tends to favor clustering algorithms, such as K-means,
which produce clusters with relatively uniform sizes. We
call this the “biased effect” of the entropy measure. To
illustrate this, we created the sample data set as shown in
Table 1. This data set consists of 42 documents with 5 class
labels. In other words, there are five “true” clusters in this
sample data. The CV value of the cluster sizes of these five
“true” clusters is 1.1187 as presented in the table.

Table 2: Two Clustering Results.

Document Clustering

Clustering I 1: Sports Sports Sports Sports
Sports Sports Sports Sports

2: Sports Sports Sports Sports
Sports Sports Sports Sports

3: Sports Sports Sports Sports
Sports Sports Sports Sports

4: Metro Metro Metro Metro
Metro Metro Metro Metro
Metro Metro

5: Entertainment Entertain-
ment Foreign Foreign Foreign
Foreign Foreign Politics

CV=0.4213

Purity=0.929

Entropy=0.247

1: Sports Sports Sports Sports
Sports Sports Sports Sports
Sports Sports Sports Sports
Sports Sports Sports Sports
Sports Sports Sports Sports
Sports Sports Sports Sports
Foreign

2: Entertainment Entertain-
ment

3: Foreign Foreign Foreign

4: Metro Metro Metro Metro
Metro Metro Metro Metro
Metro Metro Foreign

5: Politics

Clustering I

CV=1.2011

Purity=0.952

Entropy=0.259

For this sample document data set, we assume that we
have two clustering results by different clustering algorithms
as shown in Table 2. In the table, we can observe that the
first clustering result has five clusters with relatively uni-
form sizes. This is also indicated by the CV value, which is
0.4213. In contrast, for the second clustering result, the CV
value of the cluster sizes is 1.2011. This indicates that the
five clusters have widely different cluster sizes for the second
clustering scheme. Certainly, according to entropy, cluster-
ing result I is better than clustering result II (This result is
due to the fact that the entropy measure more heavily pe-
nalizes a large impure cluster.) However, if we look at five
“true” clusters carefully, we find that the second clustering
results are much closer to the “true” cluster distribution and
the first clustering results are actually away from the “true”
cluster distribution. This is also reflected by the CV values.
The CV value of five cluster sizes in the second clustering
results is closer to the CV value of five “true” cluster sizes.

Finally, in Table 2, we can also observe that the purity of
the second clustering results is better than that of the first
clustering results. Indeed, this is contradict to the results by
the entropy measure. In summary, this example illustrates
that the entropy measure has the favorite on the algorithms,
such as K-means, which produce clusters with relatively uni-
form sizes. In other words, if the entropy measure is used
for validating the K-means clustering, the validation results
can be misleading.

4. EXPERIMENTAL EVALUATION

In this section, we present experimental results to show
the impact of data distributions on the performance of K-



Table 4: Some Characteristics of Experimental Data Sets.

Data Set Source 7# of Objects  # of Features # of Classes Min Class Size Max Class Size  CVj
Document Data Set
fbis TREC 2463 2000 17 38 506 0.961
hitech TREC 2301 126373 6 116 603 0.495
sports TREC 8580 126373 7 122 3412 1.022
tr23 TREC 204 5832 6 6 91 0.935
trds TREC 690 8261 10 14 160 0.669
la2 TREC 3075 31472 6 248 905 0.516
ohscal OHSUMED-233445 11162 11465 10 709 1621 0.266
re0 Reuters-21578 1504 2886 13 11 608 1.502
rel Reuters-21578 1657 3758 25 10 371 1.385
kla WebACE 2340 21839 20 9 494 1.004
klb WebACE 2340 21839 6 60 1389 1.316
wap WebACE 1560 8460 20 5 341 1.040
Biomedical Data Set
LungCancer KRBDSR 203 12600 5 6 139 1.363
Leukemia KRBDSR 325 12558 7 15 79 0.584
UCI Data Set
ecoli UCI 336 7 8 2 143 1.160
page-blocks UCI 5473 10 5 28 4913 1.953
pendigits UCI 10992 16 10 1055 1144 0.042
letter UCI 20000 16 26 734 813 0.030
Table 5: Experimental Results for Real-world Data Sets.
Standard Deviation of Sizes Coeflicient of Variation of Sizes
Data Set Average of Sizes STDg STD; CVy CV, DCV=CV,-CV, Entropy

fbis 145 139 80 0.96 0.55 0.41 0.345

hitech 384 190 140 0.50 0.37 0.13 0.630

sports 1226 1253 516 1.02 0.42 0.60 0.190

tr23 34 32 14 0.93 0.42 0.51 0.418

trd5 69 46 30 0.67 0.44 0.23 0.329

la2 513 264 193 0.52  0.38 0.14 0.401

ohscal 1116 297 489 0.27 0.44 -0.17 0.558

re0 116 174 45 1.50 0.39 1.11 0.374

rel 66 92 22 1.39 0.33 1.06 0.302

kla 117 117 57 1.00 0.49 0.51 0.342

klb 390 513 254 1.32  0.65 0.66 0.153

wap 78 81 39 1.04  0.49 0.55 0.313

LungCancer 41 55 26 1.36 0.63 0.73 0.332

Leukemia 46 27 17 0.58  0.37 0.21 0.511

ecoli 42 49 21 1.16  0.50 0.66 0.326

page-blocks 1095 2138 1029 1.95 0.94 1.01 0.146

pendigits 1099 46 628 0.04  0.57 -0.53 0.394

letter 769 23 440 0.03  0.57 -0.54 0.683

Min 34 23 14 0.03 0.33 -0.54 0.146

Max 1226 2138 1029 1.95 0.94 1.11 0.683

Parameters used in CLUTO: -clmethod=rb -sim=cos -crfun=i2 -niter=30

Table 3: Some Notations.

CVy: the CV value on the cluster sizes of the “true” clusters

CV;i: the CV value on the cluster sizes of the clustering results

DCV: the change of CV values before and after K-means clustering

means clustering. Specifically, we demonstrate: (1) the ef-
fect of the “true” cluster sizes on K-means clustering; and
(2) the effect of the entropy measure on the K-means clus-
tering results.

4.1 The Experimental Setup

Experimental Tool. In our experiments, we used the im-
plementation of K-means in CLUTO [11]. For all the exper-
iments, the cosine similarity is used in the objective function
for K-means. Finally, please note that some notations used
in our experiments are shown in Table 3.

Ezxperimental Data Sets. For our experiments, we used
a number of real-world data sets that were obtained from
different application domains. Some characteristics of these
data sets are shown in Table 4. In the table, “# of Classes”
indicates the number of “true” clusters.

Document Data Sets. The f bi s data set was from the
Foreign Broadcast Information Service data of the TREC-
5 collection [21]. The hitech and sports data sets were
derived from the San Jose Mercury newspaper articles that
were distributed as part of the TREC collection (TIPSTER
Vol. 3). Data sets tr23 and tr45 were derived from the
TREC-5[21], TREC-6 [21], and TREC-7 [21] collections.
The | a2 data set was part of the TREC-5 collection [21]
and contains news articles from the Los Angeles Times. The
ohscal data set was obtained from the OHSUMED collec-
tion [8], which contains documents from various biological
sub-fields. The data sets r e0 and r el were from Reuters-
21578 text categorization test collection Distribution 1.0
[13]. The data sets kla and k1b contain exactly the same
set of documents but they differ in how the documents were
assigned to different classes. In particular, kla contains a
finer-grain categorization than that contained in k1b. The
data set wap was from the WebACE project (WAP) [7]; each
document corresponds to a web page listed in the subject
hierarchy of Yahoo!. For all document clustering data sets,
we used a stop-list to remove common words, and the words
were stemmed using Porter’s suffix-stripping algorithm [18].



Biological Data Sets. LungCancer and Leukem a
data sets were from the Kent Ridge Biomedical Data Set
Repository (KRBDSR) which is an online repository of high
dimensional features [14]. The LungCancer data set con-
sists of samples of lung adenocarcinomas, squamous cell
lung carcinomas, pulmonary carcinoid, small-cell lung car-
cinomas and normal lung described by 12600 genes. The
Leukem a data set contains 6 subtypes of pediatric acute
lymphoblastic leukemia samples and 1 group samples that
do not fit in any of the above 6 subtypes, and each is de-
scribed by 12558 genes.

UCI Data Sets [17]. The ecol i data set is about the
information of cellular localization sites of proteins. The
page- bl ocks data set contains the information of 5-type
blocks of the page layout of a document that has been de-
tected by a segmentation process. The pendi gits and
| etter data sets contain the information of handwritings.
The former is the numeric information of 0-9, and the latter
letter information of A-Z.

Figure 3: The Distributions of CV Values before
and after K-means Clustering.
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Figure 4: Illustration of the “Biased Effect” of En-
tropy on All the Experimental Data Sets.
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Figure 5: Illustration of the “Biased Effect” of En-
tropy Using Sample Data Sets from “Pendigits”.

4.2 The Effect of the “True" Cluster Sizes on
K-means Clustering

Here, we illustrate the effect of the “true” cluster sizes
on the results of K-means clustering. In our experiment,
we first used K-means to cluster the input data sets, and
then computed the CV values for the “true” cluster distri-
bution of the original data and the cluster distribution of
the clustering results. The number of clusters k& was set as
the “true” cluster number for the purpose of comparison.

Table 5 shows the experimental results on various real-
world data sets. As can be seen, for the data sets with
large CVy, K-means tends to reduce the variation on the
cluster sizes of the clustering results as indicated by CVj.
This result indicates that, for data sets with high variation
on the cluster sizes of “true” clusters, the uniform effect of
K-means is dominant; that is, K-means tends to reduce the
variation on the cluster sizes in this case.

Another observation is that, for data sets with low CVj
values, K-means increases the variation on the cluster sizes
of the clustering results slightly as indicated by the corre-
sponding CV; values. This result indicates that, for data
sets with very low variation on the cluster sizes of “true”
clusters, the uniform effect of K-means is not significant.
Other factors, e.g., the variant shapes, densities, or the cen-
troid distances between the “true” clusters, tend to be the
dominant factors instead.

Indeed, Figure 3 shows the link relationships between CVy
and CV; for all the experimental data sets listed in Table 4,
and there is a link between CVy and CV; for every data
set. A very interesting observation is that, while the range
of CVy is between 0.03 and 1.95, the range of CV; is re-
stricted into a much smaller range from 0.33 to 0.94. Thus
we empirically have the interval of CV; values: [0.3, 1.0].

4.3 The Effect of the Entropy Measure on the
K-means Clustering Results

In this subsection, we present the effect of the entropy
measure on the K-means clustering results. Figure 4 shows
the plot of entropy values for all the experimental data sets
in Table 4. A general trend can be observed is that while the
differences in CV values before and after clustering increase
as the increase of CV( values, the entropy values tend to



decrease. In other words, there is a disagreement between
DCV and the entropy measure on evaluating the cluster-
ing quality. The entropy measure indicates better quality,
but DCV shows that the distributions of clustering results
are away from the distributions of “true” clusters. This indi-
cates worse clustering quality. The above observation agrees
with our analysis in Section 3 that the entropy measure has
a biased effect on K-means.

To strengthen the above observations, we also generated
two groups of synthetic data sets from two real-world data
sets: pendigits and | etter. To generate data sets from
pendi gi t s, we applied the following sampling strategy: 1)
We first sampled the original data set to get a sample with 10
“true” clusters, each of which contains 1000, 100, 100, - - - , 100
objects, respectively. Then 2) we did random sampling on
the biggest cluster and merged the samples with all the other
objects in the rest 9 clusters to form a data set. We gradually
reduced the sample size to 100, thus obtained various data
sets with decreasing dispersion degrees. On the other hand,
in order to have data sets with increasing dispersion degrees,
3) we did random, stratified sampling to the 9 smaller clus-
ters, and merged the samples with the rest 1000 objects to
form a data set. We gradually reduced the sample size for
each of the 9 clusters to 30, thus got a series of data sets with
increasing dispersion degrees. A similar sampling strategy
was also applied to | ett er. Note that for each dispersion
degree we did sampling 10 times and output the average
values as the sampling results.

Figure 5 shows the corresponding plot of the entropy val-
ues for the synthetic data sets derived from the pendi gits
data set. A similar trend has been observed; that is, the
entropy values and the DCV values do not agree with each
other for clustering validation as the increase of CVq val-
ues. Due to the page limit, we have omitted a similar plot
for the second group of synthetic data sets derived from the
| etter data set.

5. CONCLUSIONS

In this paper, we illustrate the relationship between K-
means and the “true” cluster sizes as well as the entropy
measure. Our experimental results demonstrate that K-
means tends to reduce the variation on the cluster sizes if the
variation of the “true” cluster sizes is high and increase the
variation on the cluster sizes if the variation of the “true”
cluster sizes is very low. In addition, we found that, no
matter what are the CV values of the “true” cluster sizes,
the CV values of the clustering results are typically located
in a much smaller range from 0.3 to 1.0. Finally, we ob-
served that many “true” clusters were disappeared in the
clustering results if K-means is applied for data sets with
high variation on the “true” cluster sizes; that is, K-means
produces the clustering results which are far away from the
“true” cluster distribution. This is actually contradicted
by the entropy measure, since the entropy values are usu-
ally very low for the data sets with high variation on the
“true” cluster sizes. In other words, the entropy measure is
not an algorithm-independent clustering validation measure
and has the favorite on K-means.
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