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As a widely used clustering validation measure, the F-measure has received increased
attention in the field of information retrieval. In this paper, we reveal that the F-measure
can lead to biased views as to results of overlapped clusters when it is used for validating
the data with different cluster numbers (incremental effect) or different prior probabilities
of relevant documents (prior-probability effect). We propose a new ‘‘IMplication Intensity”
(IMI) measure which is based on the F-measure and is developed from a random clustering
perspective. In addition, we carefully investigate the properties of IMI. Finally, experimen-
tal results on real-world data sets show that IMI significantly alleviates biased incremental
and prior-probability effects which are inherent to the F-measure.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Internet provides a vast resource of information and services that are continuing to grow rapidly. Powerful search
engines have been developed to aid in locating relevant documents by categories, contents, or subjects [29]. While tremen-
dous efforts have been made on improving the performances of these search engines, the results returned by the search en-
gines still contain many documents that meet the search criteria but are of no interest to the users. This has led to an
increased interest in developing methods that can help users effectively navigate, summarize, and organize search results.

Efficient and effective text clustering algorithms are now playing an important role in optimizing search performance
[42]. Text clustering provides insight into the documents by dividing the documents into groups (clusters) in a way such that
documents in the same cluster are more similar to each other than documents in different clusters. Text clustering has been
shown to provide an intuitive navigation mechanism by organizing large amounts of information into a small number of
meaningful clusters as well as to greatly improve the retrieval performance by cluster-driven dimensionality reduction
[14], term-weighting, and/or query expansion techniques [41].

Cluster validation is an important step in the clustering process. A common way of cluster validation is to use objective
and quantitative validation measures [11]. In the literature, there have been considerable research efforts on designing and
studying the cluster validation measures [28,11,7,8,25,33,2,20]. Among these available measures, the F-measure is widely
used for cluster validation in document clustering [13,37,34,18]. There are also some other external measures, such as
Entropy, Mutual Information, Variation of Information, Rand index, and C statistic [19,32].

Mehlitz et al. [18] have studied a limitation of the F-measure, which in this paper is denoted as the ‘‘incremental effect” of
the F-measure. In other words, the F-measure tends to assign higher scores to the clustering results containing a large
. All rights reserved.
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number of clusters. This is a latent bias and is not easy to be perceived by the users. In addition, we also find that the F-mea-
sure has the ‘‘prior-probability effect” when it is used for data sets with different prior distributions. Specifically, the F-mea-
sure tends to assign higher scores to the clustering results with higher prior probabilities for the relevant documents. Indeed,
from a random clustering perspective, these two effects reflect the systematic errors of the F-measure and may lead to a
biased validation on the clustering results.

To meet the above critical challenges, we propose a novel ‘‘IMplication Intensity” (IMI) measure which is developed on top
of the F-measure from a random clustering perspective. IMI is essentially a probability measure that shows how well a clus-
tering result matches the result of random clustering. Empirical studies show that IMI is computationally efficient and dem-
onstrate why IMI is capable of handling both the incremental and prior-probability effects of the F-measure.

Finally, we have conducted extensive experiments on real-world document data sets. Results show that, as an enhanced
F-measure, IMI well alleviates the incremental and prior-probability effects of the F-measure. Also, IMI provides better dis-
crimination of clustering results than the F-measure.

The remainder of this paper is organized as follows. Section 2 presents document clustering algorithms and the corre-
sponding cluster validation measures. In Section 3, we illustrate the incremental effect and the prior-probability effect inher-
ent to the F-measure. The notion of the implication intensity measure is introduced in Section 4. Section 5 gives the
experimental results. Finally, we conclude our work in Section 6.

2. Preliminaries

In this section, we review some main issues related to cluster validation in information retrieval. Specifically, we briefly
introduce the text clustering algorithms and the cluster validation measures used in this paper. Table 1 shows some math-
ematical notation used throughout the paper.

2.1. Text clustering algorithms for information retrieval

Information Retrieval (IR) is the science of searching for relevant information [31,16]. And text clustering [3,35,27] has
played an important role in many applications of information retrieval.

A text clustering algorithm partitions a set of documents in a way such that documents in the same group have similar
contents and documents in different groups tend to have different contents. Text clustering has been applied to the docu-
ments retrieved by a search engine so that the information contained in these articles can be presented more effectively
to the users [12,9,41]. Next, we introduce the Frequent Term Based Clustering (FTC), a text clustering algorithm used in this
paper.

The Frequent Term Based Clustering (FTC) algorithm [5] is based on the observation that frequent term sets [1] in the doc-
uments are the key for text clustering. In other words, different text clusters are formed around different frequent term sets.
Along this line, the procedure of FTC can be divided into two phases. In the first phase, FTC discovers all the frequent term
sets by the well-established association mining algorithms such as Apriori [1] and FP-tree [10]. In the second phase, the doc-
uments which contain all the terms in a frequent set are grouped into one cluster. Since one document may contain all the
terms of several frequent sets, it is natural to see that the resulting clusters overlap. The problem is, however, that this over-
lapping is usually too heavy due to the ‘‘downward closure” property of the frequent sets. To cope with this, FTC proposed a
so-called ‘‘Entropy Overlap” (EO) measure to rank the frequent term sets. Let Ci denote cluster i, dj denote the retrieved doc-
ument j, fj denote the number of frequent term sets supported by document j, then the EO of cluster Ci can be computed as
follows:
EOðCiÞ ¼
X
dj2Ci

�1
fj

ln
1
fj

� �
: ð1Þ
Table 1
Mathematical notation.

D The entire document set returned by a search
engine

T The number of documents in D, i.e., T = kDk
P The number of relevant documents in D
c The number of clusters based on which we

evaluate clustering performances
ti The number of documents in cluster i, i = 1, . . . ,c
pi The number of relevant documents in cluster i,

i = 1, . . . ,c
p* The maximum number of relevant documents

among c clusters, i.e., p� ¼maxc
i¼1pi

F(i) The F-measure score for cluster i, i = 1, . . . ,c
F* The maximum F-measure score among c clusters,

i.e., F� ¼maxc
i¼1FðiÞ
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A lower EO value indicates higher rank. This means frequent sets with lower EO values have the priority to form clusters, and
the frequent sets with higher EO values may be discarded if all the documents have been covered by higher-ranked frequent
sets at least once.

FTC has the merit of high efficiency and can generate overlapped clusters. These two characteristics are crucial for the
successful use of text clustering in information retrieval since (1) the documents to be clustered are often in huge volume
with high dimension, and (2) it is natural to read a document containing topics in various domains. There are many other
well-established text clustering algorithms such as Scatter/Gather [6], SuffixTree Clustering [40], and bisecting K-means [24].

2.2. Cluster validation measures for text clustering

In information retrieval, a common validation method for text clustering is the so-called ‘‘Optimal Cluster Validation”
(OCV) strategy [26,17]; that is, the validation system first specifies some cluster validation measures as the validity criterion,
then searches the clusters produced by a clustering tool to find the one with the highest validation score, and finally returns
this score as the validation of the whole clustering. Since OCV has been widely adopted in evaluating information retrieval
systems, we restrict our study to OCV.

Many different measures that can be used in OCV to evaluate cluster qualities have been proposed. Most of them assume a
ground truth notion of relevancy: Every document is known to be either relevant or irrelevant to a particular query. Given
the notations in Table 1, in what follows, we list some of the representative measures we intent to study in this paper.

2.2.1. Recall and precision
These are two of the most widely used measures for information retrieval [25]. Recall (Rec) is the fraction of the retrieved

documents that are relevant to the query. That is
RecðiÞ ¼ pi

P
; 1 6 i 6 c: ð2Þ
It is trivial to achieve a recall of 100% by returning all documents in response to any query. Therefore, recall alone is not
enough but one needs to measure the number of non-relevant documents also, for example, by computing the precision
(Prec) as follows:
PrecðiÞ ¼ pi

ti
; 1 6 i 6 c: ð3Þ
Apparently, precision is the fraction of the documents retrieved within a cluster that are relevant to the user’s information
need.

2.2.2. F-measure
F-measure [13] is the weighted harmonic mean of precision and recall, which provides a reasonable way to integrate the

validation of these two measures, and tends to highlight the smaller one. Typically, we have
FðiÞ ¼ 2
1

PrecðiÞ þ 1
RecðiÞ
¼ 2pi

ti þ P
; 1 6 i 6 c: ð4Þ
This is also known as the F1 measure, because its recall and precision are evenly weighted. The general formula for the F-
measure with the non-negative real b parameter is:
FbðiÞ ¼
ð1þ b2ÞPrecðiÞRecðiÞ

b2PrecðiÞ þ RecðiÞ
¼ ð1þ b2Þpi

ti þ b2P
; 1 6 i 6 c: ð5Þ
Fb was derived by van Rijsbergen [28] which ‘‘measures the effectiveness of retrieval with respect to an user who attaches
b times as much importance to recall as precision”. Besides F1, people often use F0.5 and F2 in which b = 0.5 and 2, respec-
tively. Also, it is noteworthy that Fb is in the range of [0,1].

In summary, the recall, precision and F-measure are the widely used cluster validation measures we focus in this paper.
To avoid complexity, we hereby agree that if there is no confusion, any measure we mentioned in this paper is used with the
OCV scheme. For instance, ‘‘the problem of the F-measure” means ‘‘the problem of the F-measure in the OCV scheme”.

3. Issues with cluster validation measures

In this section, we present some issues with the cluster validation measures in the OCV scheme. We first illustrate it by a
random clustering example.

3.1. The incremental effect of the F-measure

For an application scenario of information retrieval, the search engine returns T documents for the query, among which P
documents are indeed relevant. Then we perform multiple random clusterings on the T documents. That is, we indepen-
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Fig. 1. Maximum F-measure versus c. (T = 100, P = 10, s = {ti = 10j1 6 i 6 c}).
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dently repeat the follow procedure c times: Randomly draw without replacements t documents from the returned T docu-
ments, and form a cluster by these t documents. By doing so, we finally have c clusters that may be overlapped and with the
same size t. We denote the above random clustering as RCðT; P; c; sÞ, where s = {ti = tj1 6 i 6 c}. Next, we exploit OCV with F-
measure to evaluate the results by random clusterings. Fig. 1 shows the results. Note that for each c, we repeated
RCðT; P; c; sÞ 100 times and returned the averaged F-measure values.

As indicated by the circle markers (simulated values) in Fig. 1, if we use the F-measure to evaluate the random clusterings,
the F-measure value tends to increase with the increase of the number of clusters c. This implies that for two clustering re-
sults, given other conditions are the same, the one with more clusters tends to be assigned with a higher score by the OCV
system. In other words, OCV with F-measure tends to ‘‘favor” clustering results containing more clusters, which is a system-
atic but latent feature that could be misleading and not easy to be aware of by the users.

Actually in [17,18], Mehlitz et al. presented a detailed mathematical description of how to compute the expected max-
imum number of relevant documents within each cluster produced by the above random clustering scheme. We reorganize
it into the following proposition:

Proposition 1. Given a random clustering RCðT; P; c; sÞ with s = {ti = tj1 6 i 6 c}, the expected maximum number of relevant
documents among the c clusters is
Eðp�Þ ¼
Xt

j¼0

j

Pc
i¼1

c

i

� �
P

j

� �
T � P

t � j

� �� �i Pj�1
k¼0

P

k

� �
T � P

t � k

� �� �c�i

T

t

� �c

:

ð6Þ
We leave the proof to Appendix A. According to Proposition 1 and Eq. (4), since t and P are two constants, the expected
Maximum F-measure is
EðF�Þ ¼ 2Eðp�Þ
t þ P

:

Thus we can compute a series of E(F*) values given different c values, as shown by the black dash line in Fig. 1. As can be
seen, the expected values well match the simulated values, which further justifies our analysis: OCV with F-measure tends to
favor clustering results with more clusters.

The same problem actually exists for OCV with recall, precision, and Fb, since we can easily have
EðRec�Þ ¼ Eðp�Þ
P

;

EðPrec�Þ ¼ Eðp�Þ
t

;

E F�b
� �

¼ ð1þ b2ÞEðp�Þ
b2P þ t

;

where Rec*, Prec* and F�b are the maximum recall, precision and Fb values among the clusters generated by the random clus-
terings, respectively. This implies that it is the OCV mechanism rather than the measures that brings systematic errors into
the validation process. Indeed, it is not difficult to understand that as the number of clusters increases, we have more



Table 2
Two clusterings: an example.

T P ta pa Fa

D1 1000 800 400 320 0.53
D2 1000 200 400 120 0.40

a Means the value of the optimal cluster.
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chances to get a cluster with a higher score if OCV is used. Hereinafter we call it the ‘‘incremental effect” of the F-measure in
OCV, or simply the incremental effect of the F-measure.

3.2. The prior-probability effect of the F-measure

We further explore whether the prior distributions of the relevant documents can have impact on the cluster validation.
We illustrate it by a simulated example as follows.

Suppose we have two collections of the retrieved documents: D1 and D2. Details of these two data sets and the optimal
clusters produced by some clustering tool are listed in Table 2.

As indicated by Table 2, D1 and D2 both contain 1000 documents, but differ in the number of relevant documents – D1

contains 800 relevant documents but D2 contains only 200 relevant documents. That is to say, the prior-probability of the
relevant documents in D1 is P1/T1 = 0.8, much larger than the one in D2 : P2=T2 ¼ 0:2. Now we assume after clustering, the
optimal cluster sizes for the two data sets are the same as 400, and the numbers of relevant documents in the optimal clus-
ters are 320 and 120, respectively. What is the validation by the F-measure?.

It is not difficult to compute that the F-measure of the clustering on D1 is 0.53, much larger than 0.40, the one of the clus-
tering on D2, as shown in Table 2. This implies that the F-measure tends to favor the first clustering. However, if we compute
the precisions of the two clusterings, we can find that Prec1 = 0.8, a value equal to the prior-probability (0.8), whereas
Prec2 = 0.3, a value higher than the prior-probability (0.2). Thus from a statistical viewpoint, the performance of the first clus-
tering is merely comparable to the performance of a random clustering, and the second clustering is significantly better than
the random clustering. Also note that the second clustering has a higher recall value than the first one. Therefore, from a
statistical point of view, we cannot conclude that the first clustering is better than the second one.

In summary, the F-measure tends to favor the clustering with a higher prior-probability for the relevant documents. Here-
inafter, we call it the ‘‘prior-probability effect” of the F-measure.

3.3. Problem formulation

Here, we formulate the problem as follows:

3.3.1. Problem definition
Design a cluster validation scheme that can address the incremental effect and the prior-probability effect inherent to the

F-measure when validating clustering results in information retrieval.

4. Random clustering validation

In this section, we introduce a novel ‘‘Random Clustering Validation” (RCV) scheme based on the ‘‘implication intensity”
measure for text clustering. And we further enhance RCV by combining implication intensity with the F-measure to form a
‘‘Mixed Validation” (MV) scheme.

4.1. The concept of matched random clustering

Definition 1 (Matched Random Clustering, MRC). Let CðD; T; P; c; sÞ denote a clustering on a document data set D with T
documents and P relevant documents, where the number of clusters is c and s = {tij1 6 i 6 c} represents the cluster sizes. A
random clustering RCðT 0; P0; c0; s0Þ is called the matched random clustering of CðD; T; P; c; sÞ if and only if: (I) T = T0, (II) P = P0,
(III) c = c0, and (IV) s = s0.
Remark. As it is known, a text clustering relies heavily on the attribute values of data sets, but its MRC is attribute irrel-
evant; that is, the four parameters T, P, c and s exclusively decide an unique MRC.

Next, we discuss the function of MRC in measuring the clustering performance of C. Actually, most of us can have the
intuition that the clustering results produced byMRC should be much poorer than the ones produced by C, since C is often
designed purposefully by researchers to fulfill the document clustering tasks, butMRC is simply based on a random mech-
anism. That is to say, the clustering performance of the ‘‘virtual” MRC can serve as the baseline for the measuring of the
‘‘real” C. This leads to our ‘‘random clustering validation” scheme described below.
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4.2. Random clustering validation based on MRC

Now we illustrate how to use MRC to derive the so-called ‘‘Random Clustering Validation” (RCV) for text clustering.
Assume that the clustering CðD; T; P; c; sÞ has an F-measure value F*, and its matched random clustering MRCðT; P; c; sÞ

has an F-measure value f*. Let us consider the probability that the performance of MRC is poorer than the performance
of C, i.e., Prðf � < F�Þ. From a statistical point of view, a higher value of this probability implies a better clustering quality
of C ‘‘tuned” by its MRC. We call this probability the ‘‘IMplication Intensity”, denoted by IMI. In what follows, we describe
how to compute the implication intensity measure.

Proposition 2. Given a clustering CðD; T; P; c; sÞ with the F-measure score F*, and itsMRC with the F-measure score f*, let Ix(a,b)
denote the regularized incomplete beta function, we have
IMI ¼ Prðf � < F�Þ �
Yc

i¼1

ð1� Ixðai; biÞÞ; ð7Þ
where
x ¼ P=T;

ai ¼ d0:5F�ðP þ tiÞe;
bi ¼ ti � ai þ 1:
We leave the proof to Appendix B. It is natural to extend Proposition 2 to a more general Fb case, as shown below.
Proposition 3. Given a clustering CðD; T; P; c; sÞ with the Fb score S*, and its MRC with the Fb score s*, let Ix(a,b) denote the
regularized incomplete beta function, we have
IMI ¼ Prðs� < S�Þ �
Yc

i¼1

ð1� Ixðai; biÞÞ; ð8Þ
where
x ¼ P=T;

ai ¼
S� b2P þ ti
� �
1þ b2

& ’
;

bi ¼ ti � ai þ 1:

Since the proof is similar to the proof of Proposition 2, we omit it here. Now based on the implication intensity measure,

we formulate our random clustering validation scheme as follows:
Definition 2 (Random Clustering Validation, RCV). For a text clustering CðD; T; P; c; sÞ, a random clustering validation takes the
following procedures:

(1) Computing the validation score by OCV with the F-measure.
(2) Computing the implication intensity value by Eq. (8).
(3) Returning the IMI value as the adjusted validation score.

A higher IMI value indicates a better outcome of clustering. Indeed, in contrast to the F-measure in OCV, the implication
intensity in RCV is suitable for the comparison of clustering results with different cluster numbers, since it has been statis-
tically adjusted by the MRC of the clustering.

4.3. Properties of the IMI measure

Here, we would like to explore the precision of the approximations used in deriving the IMI measure, and study the im-
pact of the number of clusters and the prior-probability of relevant documents on the IMI measure.

4.3.1. The precision of the approximations
As formulated in Eq. (B.7), the first approximation in deriving the IMI measure is to replace the sampling without replace-

ment by the sampling with replacement, so that we can use the binomial distribution results.
To know the precision of the approximation, we exploit two sampling strategies to compute the accumulated density

function values of pi (the number of relevant documents in cluster i), as shown in Fig. 2. As can be seen, when T is small rel-
ative to ti, the difference between the two sampling strategies is obvious. However, as T increases, the gap narrows gradually.
Consider that in real-world information retrieval practices, T is often much larger than ti, this approximation is considered
quite acceptable.



Fig. 2. ‘‘Sampling with replacements” versus ‘‘sampling without replacements.” (P = 20, ti = 20).

Fig. 3. ‘‘Incomplete beta function” versus ‘‘binomial distribution.” (T = 100, P = 20).
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The second approximation is the use of the regularized incomplete Beta function instead of the binomial distribution
computation in Eq. (B.13). Since we approximate Pr(pi P ljP,T, ti) by IP/T(l, ti � l + 1), we compare these two quantities along
different l values in Fig. 3. As can be seen, there are two observations: (1) Generally speaking, the difference between the two
quantities is at an acceptable level, and (2) ti serves as a key factor for the scale of the difference. In other words, a higher ti

value tends to increase the gap. Therefore, a not-so-large ti value is beneficial for the precision of the second approximation.
In summary, the two approximations in deriving the implication intensity measure are considered reasonable, since the

number of total documents (T) is often much larger than the cluster size (ti) in real-world applications.

4.3.2. The effect of the cluster number
According to Eq. (8), five parameters, namely c, F*, P/T, P and s, can have impacts on the implication intensity measure.

Among them, the parameters F* and c are our focuses. We thus exploit sensitivity analysis for the two parameters by fixing
the other parameters presented in Eq. (8).

As can be seen in Fig. 4, the implication intensity value increases as the increase of the F-measure value. This certainly
agrees with our intuition, and it implies that the implication intensity has ‘‘inherited” the basic cluster validation ability



Fig. 4. Implication intensity versus F*. (0.15 6 F* 6 0.52, c = 20, P/T = 0.2, P = 20, {ti = 10j1 6 i 6 c}).

Fig. 5. Implication intensity versus c. (1 6 c 6 100, F* = 0.3, P/T = 0.2, P = 20, {ti = 10j1 6 i 6 c}).
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of the F-measure. More importantly, however, there exists a significant difference between the implication intensity and the
F-measure; that is, the implication intensity value decreases as the increase of the number of clusters, as shown in Fig. 5. In
other words, the implication intensity tends to ‘‘penalize” the clustering results involving more clusters, given the other
parameters are the same. This is reasonable, since as the increase of the number of clusters, we tend to pay a higher search
cost to find the documents we really have interests in.

Now let us put together all the impacts introduced by the number of clusters to the implication intensity in real-world
scenarios. According to Figs. 1 and 5, the increase of c results in two effects: one is the increase of the F-measure value, and
the other is the decrease of the implication intensity value. As indicated by Fig. 4, however, the first effect also has a ‘‘side
effect” which tends to increase the implication intensity value. As a result, whether the increase of c can increase or decrease
the value of the implication intensity is determined by the real performances of the clustering tools. That is to say, the use of
the implication intensity measure avoids the systematic error brought by the different cluster numbers when using the F-
measure to compare different clustering results.



Fig. 6. Implication intensity versus P/T. (0.05 6 P/T 6 0.40, c = 20, F* = 0.3, P = 20, {ti = 10j1 6 i 6 c}).
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4.3.3. The effect of the prior-probability
To study the impact of the prior-probability of relevant documents (P/T) on the implication intensity measure, we also

exploit sensitivity analysis.
As indicated by Fig. 6, if other conditions are the same, the implication intensity value decreases with the increase of the

prior probability of the relevant documents. This is quite reasonable, since as the prior-probability increases, we would ex-
pect to see the optimal cluster with a better but not the same clustering quality. This implies that the use of the implication
intensity measure can avoid the prior-probability effect of the F-measure when comparing different clustering results.

4.3.4. The comparison with the Eabs measure
As mentioned in Section 3.1, this work is inspired by Mehlitz et al. [18] in which the authors proposed a new measure

called Eabs to handle the incremental effect of F-measure. In what follows, we study some properties of Eabs and compare Eabs

with IMI.
As indicated by Mehlitz et al. [18], Eabs can be computed as follows:
Eabs ¼ 1� 2PabsRabs

Pabs þ Rabs
ð9Þ
with
Pabs ¼ ðp� � Eðp�ÞÞ=�t; Rabs ¼ ðp� � Eðp�ÞÞ=P; ð10Þ
where E(p*) can be computed by Eq. (6). Note that since we assume that all the clusters have the same size t in Eq. (6), �t here
is the averaged size of the clusters returned. Also, it is noteworthy that Eabs is a negative measure; that is, a higher Eabs value
indicates a worse clustering result.

Next, we explore the relationships between Eabs and the parameters c and P/T. Results are shown in Fig. 7(a) and (b),
respectively. Note that the parameters used for the two figures are the same as Figs. 5 and 6, respectively. As can be seen
in the figures, Eabs shows similar properties as IMI; that is, given other conditions unchanged, Eabs increases with the number
of clusters c and the prior-probability of relevant documents P/T, respectively. In other words, for the simulation cases, Eabs

shows the ability to handle the incremental effect and the prior-probability effect of the F-measure.
Nevertheless, Eabs differs from IMI in various aspects as follows:

� The value range problem: Eabs has a much narrower range than IMI, and its upper bound can be greater than 1, as indicated
by Fig. 7(a) and (b). This implies that Eabs has a poorer discrimination than IMI, and it cannot be used as a normalized
measure (in the range of [0,1]) to compare the clustering results of different document sets.
� The cluster size puzzle: One major problem of Eabs for real-world applications is the existence of unequal cluster sizes. The

computation of E(p*) in Eq. (6) requires a same size for all the clusters returned, which is fine for the simulation cases in
Fig. 7(a) and (b), but may encounter a great problem for real-world cases with clusters in varied sizes. We will detail this
in the experimental section.
� A combinatorial problem: Another major problem of Eabs arises from the computations of the combinative numbers in Eq.

(6). For instance, even for a small scale document size, say T = 100 in the above simulation cases, the computation of T
t

� �
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may often be imprecise. For real-world scenarios with large scale documents, the computation tends to be even infeasible.
More details can be found in the experimental section.

4.4. Mixed validation

Every measure has its own limitations, so does the IMI measure. Indeed, the value range of IMI is not very wide. For in-
stance, let us take two parameters F* and P/T. In Fig. 4, for the parameters in the caption of this figure, the value of IMI is 0
when F* 6 0.20, and 1 when F* P 0.47. In other words, if two clusterings have the F* values below 0.2 or above 0.47, IMI can-
not tell a difference in their clustering performances. A similar case holds for the P/T parameter as shown in Fig. 6. For the
parameters used, IMI cannot make a distinction between the two clusterings with P/T values greater than 0.35.

The above leads to the so-called ‘‘Mixed Validation” (MV) scheme as follows:

Definition 3 (Mixed Validation, MV). For a text clustering CðD; T; P; c; sÞ, the mixed validation takes the following procedures:
(1) Computing the validation score F* by OCV with the F-measure.
(2) Computing the implication intensity value I.
(3) Returning I as the primary score, and F* as the secondary score.
Remark. According to the MV scheme, to compare two clusterings, we first use IMI as the criterion; that is, the one with a
higher IMI value is better. If the two clusterings have the same IMI value, we use the F-measure as the secondary criterion. In
other words, the one with a higher F-measure value is better. If these two criteria yet cannot discriminate the two cluster-
ings, we conclude that their clustering performance is not distinguishable with these two clustering validation measures.

5. Experimental results

In this section, we demonstrate the incremental effect and the prior-probability effect of the F-measure, and show how
the implication intensity measure can address these issues.

5.1. Experimental tools

A number of existing text clustering tools have been used in the experiments. Specifically, we employ the simple FTC
algorithm as described in the preliminary section except that frequent patterns (term sets) are replaced by hyperclique pat-
terns [38,36]. This is due to the reason that the Apriori algorithm usually generates too many nested frequent patterns which
will result in heavily overlapped clusters in the second phase of FTC. By contrast, hyperclique patterns do not contain cross-
support patterns and are suitable for the subsequent clustering tasks. For more details about hyperclique patterns, please
refer to [38,36].

5.2. Experimental data

Three real-world document data sets have been used in the experiments. The data set re0 is from the Reuters-21578 text
categorization collection Distribution 1.0 [15]. For re0, we selected documents that have a single label. The la1 data set was
obtained from the articles of the Los Angeles Times collected in TREC-5 [27]. The categories correspond to the desk of the



Table 3
Experimental data sets.

Data set Source #objects #features #classes Min class size Max class size

re0 Reuters-21578 1504 2886 13 11 608
la1 TREC-5 3204 21,604 6 273 943
wap WebACE 1560 8460 20 5 341

Fig. 8. IMI versus maximum F-measure: the incremental effect. (Parameters for hyperclique patterns: minimum support – 0.05, minimum h-confidence
– 0.8).

J. Wu et al. / Information Sciences 180 (2010) 4353–4369 4363
paper that each article appeared and include documents from the entertainment, financial, foreign, metro, national, and
sports desks. Finally, the data set wap was from the WebACE project [9]. Each document corresponds to a web page listed
in the subject hierarchy of Yahoo! [39]. For the three data sets, we used a stop-list to remove common words, and the words
were stemmed using Porter’s suffix-stripping algorithm [21]. Note that these three are all multi-class data sets. From an
information retrieval viewpoint, we can view them as the retrieved texts by some search engines, and take the documents
from any class as the relevant documents we want. Some characteristics of the data sets are listed in Table 3.

5.3. The incremental effect

Here, we first illustrate the incremental effect of the F-measure. To this end, we generate hyperclique patterns from the
data set re0, and then use FTC to produce overlapped clusters based on the identified hyperclique patterns. Fig. 8 shows the
cluster validation results by having class interest as the relevant class.

As indicated by the dot line in Fig. 8, if we use the F-measure as the validation criterion, the score tends to be higher as the
increase of the number of clusters returned by FTC. This is the incremental effect introduced by the OCV scheme. The neg-
ative impact of the incremental effect lies in two aspects. On one hand, it hinders us from comparing the clustering perfor-
mances in an objective way, since the clustering with more clusters has a higher probability to be selected as the better one.
On the other hand, we have to pay higher cost to search for the relevant documents we really want, since we are facing more
clusters now. For an extreme case that FTC returns tens of hundreds of clusters, we cannot be satisfied with this clustering
even if the F-measure value is near to one. This is one reason why we have introduced the IMI measure.

Also, in Fig. 8, the solid line shows the IMI values. One observation is that the implication intensity measure can penalize
the ‘‘ineffective” increase of the cluster number, e.g., from 5 to 15 or from 35 to 50 without any F-measure gain. Another
observation is that, if the increase of the cluster number can lead to a considerable F-measure gain, the IMI measure can
make a subtle trade-off between the F-measure gain and the search cost. For instance, as the cluster number increases from
20 to 25, the F-measure gain is dominant, so the implication intensity measure acts similarly to the F-measure with a sudden
jump. By contrast, however, since the F-measure gain is relatively small as the increase of the cluster number from 10 to 20,
the implication intensity value drops sharply. Furthermore, comparing the two lines in Fig. 8, it is not difficult to find that the
implication intensity measure has a better discrimination than the F-measure in the range of [0,1]. To further demonstrate
the incremental effect of the F-measure, we also present the validation of the F-measure and the implication intensity on the
reserve class of data set re0, as shown in Fig. 9. A similar situation holds for this case.



Fig. 9. IMI versus maximum F-measure: the incremental effect. (Parameters for hyperclique patterns: minimum support – 0.05, minimum h-confidence
– 0.8).

Fig. 10. Eabs for the incremental effect.

Table 4
Eabs validation for the reserve class.

c 5 10 15 20

Eabs 89.6 4.24E+05 1.59E+09 3.46E+11

4364 J. Wu et al. / Information Sciences 180 (2010) 4353–4369
Next, we proceed to investigate the performance of the Eabs measure. For the interest class of the data set re0, Eabs in-
creases continuously with the number of clusters c, as shown in Fig. 10. This implies that, similar to IMI, Eabs can also correct
the incremental effect. However, one difference is noteworthy; that is, we cannot find any trade-off between the F-measure
gain and the search cost in Eabs. More specifically, unlike IMI, the F-measure gain seems to have no impact on Eabs. One of the
reasons for this observation is that the use of �t may bring some errors into the computations. As can be seen in Fig. 10, �t is not
stable but increases continuously with c. This indicates that the cluster sizes are varied to some extent, and the computation
of E(p*) for Eabs is therefore questionable.

For the case of the reserve class of the data set re0, the resultant Eabs values are abnormal, as shown in Table 4. When
we traced the intermediate results, we found that some variables were overflowed in computing the combinative numbers



Fig. 11. IMI versus maximum F-measure: the prior-probability effect. (Parameters for hyperclique patterns: minimum support – 0.05, minimum
h-confidence – 0.8; FTC parameters: data – la1, #cluster – 10).

Fig. 12. IMI versus maximum F-measure: the prior-probability effect. (Parameters for hyperclique patterns: minimum support – 0.05, minimum
h-confidence – 0.8; FTC parameters: data – wap, #cluster – 10).
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in Eq. (6). Note that the data type of these variables in our C++ codes is ‘‘long double”. This case demonstrates that Eabs may
face difficulties in real-world applications when dealing with extremely large combinative numbers.

In summary, there is the incremental effect if we compare the clustering results with different cluster numbers using the
F-measure. By contrast, the IMI measure has the ability in handling the incremental effect by striking a balance between good
and bad effects of the increase of the cluster number.

5.4. The prior-probability effect

Here, we illustrate the prior-probability effect of the F-measure and how IMI can address this issue.
To show the impact of the incremental effect, we fix the number of clusters as 10 for the data set la1, and observe the

validation results by the F-measure and IMI. Fig. 11 shows the comparation results for class National and class Metro. As
can be seen, according to the F-measure, the clustering of the National documents is worse than the clustering of the Me-
tro documents, which contradicts the validation results by IMI.

If we take a closer look at the clusters produced, we can find that the number of relevant documents in the optimal cluster
of class National is only 23, which is smaller than that of class Metro: 62. However, the prior-probability of class Metro is
0.294, which is much larger than 0.085 - the probability of class National. Therefore, it is much easier to find a cluster con-
taining 62 relevant documents of class Metro than the search for a cluster containing 23 relevant documents of class Na-
tional. As a result, from a statistical point of view, the clustering for the Metro class is indeed worse than the
clustering for the National class, as indicated by the IMI measure in Fig. 11.
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To further demonstrate the prior-probability effect of the F-measure, we also compare the use of F-measure and IMI mea-
sures on the Television and Multimedia classes of the data set wap, as shown in Fig. 12. Again, the significant disagree-
ment of these two measures indicates the prior-probability effect of the F-measure.

In summary, there is the prior-probability effect if we compare the clustering results with different prior probabilities
using the F-measure. However, the IMI measure has the advantage of handling the prior-probability effect by taking into con-
sideration the prior probability of relevant documents.

6. Conclusions

In this paper, we investigated the issues related to overlapping clustering validation in information retrieval. Specifically,
we showed that the F-measure could lead to biased view on the clustering results due to the incremental and prior-proba-
bility effects inherent to F-measure. To address these challenges, we designed an implication intensity (IMI) measure which
shows the probability that the clustering result is better than the matched result by random clustering. Finally, experimental
results have shown the effectiveness of IMI on validating the clustering performances.

As for the future work, we will investigate the use of IMI for validating the clustering results with multiple classes. Also,
the random clustering may not be the best baseline for the validation of text clustering, since the information of data attri-
butes is not considered in random clustering. It is possible to design a better baseline from a Bayesian viewpoint. Finally, we
will study the applicability of IMI to other types of clustering methods. Also, there are many other cluster validation schemes
and measures in the literature which may also have the incremental and prior-probability effects. We plan to carry out a
systematic study on these measures.
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Appendix A. The proof of Proposition 1

Proof. We need to prove that
Prðp� ¼ jÞ ¼

Pc
i¼1

c

i

� �
P

j

� �
T � P

t � j

� �� �i Pj�1
k¼0

P

k

� �
T � P

t � k

� �� �c�i

T

t

� �c :
For a cluster with exactly j relevant documents, the number of combinations for the cluster members is
AðjÞ ¼
P

j

� �
T � P

t � j

� �
:

Accordingly, for a cluster with the number of relevant documents less than j, the combination number for the cluster
members is
BðjÞ ¼
Xj�1

k¼0

P

k

� �
T � P

t � k

� �
:

Therefore, for all the c clusters, the combination number for the situation that there exactly i clusters having j relevant
documents and other clusters having the number of relevant documents less than j is
Cði; jÞ ¼
c

i

� �
AðjÞiBðjÞc�i

:

Since 1 6 i 6 c, the combination number for the maximum number of the relevant documents in any of the c clusters is j
can be computed as
DðjÞ ¼
Xc

i¼1

Cði; jÞ:
Furthermore, it is trivial to show that the combination number for choosing c clusters, where each of them with t docu-

ments, is T
t

� �c

. So we finally have
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Prðp� ¼ jÞ ¼ DðjÞ
T

t

� �c�
:

The above completes the proof. h
Remark. In some practices, the number of relevant documents P may be smaller than the cluster size t, which results in the

error when computing P
j

� �
for A(j) or P

k

� �
for B(j) in Proposition 1. To avoid this error, we simply let P

j

� �
� 0 when P < j.
Appendix B. The proof for Proposition 2

Proof. Let fi denote the F-measure value for cluster i generated by MRC, 1 6 i 6 c, we have
f � ¼max
16i6c

fi: ðB:1Þ
Therefore, according to the definition of OCV and the cluster-independence property of MRC, we have
Prðf � < F�Þ ¼
Yc

i¼1

Pr fi < F�ð Þ: ðB:2Þ
So we turn to the computation of Pr fi < F�ð Þ. Consider that
fi ¼
2pi

P þ ti
; ðB:3Þ
we have
Pr fi < F�ð Þ ¼ Pr pi < 0:5F�ðP þ tiÞð Þ: ðB:4Þ
Let Ai � 0:5F�ðP þ tiÞd e, then
Pr fi < F�ð Þ ¼ Pr
[Ai�1

l¼0

fpi ¼ lg
 !

¼
XAi�1

l¼0

Prðpi ¼ lÞ: ðB:5Þ
According to the classic probability model [23]
Prðpi ¼ lÞ ¼

P

l

� �
T � P

ti � l

� �
T

ti

� � : ðB:6Þ
The computation of the combination numbers in Eq. (B.6) will exceed the capacity of the computational system when T is
very large. Alternatively, we can approximate the computation by the assumption of the sampling with replacement. This
means that pi is in a binomial distribution with the parameters n = ti and p = P/T, i.e., pi � B(ti,P/T). Therefore
Prðpi ¼ lÞ �
ti

l

� �
P
T

� �l

1� P
T

� �ti�l

: ðB:7Þ
If we substitute Eq. (B.7) into Eq. (B.5), we have
Pr fi < F�ð Þ �
XAi�1

l¼0

ti

l

� �
P
T

� �l

1� P
T

� �ti�l

¼ 1�
Xti

l¼Ai

ti

l

� �
P
T

� �l

1� P
T

� �ti�l

: ðB:8Þ
Next, we would like to introduce the so-called ‘‘regularized incomplete Beta function” [30,22] to further simplify the com-
putation in Eq. (B.8). In mathematics, the Euler beta function, also called the Euler integral of the first kind [4], is a special func-
tion defined by
Bðx; yÞ ¼
Z 1

0
tx�1ð1� tÞy�1 dt; ðB:9Þ
for Re(x), Re(y) > 0. The incomplete beta function is a generalization of the beta function that replaces the definite integral of
the beta function with an indefinite integral, as follows:
Bðx; a; bÞ ¼
Z x

0
ta�1ð1� tÞb�1 dt: ðB:10Þ
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Furthermore, the regularized incomplete beta function is defined in terms of the incomplete beta function and the com-
plete beta function. That is
Ixða; bÞ ¼
Bðx; a; bÞ
Bða; bÞ : ðB:11Þ
Working out the integral by using the integration by parts for integer values a and b, one can finally have
Ixða; bÞ ¼
Xaþb�1

j¼a

ðaþ b� 1Þ!
j!ðaþ b� 1� jÞ! xjð1� xÞaþb�1�j

: ðB:12Þ
Now we turn back to the computation of Pr fi < F�ð Þ in Eq. (B.8). Let x = P/T, ai = Ai, and bi = ti � Ai + 1, according to Eq.
(B.12), the probability Pr fi < F�ð Þ in Eq. (B.8) can be simplified as
Pr fi < F�ð Þ � 1� Ixðai; biÞ: ðB:13Þ
If we substitute Eq. (B.13) into Eq. (B.2), Eq. (7) follows. Thus we complete the proof. h
Remark. The computation of the IMI measure makes two approximations: One is to relax the requirement of sampling with-
out replacement to the sampling with replacement, and the other is to make use of the regularized incomplete beta function
to compute the partially accumulated binomial distribution. In addition, we should point out that the parameters ai and bi in
Eq. (7) must be positive integers in the regularized incomplete beta function. Since ai ¼ 0:5F�ðP þ tiÞd e, we know that ai > 0 in
most cases. As to bi ¼ ti � 0:5F�ðP þ tiÞd e þ 1, however, the situation is more complex. Let ci � ti � 0.5F*(P + ti) + 1, it is easy to
know bi 6 ci. Therefore, if we let ci 6 0, i.e., F* P 2(ti + 1)/(P + ti) = 2 � 2(P � 1)/(P + ti), we have bi 6 0, which violates the
parameter requirement of the incomplete beta function. And this violation happens when F* is large enough or ti is small
enough, which can happy for real-world applications. To avoid this problem, we can simply let Ix(ai,bi) = 0 if bi 6 0.
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