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In text categorization, it is quite often that the numbers of documents in different catego-
ries are different, i.e., the class distribution is imbalanced. We propose a unique approach
to improve text categorization under class imbalance by exploiting the semantic context in
text documents. Specifically, we generate new samples of rare classes (categories with rel-
atively small amount of training data) by using global semantic information of classes rep-
resented by probabilistic topic models. In this way, the numbers of samples in different
categories can become more balanced and the performance of text categorization can be
improved using this transformed data set. Indeed, the proposed method is different from
traditional re-sampling methods, which try to balance the number of documents in differ-
ent classes by re-sampling the documents in rare classes. Such re-sampling methods can
cause overfitting. Another benefit of our approach is the effective handling of noisy sam-
ples. Since all the new samples are generated by topic models, the impact of noisy samples
is dramatically reduced. Finally, as demonstrated by the experimental results, the proposed
methods can achieve better performance under class imbalance and is more tolerant to
noisy samples.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Text categorization/classification (Sebastiani, 2002) is a common technique for automatically organizing documents into
predefined categories. While existing text categorization techniques have shown promising results in many application sce-
narios (e.g. Ko & Seo, 2009; Paradis & Nie, 2007; Sebastiani, 2002), text categorization techniques for handling data sets with
imbalanced class distributions remain a challenging research issue.

In the case of class imbalance, the classifiers tend to ignore rare classes in favor of larger classes due to the size effect. In
fact Yang and Liu (1999) compared the robustness and classification performances of several text categorization methods
such as Support Vector Machine (SVM), Naive Bayes classifier, and K-Nearest Neighbor (KNN) classifier on data sets with var-
ious class distributions, and the experimental results show that all these classifiers achieve relatively low performance for
rare classes. A promising direction to handle the class imbalance problem is applying re-sampling techniques. Specifically,
over-sampling techniques (Japkowicz, 2000) can be used to increase the number of data instances in rare classes and under-
sampling techniques can be used to reduce the number of data instances in large classes (Japkowicz & Stephen, 2002). The
ultimate goal is to adjust the sizes of classes to a relatively balanced level.

Although both over sampling and under sampling can alleviate the class imbalance problem, there are some side effects.
For instance, replicating samples by over sampling could result in overfitting. Also, some useful samples in large classes may
. All rights reserved.
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be missing due to under sampling. This, in turn, will hinder the classification performance. Therefore, many modified re-
sampling methods were developed to overcome the disadvantages described above. For example, the overfitting problem
in random over-sampling methods can be avoided to a certain extent by bringing in random Gaussian noise to samples
in rare classes or synthetically generating samples for rare classes (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Also, a better
performance than random under-sampling methods can be achieved by only eliminating samples that are further away from
class boundaries (Batista, Prati, & Monard, 2004).

As a matter of fact, most re-sampling techniques were developed for general types of data rather than for text. Our ap-
proach intends to exploit the semantic characteristics uniquely existing in text documents to improve text categorization
under class imbalance. New samples of rare classes are generated by using global semantic information of classes repre-
sented by probabilistic topic models instead of replicating samples in rare classes. Probabilistic topic models (Blei, Ng, &
Jordan, 2003; Griffiths & Steyvers, 2004) are effective tools to capture the semantic topics (more details Section 2.1). By
exploiting probabilistic topic models of rare classes to generate new samples, overfitting is less likely to occur. In addition,
if the original training samples are replaced by new samples generated by probabilistic topic models, the training data can be
smoothed and the impact on the classification performance by noisy samples will also be alleviated.

In this paper, we propose two re-sampling methods based on probabilistic topic models: DECOM (data re-sampling with
probabilistic topic models) and DECODER (data re-sampling with probabilistic topic models after smoothing). DECOM deals
with class imbalance by generating new samples of rare classes using probabilistic topic models. In addition, for data sets
with a high proportion of noisy samples, DECODER first smoothes data by regenerating all samples in data sets and then gen-
erates more samples for rare classes by probabilistic topic models. Experimental results on various real-world data sets show
that both DECOM and DECODER can achieve better classification performances on rare classes. Also, DECODER is more robust
in handling very noisy data.

Overview: The remainder of this paper is organized as follows. Section 2 introduces probabilistic topic models as well as
two re-sampling methods based on probabilistic topic models. In Section 3, we present experimental results on a number of
real-world document data sets. Section 4 describes some related work. Finally, we draw conclusions in Section 5.

2. Re-sampling with probabilistic topic models

In this section, we first present a probabilistic topic model based on Latent Dirichlet Allocation (LDA) (Blei et al., 2003).
Then we propose two re-sampling methods: DECOM and DECODER.

2.1. Probabilistic topic models

Probabilistic topic models are generative models that specify a probabilistic process for generating documents. Table 1
shows an example of probabilistic topic models. To generate a new document, a distribution over topics is first selected. Then
for each word token in this document, a topic is selected randomly by sampling from the distribution over topics and next a
word is selected randomly by sampling from the word distribution of this topic.

Fig. 1 illustrates the generation of documents by probabilistic topic models. There are only two topics containing a certain
number of words in this simple example. The distribution of topics is different in different documents. For example, topic 2
does not occur in DOC1 while the probabilities of both topic 1 and topic 2 are 0.5 in DOC2. For the first word in DOC1, topic 1
is selected from the topic distribution and then the word ‘‘money” is selected randomly according to the word distribution of
topic 1. While the first word in DOC2 is to be created, topic 1 is selected randomly from the topic distribution and then the
word ‘‘money” is selected. For the second word, topic 1 is selected again randomly and the word we get this time is ‘‘bank”.
Then, for the third word, topic 2 is selected and ‘‘bank” is selected according the word distribution of topic 2. By this way, all
words in DOC2 can be decided.

We adopt the probabilistic topic model proposed in Steyvers and Griffiths (2007) as the generative model for training
samples. We use P(w) to denote the probability of generating the current word w
Table 1
An example of probabilistic topic models.

Topic 1 0.01116 Topic 2 0.00608 Topic 3 0.01207 . . . TOPIC n 0.00756

Figure 0.16022 Module 0.04493 Single 0.01947 Rules 0.07821
Curve 0.02541 Modules 0.04191 Individual 0.01920 Rule 0.06315
Size 0.02134 Attention 0.03090 Based 0.01815 Category 0.02234
Curves 0.02110 Gain 0.02859 Presented 0.01746 Set 0.02070
Top 0.01505 Context 0.01518 Produce 0.01430 Categories 0.01905
Show 0.01471 Control 0.01287 Multiple 0.01372 Knowledge 0.01541
Shape 0.01437 Figure 0.01287 Order 0.01372 Similarity 0.01185
Plotted 0.01287 System 0.01208 Techniques 0.01271 Examples 0.01056
Bottom 0.01036 Selection 0.01163 Technique 0.01198 Extracted 0.00992
Area 0.01026 Selected 0.01128 Effects 0.01087 Form 0.00992
. . . . . . . . . . . .

Fig. 1b 0.00494 Hybrid 0.00364 Parts 0.00464 Group 0.00328



Fig. 1. Probabilistic generation of documents.
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PðwÞ ¼
XT

i¼1

Pðwjz ¼ iÞPðz ¼ iÞ ð1Þ
where T is the number of topics.
From Eq. (1), new documents can be generated if P(w|z = i) and P(w|z = i) are both known. P(w|z = i) denotes the proba-

bility of sampling the word token w from the word distribution of the ith topic. P(z = i) gives the probability of sampling
the ith topic from the topic distribution of the current document.

Given a collection of D documents containing T topics expressed over W unique words, we represent the word index with
wi and document index with di for each word token i. Here ‘‘word token” refers to an instance of a word at a certain position
in a document. For each word token in the text collection, the Gibbs sampling method (Casella & George, 1992) estimates the
conditional distribution of assigning this word to each topic conditioned on the topic assignments to all other word tokens. A
topic is sampled from this conditional distribution and then stored as the new topic assignment for the word token. We rep-
resent this conditional distribution as P(zi = j|z�i, wi, di,�), where zi = j means the topic assignment of token i to topic j, z�i re-
fers to the topic assignments of all other word tokens, and ‘‘�” refers to all other known or observed information such as all
other word and document indices w�i and d�i, and hyperparameters a, and b. Griffiths and Steyvers (2004) shows that this
probability P(zi = j|z�i, wi, di,�) can be computed by the following equation:
Pðzi ¼ jjz�i;wi;di; :Þ /
CWT

wij
þ b

PW
w¼1CWT

wj þWb

CDT
dij
þ a

PT
t¼1CDT

dit
þ Ta

ð2Þ
where CWT and CDT are matrices with dimensions W � T and D � T respectively. CWT
wij

represents the number of times word w is
sampled from topic j, not including the current token i, and CDT

dij
refers to the number of times topic j is assigned to some word

tokens in document di, not including the current word instance i. The left part of the right side of the equation is the prob-
ability of sampling word wi given topic j whereas the right part is the probability of sampling topic j given the current topic
distribution for document di. The Gibbs sampling algorithm begins with the assignment of each word token to a random to-
pic in [1. . .T] to determine the initial state of the Markov chain. This chain then runs for a number of iterations and finds a
new state by sampling each zi from the distribution specified by Eq. (2) in each iteration. After enough number of iterations
for the chain to approach the target distribution, the current values of the zi variables are recorded. By Gibbs sampling, each
word token in the document set is assigned to a topic and according to the final assignment P(w|z = i) and P(z = i) can be esti-
mated by:
Pðwjz ¼ iÞ ¼ CWT
wi þ b

PW
k¼1CWT

ki þWb

Pðz ¼ iÞ ¼
PD

d¼1CDT
di þ a

PT
k¼1

PD
d¼1CDT

dk þ Ta

ð3Þ
2.2. Re-sampling with probabilistic topic models

In this study on text categorization, we assume that documents belonging to the same class have the same topic distri-
bution. That is, documents of the same class are assumed to be generated by the topic model of this class, as shown in Fig. 2.



Fig. 2. An illustration of training data and probabilistic topic models.
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Hence if we generate a new document using the topic model of a class, the new document should still belong to this class.
Based on this assumption, we propose two re-sampling methods DECOM and DECODER based on topic models for different
situations. Assuming that the training samples belong to n classes C = {c1, c2, . . ., cn}, the probabilistic topic models M = {m1,
m2, . . ., mn} for each class can be extracted from the documents belonging to each class by the Gibbs sampling algorithm,
respectively.

Algorithm 1: GenerateSample(M, N)

Algorithm 2: Roulette(Pro)
2.2.1. DECOM
The number of samples in the largest class is denoted as MAX. For any other class ci which contains |ci| samples, MAX-|ci|

new samples are generated by the corresponding topic model. Then the new samples of each class are used together with the
original samples to train the classifier. Different from other synthetic over-sampling methods such as SMOTE (Chawla et al.,
2002), the generation of new samples by the topic model is based on the whole sample space, not just several local samples.
The process of generating new samples by topic models is presented in Algorithm 1 and Algorithm 2. Specifically, for each



Fig. 3. An illustration of DECODER.

Fig. 4. An illustration of data smoothing by probabilistic topic models.
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word token in a new sample containing N words, a topic Ti is selected by the roulette algorithm (Algorithm 2) according to
the topic distribution in topic model M. Then, a word is selected as the current word token according to the word distribution
of topic Ti. By this way, all words are selected and they compose the new sample document. For each class, the size of the
new sample N (in terms of words) is randomly picked from the distribution of the sizes of documents in this class.

2.2.2. Data smoothing
All samples in the training data are assumed to be labeled without any errors. However, in reality it is labor-intensive to

prepare the training data with labels, particularly when its scale is large. So it is possible for samples to be mislabeled, and
noisy samples are unavoidable in training data (Zhu & Wu, 2004). The tolerance to noisy samples is very important to the
performance of classification because it is difficult to eliminate all noisy samples without eliminating some correctly labeled
samples. For this reason, topic models can be used to smooth the available training samples and to reduce the impact of
noisy samples on the performance of classification. Before training the classifier, |ci| new samples are generated by topic
model mi for each class ci2C. Then new samples are used for training instead of original samples. An illustration of smoothing
is shown in Fig. 3,1 where three noisy samples belonging to the blue class are mislabeled as the red class. The classifier is
affected by the noisy samples. As shown in ‘‘result 1” some samples in the blue class are mislabeled as the red class when
test data is classified by this classifier. If the training data is smoothed in advance, the new training data can prevent the
noisy samples from affecting the classifier and the correct result would be achieved for the test data as shown in ‘‘result 2”.

2.2.3. DECODER
For data sets with a high proportion of noisy samples, the DECODER method, a modified version of DECOM, is proposed. In

this case, the original data is replaced by the same amount of new samples generated by topic models. After this phase, the
training data is balanced by generating more new samples for rare classes until the size of each class is approximately equal.
Fig. 4 provides an illustration of DECODER. As shown in Fig. 3, the size of class 2 is two times that of class 1 and this is not
1 For interpretation of color in Fig. 3, the reader is referred to the web version of this article.
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changed after data smoothing. Then model 1 continues generating more samples of class 1 until the size of class 1 is the same
as that of class 2.

3. Experimental evaluations

In this section, we evaluate the effectiveness of the proposed DECOM and DECODER re-sampling methods in two stages.
In the first stage (Sections 3.2.1 and 3.2.2), we use several unbalanced real-world data sets to show the effectiveness of DE-
COM and DECODER in improving the classification performances on rare classes. In the second stage, we evaluate the per-
formance of DECODER on very noisy data.

3.1. The experimental setup

SVM is adopted as the base classifier in our experiments because of its good performance in most cases (Cristianini &
Shawe-Taylor, 2000). The implementation of SVM used in this study is LIBSVM (Chang & Lin, 2001) and the parameters of
SVM are set as follows: linear kernel, the parameter gamma in kernel function and the parameter C of C-SVC is obtained
automatically by grid-search using cross-validation for each data set as shown in Table 2, and other parameters are set as
default. The IG (Information Gain) feature selection algorithm is used to select the top 1000 words as features. The param-
eters of probabilistic topic models extraction algorithm are set as follows: the number of topics T = 30, the number of iter-
ations N = 300, a = 50/T, b = 0.01. For comparison, besides pure SVM without any balancing, we also consider other balancing
methods (Maimon & Rokach, 2005; Tan, Steinbach, & Kumar, 2005): random over sampling (ROS), random under sampling
(RUS) and SMOTE (Chawla et al., 2002). Note that we run all methods 10 times and return the average results in our exper-
iments. The data sets with various values of CV (Coefficient of Variation (DeGroot & Schervish, 2001)) used in the experi-
ments are from three sources as shown in Table 2. CV indicates the dispersion of the class distribution for each data set.
In general the larger the CV value is, the more unbalanced the data is.

The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned nearly evenly
across 20 different topics. For the purpose of studying class imbalance, we reduce the size of some classes artificially in
the experiments. The Reuters-21578 data set is currently the most widely used test collection for text classification research.
The documents in the Reuters-21578 collection appeared on the Reuters newswire in 1987. The data was originally collected
and labeled by Carnegie Group, Inc., and Reuters, Ltd. in the course of developing the CONSTRUE text classification system.
Besides, another data set k1b is from the WebACE project (Han et al., 1998). Each document corresponds to a web page listed
in the subject hierarchy of Yahoo!. The RCV1-v2 data set is a large corpus of newswire stories provided by Reuters Ltd. and
later corrected by Lewis, Yang, Rose, and Li (2004). We use a sample of 20402 documents belonging to five categories and
refer to it as RCV1-v2_t5.

3.2. Experimental results

In this subsection, the experimental results show how the classification performance can be improved by DECOM. Since
two-class data set is intuitive and simple, it is most suitable to demonstrate the effectiveness of each method on imbalanced
data set without other sources of interference. For comparing the balancing methods more accurately, we conduct experi-
Table 2
Characteristics of data sets.

Dataset #Samples #Classes MaxClassSize MinClassSize Training set size Test set size CV Best C Best gamma

20 Newsgroups data sets
20news_b1 1200 2 1000 200 600 600 0.943 128.0 0.0078125
20news_b2 2000 2 1000 1000 1000 1000 0 32.0 0.0078125
20news_m1 5400 8 1000 300 2700 2700 0.410 2048.0 0.0078125
20news_m2 2100 3 1000 300 1050 1050 0.515 32.0 0.0078125

Reuters-21578 data sets
reuters1 2655 2 2369 286 1847 808 1.113 8.0 0.0078125
reuters2 610 2 486 124 463 147 0.839 32.0 0.0078125
reuters3 868 2 582 286 630 238 0.530 8.0 0.0078125
reuters4 2929 14 717 30 2176 753 1.002 8.0 0.0078125
reuters5 2586 10 717 30 1914 672 0.893 8.0 0.0078125
reuters6 4301 5 2369 286 3038 1263 0.970 2.0 0.0078125

WebACE data sets
k1b 2340 6 1389 60 1169 1171 1.317 32.0 0.0078125

RCV1 data set
RCV1-v2_t5 20402 5 7406 680 4079 16323 1.36 512.0 0.0078125
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ments on two-class data sets at first. In practice multi-class data sets are often encountered, so we also experiment on multi-
class data sets. The results on multi-class data sets are consistent with those on two-class data sets.

3.2.1. Results on two-class data sets
Table 3 presents the performance comparison based on the F-measure with other balancing methods on two-class data

sets. DECOM shows a good performance on two-class data sets on various data sets. When the CV value is low, random under
sampling has a better performance than random over sampling. For example, on the reuters3 data set with CV value of 0.530,
under sampling has a competitive performance close to the best result achieved by DECOM. However, when the CV becomes
high, over sampling beats under sampling significantly. The SMOTE method has limited improvement because new samples
are related to a few local samples as we discussed above. Note that on reuters2 data set, DECODER has better performance
than DECOM. An alternative explanation is that there exits some noisy samples in this data set. Compared to pure SVM, the
classification result by DECOM favors the rare class. The recall value of rare class (denoted as class 1) is increased and the
precision value is decreased while it is contrary for the large class (denoted as class 2), as shown in Table 4. Although DECOM
may sometimes cause decrease in recall value or precision value of each class, the F-measures of both the rare classes and the
large classes are improved by DECOM. Large improvement of the recall value or precision value can be achieved with a little
cost of decreasing the other one. For example, the recall value of class 1 in 20news_b1 data set is improved from 0.6000 to
0.9920 while the precision value is decreased just from 0.9677 to 0.9094.

3.2.2. Results on multi-class data sets
An overview of macro F-measure comparison of these methods is shown in Table 5. In this case, random under sampling

does not perform well on multi-class data sets. DECOM still performs better than other balancing methods although the
improvement by DECOM is not as large as on two-class data sets in some cases. Besides DECOM, random over-sampling
method also has stable performance on all data sets while random under sampling and SMOTE are not so stable. The results
in the table show that DECOM is more robust on multi-class data sets than others.

Another observation is that the increase of the F-measure value of the rare classes is not at high cost of the decrease of
others. As shown in Fig. 5, different from other traditional balancing methods such as random over sampling, DECOM can
improve the classification accuracy for most classes. For example, the performance of about 83% classes is improved by DE-
COM on reuters6 data set while it is only 60% for random over sampling. Fig. 6 shows how DECOM improves performance for
each class on the data sets described in Table 6. On the reuters5 data set, the performance in rare classes such as class 9 with
only 59 samples is greatly increased by DECOM while only the performance in class 6 is decreased slightly. On k1b data set,
the decrease of accuracy in class 6 can be ignored compared to the great increase of accuracy in class 2. Notice that the over-
all performance of DECODER is a little weaker than DECOM because some information useful for classification may be lost in
the data smoothing phase.
Table 3
A performance comparison on two-class data sets by macro/micro F-measure.

Data set CV Balancing methods

Pure SVM ROS RUS SMOTE DECOM DECODER

20news_b1 0.943 0.8660/0.9300 0.9302/0.9623 0.9012/0.9352 0.8896/0.9418 0.9697/0.9822 0.9360/0.9582
Gain % over SVM 7.41/3.47 4.06/0.56 2.73/1.27 11.97/5.61 8.08/3.03

reuters1 1.113 0.9296/0.9735 0.9759/0.9904 0.9665/0.9859 0.9534/0.9823 0.9825/0.9929 0.9663/0.9856
Gain % over SVM 4.98/1.74 3.97/1.27 2.56/0.90 5.69/1.99 3.95/1.24

reuters2 0.839 0.8925/0.9320 0.9895/0.9932 0.9752/0.9837 0.9296/0.9551 0.9895/0.9932 0.9916/0.9946
Gain % over SVM 10.87/6.57 9.27/5.55 4.16/2.48 10.87/6.57 11.10/6.72

reuters3 0.530 0.8833/0.8908 0.9274/0.9311 0.9397/0.9416 0.9034/0.9101 0.9514/0.9521 0.9276/0.9311
Gain % over SVM 4.99/4.52 6.39/5.70 2.28/2.17 7.71/6.88 5.02/4.52

Table 4
A performance comparison on two-class data sets in detail.

Dataset Method Class 1 Class 2

Recall Precision F-measure Recall Precision F-measure

20news_b1 Pure SVM 0.6000 0.9677 0.7407 0.9960 0.9257 0.9595
DECOM 0.9920 0.9094 0.9489 0.9802 0.9984 0.9892

reuters1 Pure SVM 0.7595 1.0000 0.8633 1.0000 0.9711 0.9853
DECOM 0.9888 0.9494 0.9686 0.9934 0.9986 0.9960

reuters2 Pure SVM 0.6667 1.0000 0.8000 1.0000 0.9213 0.9590
DECOM 0.9667 1.0000 0.9831 1.0000 0.9915 0.9957

reuters3 Pure SVM 0.7640 0.9315 0.8395 0.9664 0.8727 0.9172
DECOM 0.9877 0.8951 0.9391 0.9309 0.9922 0.9605



Table 5
An overview of macro/micro F-measure comparison on multi-class data sets.

Dataset CV Balancing methods

Pure SVM ROS RUS SMOTE DECOM DECODER

20news_m1 0.410 0.7969/0.8070 0.8041/0.8150 0.7731/0.7733 0.7850/0.7992 0.9260/0.9229 0.9021/0.9097
Gain % over SVM 0.90/0.99 �2.99/�4.18 �1.49/�0.97 16.20/14.36 13.20/12.73

reuters4 1.002 0.7785/0.7570 0.7946/0.7946 0.6653/0.5995 0.7859/0.7744 0.8381/0.8125 0.7987/0.7448
Gain % over SVM 2.07/5.20 �14.54/�20.18 0.95/2.30 7.66/7.33 2.59/�1.61

reuters5 0.893 0.7731/0.7768 0.8016/0.8037 0.7074/0.6399 0.8227/0.8054 0.8638/0.8320 0.8497/0.8116
Gain % over SVM 3.69/3.46 �8.50/�17.62 6.42/3.68 11.73/7.11 9.91/4.48

reuters6 0.970 0.8472/0.9153 0.8531/0.9125 0.8563/0.9089 0.8490/0.9074 0.8596/0.9159 0.8605/0.9118
Gain % over SVM 0.70/�0.31 1.07/�0.70 0.21/�0.86 1.46/0.07 1.57/�0.38

k1b 1.317 0.7898/0.9240 0.8242/0.9340 0.8221/0.8972 0.8318/0.932 0.8869/0.9495 0.8679/0.9247
Gain % over SVM 4.36/1.08 4.09/�2.90 5.32/0.87 12.29/2.76 9.89/0.08

RCV1-v2_t5 1.36 0.8922/0.9082 0.8972/0.9099 0.8756/0.8984 0.8880/0.9065 0.8972/0.9105 0.8871/0.9099
Gain % over SVM 0.56/0.19 �1.86/�1.08 �0.47/�0.19 0.56/0.25 �0.57/0.19

Fig. 5. Percentage of classes with performance improvements by random over sampling (a) and DECOM (b).
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(a) reuters5 

(b) k1b 

Fig. 6. Classification performances of DECOM and pure SVMs on reuters5 and k1b data sets.

Table 6
Number of samples in each class for reuters5 and k1b data sets.

Data set #Samples of class CV

1 2 3 4 5 6 7 8 9 10

reuters5 486 30 162 286 105 717 478 124 59 139 0.893
k1b 142 60 114 141 1389 494 – – – – 1.317
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The number of topics in topic models (T) is an important parameter that may affect the performance of classification.
Griffiths and Steyvers (2004) has investigated the relation between the likelihood P(w|T) and T, and has proved that the
likelihood is affected by T greatly. It is difficult to find the best value of T in DECOM since the value with optimal
likelihood P(w|T) may not always result in the best classification performance. In fact, the best value of T for DECOM
is distinct on different data sets. Fortunately, the impact that T has on the classification performance is limited. Fig. 7
shows the macro F-measure with different values of T on 20news_m2 and reuters3 data sets. Obviously, the impact of
T is small and acceptable.



(a) 20news_m2 

(b) reuters3 

Fig. 7. The impact of different number of topics.

Table 7
Results on the 20news b2 data set.

Method Class 1 Class 2 Macro F-measure Micro F-measure

Recall Precision F-measure Recall Precision F-measure

Pure SVM 0.9860 0.9591 0.9724 0.9580 0.9856 0.9716 0.9722 0.9720
DECODER 0.9704 0.9953 0.9827 0.9954 0.9712 0.9831 0.9830 0.9829

E. Chen et al. / Information Processing and Management 47 (2011) 202–214 211
3.3. Tolerance to noisy samples

As we discussed in Section 3.2, the data sets may have noisy samples. Even if all training samples are labeled correctly,
some samples are important for classification while some samples are unimportant. Table 7 shows an interesting result that
DECODER can improve the performance on balanced data set 20news_b2. In this case, DECODER does the same thing as pure
SVM except for data smoothing since the CV value of the data set is exactly 0. An alternative explanation is that the classifier
is affected by unimportant or noisy samples in the data set and this effect can be reduced by just smoothing the data samples
with DECODER.
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Although there may be some noisy samples in the data sets used in this paper, the number of noisy samples could be
relatively small since these data sets are considered as the benchmarks for text classification research. As a result, not every
data set will be similar to the one in Table 7, which has enough noisy samples to affect the classification results. For this
reason, we have preprocessed the data sets so that they can be suitable for noise tolerance experiments. In order to inves-
tigate the tolerance of each method to noisy samples, we get three two-class data sets from 20 Newsgroups data sets and
Reuters-21578 data sets intentionally, as shown in Table 8. Some samples are removed from one class and are used to ran-
domly replace samples in the other class as noisy samples. The proportion of noisy samples in the other class (noisy class) is
referred to as ‘‘noise ratio”. Note that the noisy class is the rare class for imbalanced data sets in our experiment. The results
achieved by the balancing methods are shown in Fig. 8. On 20news_b21 data set, DECODER has slower performance decrease
with increasing ratio of noisy samples than pure SVM. Even when the noise ratio is 50%, a macro F-measure of about 87% can
be achieved. On reuters8 data set, when the noise ratio is under 5%, DECOM can achieve a better performance than DECODER
Fig. 8. A performance comparison on very noisy data.

Table 8
Data sets with a high proportion of noisy samples.

Data set Source #Samples CV #Noisy samples

20news_b21 20 Newsgroups 1200 0 400
reuters7 Reuters-21578 1600 0.707 700
reuters8 Reutgrs-21578 1300 0.197 700



Table 9
A performance comparison on noisy multi-class data set in term of macro F-measure.

Unlabeled ratio Unlabeled F-measure Pure SVM ROS RUS SMOTE DECOM DECODER

0.5 0.8700/0.8741 0.7719/0.7744 0.7798/0.7810 0.8275/0.8252 0.7524/0.7667 0.7958/0.7952 0.8821/0.8881
Gain % over SVM 1.02/0.97 7.20/6.56 �2.53/�0.99 3.10/2.69 14.28/14.68

0.6 0.8525/0.8611 0.7962/0.7967 0.8109/0.8089 0.7989/0.7833 0.7760/0.7819 0.7918/0.7881 0.8754/0.8837
Gain % over SVM 1.85/1.53 0.34/�1.68 �2.54/�1.86 �0.55/�1.08 9.95/10.92

0.7 0.8256/0.8296 0.7760/0.7789 0.7921/0.7919 0.8066/0.8030 0.7761/0.7844 0.7850/0.7800 0.8773/0.8867
Gain % over SVM 2.07/1.67 3.94/3.09 0.01/0.71 1.16/0.14 13.05/13.84

0.8 0.7767/0.7894 0.7221/0.7241 0.6797/0.6941 0.7731/0.7670 0.7286/0.7330 0.7381/0 7210 0.8665/0.8726
Gain % over SVM �5.87/�4.14 7.06/5.92 0.90/1.23 2.22/�0.30 20.00/20.51

0.9 0.6998/0.7263 0.6425/0.6619 0.6595/0.6859 0.7187/0.6919 0.6260/0.6596 0.6720/0.6841 0.8308/0.8522
Gain % over SVM 2.65/3.63 11.86/4.53 �2.57/�0.35 4.59/3.35 29.31/28.75
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since replacing the original samples may lose the information which can be helpful for classification. However, with the
noise ratio increasing, the performance of DECOM becomes worse and only DECODER still has a stable performance. On
RCV1-v2_t5 when the noise ratio increases from 0% to 50%, the performance decrease of DECODER is only 3% as measured
by F-measure, in comparison to more than 40% for all the other approaches. In order to make more natural multi-class data
sets with noisy samples, a novel experiment approach is used. First, the original training data set is divided into two parts
with a ratio: new training set and unlabeled set. The new training set is used to train a pure SVM classifier and then the sam-
ples in the unlabeled set are labeled by this classifier. After this phase, the unlabeled set can be considered as the training set
with noisy samples and the macro F-measure reflects the amount of noise in the training set. Now this noisy training set is
used as the training set for our experiment and the test set is the original test set. The comparison of each balancing method
on 20news_m1 data set is shown in Table 9. Due to data smoothing, the performance decrease of DECODER is much slower
than others when the macro F-measure of unlabeled data set is decreasing.
4. Related works

The class imbalance problem is a major research issue, and researchers have addressed this problem from various
perspectives.

First, there are research works focusing on understanding the class imbalanced problem. For example, it has been shown
(Japkowicz & Stephen, 2002; Wu, Xiong, Wu, & Chen, 2007) that the imbalance problem is not only related to the degree of
class imbalance in the data sets, but also related to the overall size of the training data as well as the complexity of the con-
cepts in the data sets with imbalanced classes. The higher the degree of class imbalance, the higher the complexity of the
concepts, and the smaller the overall size of the training set, the greater the effect of class imbalance on the classification
performance.

Second, researchers have addressed the class imbalance problem from an algorithmic perspective by examining how
different algorithms or algorithm design decisions can make an impact on this problem. For example Brank and Grobelnik
(2003) studied the training of SVMs with few positive samples, while Tan (2005) presents the NKNN method which im-
proves the performance of k-NN on imbalanced data sets. Also, Zheng, Wu, and Srihari (2004) addressed the class imbal-
ance problem by feature selection and suggested that negative features are quite valuable on imbalanced data. Moreover,
the COG method (Wu et al., 2007) has an elegant way to decompose the complex concepts in large classes, which hinder
the performances of linear classifiers. In the COG method, each large class is divided into several small sub-classes with
relatively balanced sizes. This, in turn, can greatly alleviate the class imbalance problem and helps to improve the
performance.

The third direction is to manipulate the training data using sampling techniques, such as random over sampling, focused
over sampling, random under sampling, and focused under sampling. For example, researchers have developed methods (To-
mek, 1976; Hart, 1968; Kubat & Matwin, 1997; Laurikkala, 2001; Wilson, 1972) of under and over sampling to balance the
class distribution of training data. According to experimental evaluation of these methods and their combination, Batista et
al. (2004) found that, in general, over-sampling methods provide more accurate results than under-sampling methods con-
sidering the area under the ROC curve. Furthermore, in order to avoid overfitting due to just replicating samples of rare clas-
ses in simple over sampling, Chawla et al. (2002) proposed SMOTE method (Synthetic Minority Over-sampling TEchnique).
When a new sample of rare class is to be created, an original sample A of this class is selected and then one of the K-nearest
neighbors of A is selected randomly as B. The value of new sample is the value of A plus a Gaussian random value of the
difference between A and B. The SMOTE method overcomes the overfitting of over sampling to a certain extent. However,
the generation of new sample is just dependent on a few samples so that noisy samples may have more impact on the clas-
sification performance.

However, the above-mentioned approaches do not make use of semantic information, which is essential to text docu-
ments. Instead, in this paper, our focus is on exploiting global semantic information of classes, which are represented by
probabilistic topic models. The scope of our methods is limited to text categorization.
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5. Conclusion

In this paper, we have proposed a semantic re-sampling method to handle the class imbalance problem in text catego-
rization. Specifically, two re-sampling techniques DECOM and DECODER were developed based on probabilistic topic mod-
els. DECOM was proposed to deal with class imbalance by generating new samples of rare classes. For data sets with noisy
samples and rare classes, DECODER was developed to smooth the data by regenerating all samples in each class using prob-
abilistic topic models and then expanding the sizes of rare classes.

A key idea of our re-sampling techniques is the exploitation of global semantic information captured by probabilistic to-
pic models. Experimental results on various real-world data sets show that DECOM and DECODER can achieve better clas-
sification performances on rare classes. In addition, DECODER is more tolerant to noisy samples.
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