
Direction Clustering for Characterizing Movement Patterns

Wenjun Zhou, Hui Xiong, Yong Ge

MSIS Department, Rutgers University

Newark, NJ 07102 USA

hxiong@rutgers.edu, {yongge,wjzhou}@pegasus.rutgers.edu

Jannite Yu, Hasan Ozdemir, K.C. Lee

Panasonic System Solutions Development Center of USA

Princeton, NJ 08540 USA

{jyu,timucin,kclee}@research.panasonic.com

Abstract

The increasing availability of motion data creates un-

precedent opportunities to change the paradigm for charac-

terizing movement patterns. While cluster analysis is usu-

ally a useful starting point for understanding and exploring

data, conventional clustering algorithms are not designed

for handling trajectory data. Therefore, in this paper, we

propose a direction-based clustering (DEN) method, which

aims to group trajectories by moving directions. A key de-

velopment challenge is how to transform direction informa-

tion into a data format which is appropriate for traditional

clustering algorithms to explore. To this end, we partition

the space into grids and turn the movement statistics in a

grid into a vector which represents the probabilities of mov-

ing directions within the grid. With such data transforma-

tion, we are able to develop a grid-level K-means cluster-

ing method for direction clustering. We illustrate the use of

DEN for showing movement patterns and detecting outliers

on real-world data sets.

Keywords: Clustering, Data mining, Outlier detection,

Trajectory analysis

1. Introduction

Advances in sensors, wireless communication, and in-

formation infrastructures such as GPS, WiFi, Video Surveil-

lance, and RFID have enabled us to collect and process real-

time massive amounts of fine-grained location traces (tra-

jectory data) from multiple sources. For instance, from GPS

trace data, a vehicle’s speed and direction of driving can be

obtained. Also, the movement of people or cargos within

a building or a given area can be observed from the digi-

tal traces produced by door access control, video monitors,

or RFID tags. Indeed, there is an opportunity to explore

location traces to automatically discover useful knowledge,

such as identifying suspicious activities, understanding the

behaviors of drivers as well as the patterns of transporta-

tion networks under extreme conditions, which in turn de-

livers intelligence for real-time decision making in various

fields, such as urban planning, cargo shipment, transporta-

tion management, and video surveillance.

In recent years, recognition of the importance of clus-

tering trajectories has produced a growing body of re-

search [5, 8, 9, 14], aiming to enhance people’s understand-

ing about the movement patterns. Several issues, however,

have not been well addressed by those studies. First, the

above mentioned work for clustering trajectories have the

hidden assumption that a complete trajectory belonging to

an individual user is available for data analysis. In reality,

location traces will be anonymized before they are shared

with the researchers for data analysis. For an anonymous

location dataset, it is usually not possible for knowing com-

plete trajectories. In most cases, only a collection of di-

rected line segments are available for data analysis. Sec-

ond, the direction information is not fully utilized in the

current cluster analysis. However, the direction information

usually indicates the users’ real interests. Studying mov-

ing directions will help us better understand movement be-

haviors. Also, the direction information can help to reveal

some movement patterns which are difficult to be captured

by other geographic information. For instance, it is possible

to capture local movement outliers whose location traces

are co-located with a large group of other location traces,

but have a reverse direction.

In response to the issues noted above, in this paper, we

exploit the direction information of each movement and

propose a direction-based clustering (DEN) method which

aims to divide all the movements into clusters in a way

such that movements in a cluster have similar directions and

movements in different clusters have different directions. A

key development challenge for direction clustering is how

to transform direction information into a data format which

is appropriate for use in a traditional clustering framework.

Along this line, we partition the space into grids and intro-

duce a probabilistic model to turn the direction information

of line segments in a grid into a vector with eight values to

indicate the probabilities of moving towards eight directions

within the grid. With this data transformation, we are able
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to develop a grid-level constrained clustering method based

on K-means for direction clustering.

To illustrate the utility of DEN, we evaluate our direction

clustering approach on real-world data sets. As a case study,

we first exploit DEN for finding within-cluster outlier traces

which have reverse directions with most other traces in the

same cluster. As described above, before location traces are

published, the anonymization scheme will remove unique

ID associated with each trace. However, within-cluster out-

lier traces identified by our direction clustering method al-

low people to reconstruct a location trace belonging to an

individual user. This raises a new privacy-preserving chal-

lenge for publishing data that contain outliers.

(a) morning patterns (b) evening patterns

Figure 1. Sample movement patterns.

Moreover, we show different clustering patterns at differ-

ent time periods. For instance, Figure 1 shows two direction

clustering results in the morning and evening for the same

monitoring area. In the figure, we can clearly observe that

the moving trends in the morning are opposite to the moving

patterns in the evening.

2. The DEN Problem

To illustrate the usefulness of direction-based clustering,

we discuss the following examples, as shown in Figure 2.

Trj 1 Trj 2

Trj 3
Trj 4

Trj 5

Figure 2. A motivating example: Scenario I.

In Figure 2, there are 5 trajectories, all of which have

similar shapes and are located closely. If we do not consider

direction information, these trajectories can be clustered to-

gether based on Euclidean distance. However, Trj1 would

be an obvious outlier, considering its direction is opposite

to all other trajectories. This indicates that distance-based

trajectory outlier detection methods cannot capture this type

of direction-based outliers.

Furthermore, real-world location traces will be

anonymized before these traces become available for

Trj 1 Trj 2

Trj 3
Trj 4

Trj 5

Figure 3. A motivating example: Scenario II.

use. In other words, we may not have complete trajectories

as shown in Figure 2 to use. Indeed, the anonymization

algorithms usually go beyond removing the identity infor-

mation of location traces [3, 7]. Existing anonymization

algorithms also remove substantial number of line segments

from location traces to avoid the reconstruction of any

complete trajectory belonging to a user. However, as shown

in Figure 3, the direction-based clustering algorithms

allow us to identify direction-based outliers, which in

turn, lead to reconstructing traces belonging to the outlier

users. As a result, these existing anonymization techniques

cannot provide sufficient protection to the privacy of the

outlier users and their behaviors can be captured as the

direction-based outliers. The above example motivates the

study of the direction-based clustering (DEN) problem,

which is formally defined as follows.

2.1. Problem Statement

The direction-based clustering (DEN) problem can be

formulated as follows. Given a specific time window T ,

a finite monitoring area A, and a set of time-stamped

data points P recorded in the monitoring area, where

P = {(t, x, y)|t ∈ T , (x, y) ∈ A}. The objective of

DEN is to partition the monitoring area A into regions

A1,A2, . . . ,Ak, such that the moving directions in the

same region are more similar to each other than moving

directions in different regions. In the DEN problem, the

identity information of location traces may not be available.

Also, some portion of observed traces may be removed by

the anonymization algorithms to protect privacy. However,

in the most cases, the direction information for each move-

ment is available after the data anonymization.

2.2. Related Work

Related work can be roughly grouped into two cate-

gories. In the first category, people are more interested in

finding interesting patterns in trajectory data by exploring

unsupervised learning methods. For example, Giannotti et

al. [6] proposed mining frequent behaviors in trajectory

data, which are called T-patterns. Also, the ROAM [10]

framework transforms original trajectories into a sequence

of pattern fragments named motifs, and takes a rule-based

approach to discover patterns at multiple levels. In addition,

Lee et al. [9] proposed a partition-and-group framework for

trajectory clustering. Finally, treating trajectories as docu-

ments, and positions as words, [14] proposes co-clustering

trajectories and semantic regions with a Bayesian model
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called Dual Hierarchical Dirichlet Process (Dual-HDP ).

In the second category, people are interested in trajectory

classification. For instance, Lee et al. [8] proposed ex-

tracting discriminative features by clusters of trajectory seg-

ments, first by geographical regions, if they are identified as

homogeneous; and then by distances among trajectory seg-

ments using the same distance measure as in [9].

In summary, the related work mentioned above assume

that complete traces of moving objects are available. In re-

ality, the identity information of location traces may not be

available. Also, some portion of observed traces may be re-

moved by the anonymization algorithms to protect privacy.

In contrast, the study in this paper provides a creative way to

explore direction information and introduces a new way for

direction clustering, even in the anonymized motion data.

Furthermore, the clustering results can also be used to iden-

tify local and regional outliers.

3. Direction Vectors

In this section, we illustrate how to transform direction

information of the movements into a data format which is

appropriate for use in a traditional clustering framework. 1

Let us consider a scenario that a number of moving ob-

jects are observed in a fixed region within a certain time

window. For many other cases, even if the object IDs are

not available, we still have the direction information for

each movement, as shown in Figure 4 (a). Then we trans-

form the direction information into vectors by discretizing

the continuous direction information as well as the continu-

ous space. Specifically, the monitoring area is divided into

small grids.

(a) grid counting

8

1
23

4

5

6 7

(b) direction discretization

Figure 4. Illustrations of data preprocessing.

Once we have partitioned the space into grids, we fur-

ther partition each grid into 8 direction bins, as shown in

Figure 4(b), the angle of each bin has a range of π/4.2

Next, we will transform each grid into a direction vector

1Some ideas illustrated in this paper were filed as patent in July, 2006

and are currently patent pending.
2Note that we have eight bins for each grid in this paper. However, it is

possible to have a different number of bins for each grid.

g = (p1, p2, p3, . . . , p8), where pi is the probability of mov-

ing towards direction i within this grid. To compute pi, we

first count the frequency fi of moving objects which have

passed this grid and has the direction along the direction

i. For example, in Figure 4(a), for the whole monitoring

are, a vector is across three grids (1, 1), (1, 2), and (2, 2)
along the direction 1 as shown in Figure 4(b). Therefore,

the frequency of direction 1 will increase by one for all these

three grids. Then, pi = fi/
∑8

k=1 fk. Therefore, pi is the

probability of all the moving objects towards the direction i
within this grid.

4. Direction Clustering

In the above section, we have partitioned the monitoring

area into grids. Each grid contains a collection of move-

ments and the direction information of all the movements

within a grid has been transformed into a vector by a prob-

abilistic model. In other words, the task of clustering tra-

jectories based on their direction information can be trans-

formed to cluster the grids which have been represented

by vectors with eight values to indicate the probabilities of

moving towards eight directions within the grid. Once the

direction information has been transformed into vectors, we

can exploit constrained K-means clustering on these vectors

and produce a grid-level direction clustering.

4.1. The Distance Measure

We introduce two ways to select the representative unit

vectors in each bin: the simple form and the weighted form.

Given two direction vectors, g1 = (p1
1, p

1
2, . . . , p

1
8) and g2 =

(p2
1, p

2
2, . . . , p

2
8), we have th following difinitions.

Definition 1 (Simple Distance) D(g1, g2) =
∑8

k=1 |q
1
k −

q2
k|, where qj

k =
∑8

i=1 pj
i · cos(vi, vk), j ∈ {1, 2}.

Definition 2 (Weighted Distance) D(g1, g2) =
∑8

k=1 |q
1
k−

q2
k|·cos(θ/2), where qj

k =
∑8

i=1 pj
i ·cos(v

j
i , v

j
k), j ∈ {1, 2}

and θ = ∠(v1
k, v2

k).

4.2. Constraint­Based K­Means Clustering

K-means [11] is a prototype-based, simple partitional

clustering technique which attempts to find the user-

specified K clusters. These clusters are represented by their

centroids (a cluster centroid is typically the mean of the data

objects in that cluster). K-means has an objective function:

Fkmeans =
∑

xi∈X

‖xi − µli‖
2 (1)

where li(li ∈ {1, · · · ,K}) is the cluster assignment of point

xi and µli represents the centroid of cluster li.
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The performances of K-means clustering can be im-

proved by some enforced appropriate constraints [12]. In

general, there are two types of constraints: CANNOT-LINK

and MUST-LINK. MUST-LINK means that two objects

must be in the same cluster, while CANNOT-LINK means

that two objects cannot be in the same cluster. In the real

world, this type of partial pairwise constraint information

is more practical than providing class labels, because true

class labels may be unknown. It can be easier to generate

constraints according to background knowledge of the do-

main. For example, speaker identification in a conversation

[1] and lane-finding from GPS data [13].

With constraint information, we can have the objective

function of constrained K-means. Let us use M be a set

of must-link pairs where (xi, xj) ∈ M indicates xi and xj

should be within the same cluster. Also we use C to denote a

set of cannot-link pairs where (xi, xj) ∈ C indicates xi and

xj should be in different clusters. Let W = wij and W̄ =
w̄ij be penalty cost for violating the constraints in M and

C respectively. Then the objective function of constraint-

based clustering can be formulated [2] as the following:

Fconstr =
∑

xi∈X

‖xi − µli‖
2 +

∑

(xi,xj)∈M

wijI[li 6= lj ]

+
∑

(xi,xj)∈C

w̄ijI[li = lj ] (2)

where I is the indicator function, I[true] = 1 and

I[false] = 0. Several heuristic methods are available for

finding the optimal solution of this objective function [4].

4.3. Constraints Generation

In the real-world applications, we can use semantic in-

formation to generate constraints. For instance, there are

many twists and turns in the road systems. We can enforce

all the grids along the turns as the MUST-LINK constraints.

However, in this study, we do not have the semantic in-

formation which are ready to exploit for generating con-

straints. Instead, we explore geographical proximity and

direction consistencies for generating some MUST-LINK

constraints. Geographical proximity means that grids in the

same cluster are adjacent geographically. Specifically, for

one grid, we only consider the 8 adjacent grids of this grid.

Direction consistencies refer to grids of the same cluster

should have similar direction. In other words, these grids

should have high similarity as measured by the distance

metrics proposed in subsection 4.1. To maintain direction

consistence, we use a parameter to control the selection of

grids as the MUST-LINK constraints.

Finally, Figure 5 shows the pseudo-code of the direction

based cluster using the constraint-based K-means.

ALGORITHM GridClustering(G,λ,k)

Input: G: the fine-cut grids with direction vectors and

average directions;

λ: the threshold for determining initial constraints;

k: the target number of clusters.

Output: C: the cluster labels for all non-zero grids.

1. Initializations;

2. for each neighboring grid pair g1, g2 do

3. if D(g1, g2) >= λ then

4. Record 〈g1, g2〉 as a MUST-LINK

5. end

6. end

7. C ← ConstrKMeans(G, k,MUST-LINKs)

Figure 5. Grid­Level Direction Clustering by

Constrained K­means

5. Experimental Results

In the experiments, we have used two real-world motion

data sets: one from MIT [14] and another one is from a

major IT vendor. Each data set contains a number of tra-

jectories derived from several surveillance cameras. Each

trajectory is a sequence of time-stamped positions, indicat-

ing the location of an object at a certain time. In our ex-

periments, we first anonymize the data and extract the di-

rection information for each movement left after the data

anonymization. Also, we keep the identifications of origi-

nal trajectories for validating the results of outlier detection

and location trace reconstruction.

With the movement vectors, we count the frequency of

each direction of each grid, and transform the original data

into a number of grids, each of which has a probabilistic

direction vector.

5.1. Movement Patterns

The direction clustering results at different time periods

allow us to quickly summarize the overall movement trends.

At the same location, different moving directions can be

observed during different time windows. For instance, Fig-

ure 1 shows two direction clustering results, in the morn-

ing and in the evening, respectively. The movement data is

derived from the video collected by a surveillance camera

over a parking lot. For the purpose of privacy protection,

we do not show the background image. In the morning,

most of the moving objects are moving to the left, while in

the afternoon, the majority move towards the right. This in-

dicates that most people come to the office about the same

morning time period and leave the office about the same

evening time period. The direction clustering results also

show that less moving activities have been observed from

9:30AM to 11:30AM and the moving activities during this
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time period have weak clustering effects. This may indicate

a high work-efficient time period.

In addition, as illustrated by the colors of the grids, the

clustering results show possible paths and other semantic

regions. The edges of the clusters are likely to be important

landmarks. For example, the edges, the turning point, and

the double yellow line of the road, etc. Let us take Figure 6

as an example, the grids colored in purple have scattered di-

rections, which may represent pedestrian area, where mov-

ing objects do not follow a uniform direction. While the

subregions in the rectangles and ellipses are segments on

the road. From the background image of Figure 6, we can

clearly see that there are double yellow lines in the center of

the road, so the traffic on both sides tend to have opposite

moving directions. Finally, since there is a turning point on

the road, the same traffic following one side of the road is

cut into two part, due to the change of moving directions.

Figure 6. Possible landmarks.

5.2. Outlier Detection: A Case Study

There are two different levels of outliers as shown in Sec-

tion 2. Local outliers are determined within each grid. If the

total frequency of a grid is very low, we consider this grid as

a grid outlier; on the other hand, if the grid has considerable

observations, which has an overall moving trend, we can

evaluate the likelihood of one moving segment and see if

it follows the major movement direction. Regional outliers

are movement segments that are different from the cluster

direction of a direction cluster. In Figure 7, we show the

effectiveness of direction clustering for identifying outliers.

In Figure 7, the left part (a) shows the overall cluster-

ing results based on the MIT motion data (C200 nw2). It is

shown that in the center there is a cluster colored in bright

blue. We specifically zoom into this region, and show all

the movement segments in the selected region in Figure

(b). The normal ones, which represent the majority, are

shown in the gray color. We can observe the dense region

(a)

(b)

Figure 7. Outlier detection.

of gray, showing the pattern of moving upwards, slightly

to the right. Local outliers (but not regional outliers) are

shown in bright green, which overall move towards the left,

are almost perpendicular to the gray ones. Regional out-

liers (but not local ones) are shown in red, which interest-

ingly reconstruct a number of connected paths, moving to-

wards northeast. These local and regional outliers can allow

the users to reconstruct location traces belonging to specific

users. Indeed, if a outlier trace has been combined together

with some semantic maps, it is possible to identify a real

person in the real-life. This certainly raise serious privacy

issues for even the anonymized data.

5.3. A Comparison of Algorithms

In Figure 8, we illustrate a comparison of different direc-

tion clustering methods including Greedy, K-means, and

Constrained K-Means.

The greedy method works in a typical way of hierarchi-

cal clustering. Initially, each grid is an individual “clus-

ter”. After calculating the similarities between each pair

of neighboring grids, we merge two grids with the highest

similarity, and recompute their combined direction vector

by a weighted mean. The weights are determined by their

original cluster sizes. This process goes iteratively until the

number of clusters reduces to a target number. The grid

clustering results by the greedy method is shown in Figure

8 (a). Meanwhile, Figure 8 (b) shows the grid-level direc-

tion clustering results using K-means clustering.

By comparing Figures 8 (a) and 8 (b), we can see that the

greedy method merges the grids into 5 connected groups.

The cluster colored in purple spread over a large range and

do not provide enough details. This greedy method is sensi-

tive to noise, since the outlier grids (the isolated ones on the

top and the left) are put into stand-alone clusters. K-means,

however, can separate the region with more details, such as
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(a) greedy method (b) K-means (c) constrained K-means

Figure 8. A comparison of clustering algorithms.

the two directions of the road, and the turning of the road.

Although the K-means algorithm is specified to produce 5
clusters, these clusters are based simply on the similarity of

direction vectors instead of Euclidean distance. So the same

cluster may distribute into several disconnected subregions.

In real-world applications, we can split the geographically

isolated subregions into separate clusters, as a post process-

ing step. Or we can specify some CANNOT-LINK con-

straints for K-means clustering.

Finally, Figure 8 (c) illustrates an example of K-means

clustering with MUST-LINK constraints. The constraints

are shown with red connections between grids. The ones

shown are generated by connecting grids pairs that are

neighboring each other and their distance is below the

threshold 0.005. Our observation indicates that it is more

useful to generate MUST-LINK constraints along the twist

and turns in the road systems. These constraints avoid

breaking a line shape direction cluster into several isolated

smaller clusters.

6. Concluding Remarks

In this paper, we introduced a direction-based clustering

method (DEN) for characterizing movement patterns in mo-

tion data. This research moves beyond past studies of trajec-

tory data by filling two research gaps. First, DEN can deal

with a collection of directed line segments without the re-

quirement of knowing the identity of a complete trajectory.

Second, we exploit a probabilistic model to transform the

direction of line segments into a form that can be easily ex-

plored by traditional clustering algorithms (e.g. K-means).

Our empirical studies, which apply DEN to two real-

world motion data sets, suggest the need of direction-based

clustering. Specifically, the results show that DEN can ef-

fectively capture direction outliers in motion data and help

us understand movement patterns. Finally, as a case study,

we point out a new privacy-preserving challenge for pub-

lishing location traces that contain direction outliers. In

other words, direction outliers identified in clusters can al-

low the users to reconstruct some outlier location traces.
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