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Abstract

The use of association patterns for text categorization has attracted great interest
and a variety of useful methods have been developed. However, the key character-
istics of pattern-based text categorization remain unclear. Indeed, there are still no
concrete answers for the following two questions: Firstly, what kind of association
pattern is the best candidate for pattern-based text categorization? Secondly, what
is the most desirable way to use patterns for text categorization? In this paper,
we focus on answering the above two questions. More specifically, we show that
hyperclique patterns are more desirable than frequent patterns for text categoriza-
tion. Along this line, we develop an algorithm for text categorization using hyper-
clique patterns. As demonstrated by our experimental results on various real-world
text documents, our method provides much better computational performance than
state-of-the-art methods while retaining classification accuracy.
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1 Introduction

Text categorization is a key technique for processing and organizing text
documents. Text categorization techniques are often used to classify news
stories and to guide a user’s search on the Web. Recently, there has been
considerable interest in using association patterns [1] for text categoriza-
tion [2, 9, 21, 22, 28, 34]. This is known as Associative Text Categorization
(ATC). A key benefit of ATC is its ability to produce semantic-aware classi-
fiers which include understandable rules for text categorization. While several
promising algorithms have been developed, further investigation is needed to
characterize associative text categorization with respect to the following two
issues:

(1) What kind of association pattern is the best candidate for associative
text categorization?

(2) What is the most desirable way to use association patterns for text cat-
egorization?

The goal of this work is to address the above two issues. Previous methods
used frequent itemsets (frequent patterns) [1] for text categorization. Recently,
Xiong et al. [36, 37] have defined a new pattern for association analysis-the
hyperclique pattern-that demonstrates a particularly strong connection be-
tween the overall similarity of a set of objects and the itemset in which they
are involved. Indeed, the hyperclique pattern (HP) is a better candidate for
text categorization than frequent itemset (FI). First, the hyperclique pattern
includes the items which are strongly related to each other. Second, hyper-
clique patterns have much better coverage of items (vocabulary) than frequent
itemsets, since hyperclique patterns can capture words with very low frequency
while existing FI-mining algorithms often break down when the minimum sup-
port threshold is set to a low value. Third, the computational cost of finding
hyperclique patterns is significantly lower than the cost for finding frequent
itemsets [36]. Finally, there are fewer hyperclique patterns than frequent item-
sets under the same minimum support threshold. For example, when the mini-
mum support threshold is set to the value of 5% on the WebKB data set, there
are 214672 FIs and 116435 HPs respectively. As a result, hyperclique patterns
are more manageable for rule extraction in the process of text categorization.

In this paper, we develop a new algorithm for text categorization using hy-
perclique patterns. One important algorithm design issue is how to select a
subset of candidate patterns for the end classifier. For associative text catego-
rization, all rules that satisfy user-specified minimum support and confidence
thresholds will be identified. This is the main strength of associative text cate-
gorization because a more accurate classifier can be derived from the rules that
provide a general description of the data. This strength can also be a drawback
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as it is difficult to select useful rules from a huge number of candidate rules.
Some rule-pruning techniques must be applied to the discovered association
patterns for accurate and efficient classification. A key question in pruning is
what criterion is used to determine which rules should be removed. Indeed,
there is an important subtlety between the classification accuracy and the
generality of a rule. On one hand, if a rule with higher support (more general)
but relatively lower confidence (less accurate) is removed from the rule sets,
we may suffer from the risk of missing some test examples since there will be
no rule to cover these examples. On the other hand, a rule with low confidence
increases the risk of making a wrong decision. In our algorithm, we decide to
eliminate rules with both low support and low confidence. This is considered
a general-to-specific pruning method. However, it is a quite time-consuming
operation to judge general-to-specific ordering among different rules. To ad-
dress this problem, we employ a vertical pruning approach, which can reduce
the computational cost and retain classification accuracy.

In addition to the rule-pruning methods, we also utilize feature selection in
our algorithm. Specifically, we first demonstrate that several commonly used
feature selection metrics can be expressed as a function of confidence and
support, then we propose a method to integrate feature selection into the rule
pruning step. In this way, we can dynamically determine the best feature set
from the candidate patterns.

Finally, our experiments on several real-world document data sets show that
our method has much better computational performance than state-of-the-art
methods while retaining classification accuracy.

Overview The remainder of this paper is organized as follows. Section 2
presents related work. In Section 3, we introduce some basic concepts. We
describe some algorithm design issues in Section 4. Section 5 provides experi-
mental results. Finally, in Section 6, we draw conclusions.

2 Related Work

Associative classification was first introduced in [22], and from then on, several
associative classification methods were proposed [7, 21, 23, 24, 34, 35]. When
associative classification is applied to text categorization, document data sets
are stored as transaction data with words as items and each document as a
transaction [2, 28].

Recent work in this area is mainly focused on how to prune rules and then
build an accurate classifier. Quite often, the popularity and significance of a
rule were studied first. Along this line, the pessimistic error rate [22] and some
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other methods such as the chi-square test [21, 23] were widely used. In order
to construct a rule-based classifier, most of these methods modified sequential
covering techniques to determine when to stop adding more rules to the classi-
fier. For instance, instead of using a database coverage strategy to select rules,
the HARMONY method proposed in [34] directly mines the final set of clas-
sification rules by pushing some pruning techniques into the projection-based
frequent itemset mining framework. However, little effort has been focused
on the efficiency issue for rule extraction. Indeed, when associative classifi-
cation is applied to text documents, it is necessary to set minimum support
thresholds to some low values for the purpose of getting better coverage of the
topics. Most existing methods conducted experiments mainly on the Reuters
data set [20]. Text categorization for the Reuters data set is relatively easy
since its documents were written by newspaper reporters, and the terms in
this data set are quite consistent and specific. As we illustrate in later sections,
the classification accuracy does not improve much as the minimum support
thresholds for the Reuters data set decrease. This indicates that one could get
reasonable results even at high support thresholds. However, most document
data sets have different features than the Reuters data set. In most cases, it
is critical to set low support thresholds and get a better coverage of the top-
ics, and thus improve the performance of text categorization. To this end, we
explore several techniques such as transaction caching, inverse matching, and
vertical path pruning, to efficiently extract rules to form the end classifiers.

In addition to exploiting techniques to improve the efficiency of rule extrac-
tion, we also evaluate the choice of association patterns. Previous work in
[9] and [30] exploited sentential co-occurring words as patterns to construct
the end classifiers. Sentence level text classification considers co-occurrence
at the level of sentences rather than documents, thus greatly reducing the
amount of rules. However, sentence segmentation itself is a difficult task in
some applications, and it is also difficult for sentence-level text classification
to find sufficient frequent itemsets in a corpus with diverse topics. Actually,
current sentence level classifications lose their efficacy on large data sets, such
as WebKB [26] and 20NG data sets [18]. In contrast, the main drawback of
document level classification is that it is very time-consuming due to two rea-
sons: items are more liable to co-occur in documents than in sentence level,
and a document transaction is longer than a sentence transaction which leads
to more matching time both in training and classification stages. In this paper,
we try to improve both efficiency and the classification performance of associa-
tive text categorization by adapting hyperclique patterns [36, 37] as candidate
association patterns for capturing co-occurring words at the document level.

Another major issue related to text categorization is the high dimensionality
of the input data. Feature extraction and feature selection are two major cat-
egories of dimension reduction approaches. The former tries to produce new
features via linear or nonlinear transformations, while the latter selects the
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most relevant features. A number of feature extraction approaches, such as
Principal Component Analysis (PCA) [16], Latent Semantic Indexing (LSI)
[6], probabilistic Latent Semantic Indexing (pLSI) [13], Linear Discriminant
Analysis (LDA) [25], Independent Component Analysis (ICA) [17], Locally
Linear Embedding [33], and Latent Dirichlet Allocation (LDA) [4], have been
proposed in the literature. Also, many feature selection criteria, such as Doc-
ument Frequency(DF), Mutual Information(MI), Information Gain(IG), Chi-
Squared(χ2), Bi-Normal Separation(BNS), Odds Ratio(OR), combined with
different classification methods (kNN, LLSF, Rocchio, Näıve Bayes, SVM)
[39, 8, 15, 27, 10, 31, 12, 40], are widely used. However, current associative
text classification methods either apply no feature selection method [9], or
simply do feature selection in a separate preprocess procedure [28, 2, 34]. The
drawback of such a method is that the predetermined features may not be fre-
quent items. For instance, the term ’editorial ’ and ’committees ’ in the faculty
class of the WebKB data set both have very high information gain value, but
the support values of these two words are 5.2% and 4.3%, respectively. If we
set the minimum support threshold to 10%, these two terms will certainly be
removed. These observations lead us to re-examine feature selection methods
in the context of associative text classification.

3 Basic Concepts

Let I = {i1, i2, . . . , im} be a set of items (words), T = {t1, t2, . . . , tl} be a
set of transactions (documents), and C be a set of categories {c1, c2, . . . , cn}.
Each transaction t is a set of items and t ⊆ I. One or multiple categories can
be associated with each document, depending on the classification task being
single or multi-labeled.

Definition 1 The local support of itemset X in category ci, denoted as
lsupp(X, ci), is the fraction of transactions in category ci containing X, where
X ⊆ I and ci ∈ C. The absolute local support of X in ci, denoted as |lsupp(X, ci)|,
is the number of transactions in ci containing X.

Definition 2 The local confidence of an itemset {X,Y } in category ci is

denoted as lconf((X ⇒ Y ), ci) and lconf((X ⇒ Y ), ci) =
lsupp(X

⋃
Y,ci)

lsupp(X,ci)
, where

X ⊆ I, Y ⊆ I, X
⋂

Y = φ, and lsupp(X
⋃

Y, ci) is the fraction of transactions
in category ci containing both X and Y .

Definition 3 If the local support of an itemset X in category ci is above a
user-specified minimum, minsup, i.e., lsupp(X, ci) ≥ minsup, then we say
that the itemset X is a frequent itemset in category ci.

Definition 4 A hyperclique pattern [36] is a new type of association pattern
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that contains items that are highly affiliated with each other. By high affilia-
tion, we mean that the presence of an item in a transaction strongly implies
the presence of every other item that belongs to the same hyperclique pattern.
The h-confidence measure [36] is specifically designed to capture the strength
of this association. The h-confidence of an itemset P = {i1, i2, . . . , im} in cat-
egory ci, denoted as hconf(P, ci), is a measure that reflects the overall affin-
ity among items within the itemset in category ci. This measure is defined as
min{(lconf((i1 ⇒ i2, . . . , im), ci), lconf((i2 ⇒ i1, i3, . . . , im), ci), . . . , lconf((im
⇒ i1, . . . , im−1), ci)}, where lconf is the conventional definition of local con-
fidence as given above.

Table 1 shows some hyperclique patterns identified from words in the WebKB
dataset, which includes articles from various categories such as ’course’, ’fac-
ulty’, ’project’, and ’student’. For instance, in this table, the hyperclique pat-
tern {artificial, intelligence} is from the ’course’ category. The absolute local
support of this pattern is 41, which means that the term ’artificial’ and ’in-
telligence’ cover 41 documents among the total 901 documents in the ’course’
category. Since the local support of ’artificial’ is 5.5%, the local support of
’intelligence’ is 5.8%, and the local support of ’artificial, intelligence’ is 5.5%,
then

lconf(artificial ⇒ intelligence) =
lsupp(artificial, intelligence)

lsupp(artificial)
= 100%

lconf(intelligence ⇒ artificial) =
lsupp(artificial, intelligence)

lsupp(intelligence)
= 95.3%

Hence, h-conf(artificial, intelligence) = min{95.3%,100%} = 95.3%.

Table 1
Examples of hyperclique patterns

hyperclique patterns |lsupp| lsupp h-conf

{artificial, intelligence} 41 5.5% 95.3%

{computer, science, professor} 576 63.9% 71.6%

{vitae, curriculum} 30 2.3% 69.8%

The local support and h-confidence value of a hyperclique pattern reflect how
frequent the pattern occurs in a single class and how closely the items in a
pattern are interrelated to each other. In order to judge the goodness of a rule,
we give further definitions for the global support, global confidence, and phi
correlation coefficient.

Definition 5 The global support of an itemset X, gsupp (X), is the frac-
tion of transactions of all the categories containing X. The absolute global
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support of an itemset X, denoted by |gsupp(X)|, is the number of transac-
tions of all the categories containing X.

Definition 6 The global confidence of an association pattern X ⇒ ci is
denoted as gconf(X ⇒ ci) and gconf(X ⇒ ci) = |lsupp(X,ci)|

|gsupp(X)| , where X ⊆ I,

ci ∈ C, and |lsupp(X, ci)| and |gsupp(X)| follow the definitions of absolute
local support and absolute global support as given above.

Definition 7 The phi correlation coefficient of an association pattern X
⇒ ci is denoted as phi(X ⇒ ci) and phi(X ⇒ ci) = lsupp(X,ci)−gsupp(X)gsupp(ci)√

gsupp(X)gsupp(ci)(1−gsupp(X))

∗ 1√
(1−gsupp(ci))

, where X ⊆ I, ci ∈ C, and gsupp(ci) is the fraction of trans-

actions in category ci of all the categories.

Table 2
Examples of candidate rules

candidate rules lsupp h-conf gsupp gconf

r1: {dlrs,shares} ⇒ acq 22.7% 43.5% 7.84% 73.8%

r2: {outstanding,investment} ⇒ acq 4.4% 30.4% 1.04% 97.3%

r3: {corn,agriculture} ⇒ corn 38.7% 53.0% 1.2% 92.1%

r4: {day,oil} ⇒ crude 28.3% 31.4% 1.8% 94.8%

Tabel 2 gives some candidate rules in Reuters dataset. Comparing the rule r1

and r2 in Table 2, one can find that both the local support and h-confidence
value of r1 is much larger than those of r2. However, this does not mean that
r1 is a better rule than r2. Though the term ’dlrs’ and ’shares’ in r1 are often
mentioned in the category ’acq’, they are also frequent in other categories,
thus resulting in a low global confidence value. In contrast, r2 is a powerful
rule since its global confidence reaches a very high value of 97.3%.

4 Algorithm Descriptions

In this section, we describe some design issues for associative text categoriza-
tion. Specifically, we illustrate: 1) techniques for efficient rule evaluation; 2)
techniques for efficient rule pruning; 3) a method to integrate feature selec-
tion into the rule extraction procedure; and 4) an approach for adaptively
predicting test documents.
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4.1 Evaluation of Candidate Rules

Generating Candidate Rules. To solve the problem of class discrepancy, it
is necessary to mine hypercliques in each category. Modeling each text docu-
ment as a transaction and each distinct word as an item, we employ the algo-
rithm called Hyperclique Miner in [36, 37] to mine all frequent hypercliques by
category. This algorithm utilizes cross-support and anti-monotone properties
of h-confidence [36, 37] to efficiently discover hyperclique patterns for data sets
with skewed support distributions, which are quite common in text corpora.
Candidate rules are generated by making hyperclique antecedent and class
label consequent. For instance, if {grain, wheat, export} is a hyperclique pat-
tern in class ′grain′ in Reuters-21578, then {grain, wheat, export} ⇒ grain
forms a candidate rule.

To evaluate the relationship between the antecedent and the consequent in a
general view, we compare rules according to their differential capability. We
use global confidence and phi correlation coefficient to evaluate rules. Global
confidence is an estimate of the conditional probability of class ci given the
term X. However, the confidence measure could be misleading since it doesn’t
reflect the strength of implication between the class and the term, so we further
test whether X is correlated with ci by phi correlation coefficient. To calculate
these measures efficiently, we first collect all category rules in a global prefix
tree, and then we need one pass over all training documents. This is the
most time consuming part. Several considerations are taken to achieve high
computational efficiency. We first delay matching by storing all transactions
in a one bit matrix, then we invert the matching process by using every rule
to search the transaction matrix.

Cache transactions: If each transaction is managed individually, every time
a transaction is read into memory, it will be counted once. By caching trans-
actions into a bit matrix, multiple transactions can share one count. In this
matrix, each column corresponds to an item while each row to a transaction.
A bit is set to 1 only when an item (word) corresponding to the column occurs
one or more times in a transaction (document) corresponding to the row, oth-
erwise it is set to 0. Note that duplicate documents are removed before they
enter into the matrix, and all items except frequent ones can be removed from
each transaction to reduce the size of a transaction in addition to the memory
overhead. When the counting procedure finishes, the bit matrix is destroyed
to save memory.

Inverse matching: During the matching step, for each transaction with av-
erage length m, the convenient way is to check its 2m subset in the prefix tree
where all candidates are stored. However, compared to the explosive subsets of
transactions, the number of candidate rules is much smaller. In order to count
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the matching times of each rule node to all transactions, we first project its
corresponding columns in the bit matrix, and then we perform an intersection
operation on these columns row by row. The total count of match times is the
number of rows where the intersection result is 1.

A significant performance gain can be achieved by adopting the above tech-
niques. Indeed, when the above two strategies are applied to 20NG corpus,
about 2-3 times speedup is achieved at the different parameter settings. Af-
ter collecting the global supports of rule antecedents in all categories, the
confidence and phi correlation measures can be computed easily. Rules with
confidence and phi correlation lower than the user-specified minimum confi-
dence and minimum phi correlation are removed. It may be difficult to tune
parameters. However, in our experience, setting the min-conf and the min-phi
to 0.52 and 0.10 respectively is good enough to prune ineffective rules while
keeping the accuracy of the end classifier, so both of these parameters are
transparent to end-users. The rationale of this pruning is quite straightfor-
ward: A selected rule must make an improvement on accuracy. For a rule r:
I ⇒ c, if the confidence is 0.5, the rule’s decision is random, whereas if it is
less than 0.5, it is worse than random. Hence, a threshold value higher than
0.50 is preferred. Rules either uncorrelated (φ = 0) or negatively correlated
(φ < 0) should be removed, and those rules which are of little correlation
(φ < 0.1) will make little contribution to later classification and also should
be removed.

4.2 Vertical Pruning with General-to-Specific Ordering

For the corpora involving a wide range of topics, as is common in many text
classification tasks, it is necessary to set the support threshold lower in order
to obtain a higher recall. However, this makes the number of candidate rules
larger. In order to obtain fast response to a classification request, it is impor-
tant to reduce the size of the rule set. Besides evaluating and pruning a single
rule with confidence and phi coefficient correlation metrics, we further inves-
tigate techniques referring to the discrimination properties of different rules,
and we propose an approach to efficiently remove rules with lower classification
power.

Definition 8 Given two rules r1: I1 ⇒ c, and r2: I2 ⇒ c, r1 is said to be
more general than r2 and r2 is said a specific rule of r1, if and only if I1 is
a subset of I2. Also, there is a general-to-specific (g-to-s) ordering between r1

and r2.

Although a number of criteria to quantify the value of rules have been sug-
gested, it is still difficult to find a balance point at which both the generality
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and the accuracy of a rule set are optimal. In this study, we compare rules in
an existing g-to-s ordering and remove more specific but less accurate ones.
This pruning strategy is known as a g-to-s pruning strategy and is also used
in [2, 9, 21]. However, our method is different from all previous works.

Horizontal Path

Root

............

......

I1 I2 ...... In

I1I2 I1I3 I2I3

I1I2I3 I1I2I4 I1I3I4 I2I3I4 ......

Vertical Path

Fig. 1. An example of prefix tree structure

Assuming the association patterns are stored in a prefix tree structure, as
shown in Fig.1, not only will rules along the vertical direction possibly exhibit
super-subset relationships, but also those along the horizontal direction. For
example, in Fig.1, along the vertical path, node I1 and node I1I2 exhibit
general-to-specific ordering, and so do node I1I2I3 and node I1I3 along the
horizontal direction.

The vertical check only needs one pass of depth first traversing over the whole
tree for all branches, while the horizontal check needs multiple passes travers-
ing over the whole tree for each rule node in the tree. So we only eliminate
ineffective specific rules along vertical direction, and we defer the selection step
until classification time. If multiple rules exhibiting general-to-specific order-
ing cover the test instance simultaneously, we only select the best matching
rule for the test instance. After the next sequential covering step in the train-
ing stage, the number of rules will be greatly reduced, so the testing time
will not increase too much. In this way, we aim to get trade-off between the
training and testing time.

4.3 Integrating Feature Selection into Rule Pruning Methods

In the following we will first show that, four popular used feature selection
metrics [39, 8, 15, 27, 31], DF, MI, IG, and χ2, can be expressed in the terms of
support and confidence measures. Based on these expressions, we then present
our algorithm to integrate feature selection into the rule pruning phase at the
end of this section. Through this method, a feature selection metric can be
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derived without the extra computational cost of a separate procedure once the
measures of each rule have been computed.

Feature selection techniques can generally be classified into two categories:
one selects features within each category, and the other does this among all
categories. To deal with the situation of class imbalance, feature selection is
performed by selecting the top scoring features based on a specific metric
separately for each class in this study, as it was done in [10].

The Transformation of Document Frequency

Document frequency simply measures the number of documents in which the
term t occurs [39]. From Definition 1, we immediately have:

DF (t, ci) = lsupp(t, ci) (1)

Lemma 1 Document frequency of a term t is identical to its local support.

The Transformation of Mutual Information

The mutual information criterion between the category ci and the term t is
defined as follows [39]:

MI(t, ci) = log
Pr(t ∧ ci)

Pr(t)Pr(ci)
(2)

Next, we show that global confidence can serve as a metric identical to mutual
information in the same class.

Lemma 2 Given two association patterns in the same category: r1: t1 ⇒ ci,
and r2: t2 ⇒ ci, if r1 has a higher confidence than r2, then r1 has a higher
mutual information than r2, vice versa.

Proof: Let |ci| be the number of documents with class label ci, |T | be the total
number of all documents, |ti| be the number of documents with class label ci

that contain term t, and |t| be the total number of all documents that contain
term t. Then we have:

MI(t, ci) = log
Pr(t ∧ ci)

Pr(t)Pr(ci)
= log((Pr(ci)Pr(t|ci))− log(Pr(t))− log(Pr(ci))

= logPr(t|ci)− logPr(t) = log(|ti|/|ci|)/((|t|/|T |)).

From Definition 6, the mutual information metric can be transformed into the
following equation:

MI(t, ci) = log(gconf(t ⇒ ci)/(|ci|/|T |)). (3)
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For two rules in the same category, they share the same denominator in equa-
tion 3. Since logarithm is a monotonically increasing function, the higher global
confidence implies the higher mutual information.

The Transformation of χ2

χ2 is a common statistic test that measures the lack of independence between
the category ci and the term t. Given A, the number of times t and ci co-occur,
B, the number of times t occurs without ci, C, the number of times ci occurs
without t, and D, the number of times neither t nor ci occurs, the χ2 statistic
is defined to be [39]:

CHI(t, ci) =
|T |(AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(4)

Lemma 3 Each component in χ2 is either a constant, or it is expressed in the
terms of support and confidence, so χ2 can be computed out as an elementary
function of support and confidence.

Proof: According to Definition 1 to 6, we have: A = |lsupp(t, ci)|, B =
|gsupp(t)| − |lsupp(t, ci)|, C = |ci| − |lsupp(t, ci)|, and D = |T | − |ci| − B =
|T | − |ci| − |gsupp(t)| − |lsupp(t, ci)|).

The Transformation of Information Gain

Information Gain (IG) measures the number of bits of information obtained
for category prediction by knowing the presence or absence of a term t. The
information gain of the term t is defined to be [39]:

IG(t) =−
n∑

i=1

Pr(ci)logPr(ci) + Pr(t)
n∑

i=1

Pr(ci|t)logPr(ci|t)

+Pr(t̄)
n∑

i=1

Pr(ci|t̄)logPr(ci|t̄) (5)

For information gain, we have the following lemma.

Lemma 4 Every component in the information gain formula is either a con-
stant or can be expressed in the terms of support and confidence. In other
words, information gain can be computed as a function of support and confi-
dence.

Proof: The first component in the information gain formula is a constant if the
training set is determined. Pr(t), the number of documents containing term t
divided by the total number of documents, is identical to the global support.
Pr(ci|t) is the number of documents with class label ci that also contain term
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t, divided by the total number of documents containing t. So we have:

Pr(t) = gsupp(t), Pr(t̄) = 1− gsupp(t)

Pr(ci|t) = |lsupp(t, ci)|/|gsupp(t)| = gconf(t ⇒ ci)

Pr(ci|t̄) = |lsupp(t̄, ci)|/|gsupp(t̄)| = (|ci| − |lsupp(t, ci)|)/(|T | − |gsupp(t)|)

4.4 The Rule Extracting Methods.

After several pruning steps and a sequential covering procedure, we remove
redundant and noisy rules. The remaining rules form the end classifiers. The
entire procedure of rule extracting, called FARE (Fast Accurate Rule Extract-
ing), is shown in Figure 2.

Fast Accurate Rule Extraction (FARE).
Input: Ri: a set of rules for category i. minconf : A confidence threshold.

minphi: A minimum φ coefficient. K: a feature set size.
Output: a subset of rules of the end classifier Ri.
Method:
1. Eliminate rules with confidence less than minconf or φ correlation

coefficient less than minphi from each Ri.
2. Find the set Fi which includes all items covered by rules with the

top K highest value of feature selection metric among all length-1
rules in each Ri

3. Eliminate rules containing items not included in Fi from each Ri.
4. For each rule r in Ri, find its specific rule r′ along the vertical

directions, if r′ has a confidence value lower than r, then remove
r′ from Ri.

5. Sort the rules in Ri according to their confidence in descending
order, while r is not the last rule in Ri, for each rule r ranked
first in Ri, if r can correctly classify at least one training instances,
then r is selected and the instances covered by r are removed from
the training data set T ; otherwise r is removed from Ri. If T is
empty after removing training instances, then stop the iteration
and remove all the rules ranked behind current r from Ri.

Fig. 2. Algorithm for Rule Extraction.
In Figure 2, each rule is evaluated using gconf and phi criteria in line 1. Line
2 computes the value of the metric for each of the features, and features are
then ranked in descending order. The K features corresponding to the K best
values of metric are then selected, and rules containing items not belonging
to the feature set are removed in line 3. Line 4 executes a vertical general-to-
specific pruning. At the end of the rule extraction stage, a sequential covering
technique is adopted to select the rules in line 5.
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4.5 Adaptively Classifying New Documents

Once the classifiers have been constructed, they can be used to predict new
documents. The first issue that should be considered in prediction is whether
to use multiple rules. In general, a decision made by multiple rules is more
reliable. Therefore, in our method, we exploit multiple rules for predicting a
test document. However, since we only prune more specific rules with lower
confidence during the rule pruning stage, multiple rules having general-to-
specific ordering may match the same document. For example, a document in
the ′comp.sys.ibm.pc.hardware′ category of 20NG may be covered by two rules
{ISA} and {ISA, controller} at the same time, and the confidence values for
these two rules are 71.58% and 90.91% respectively. In such a case, we should
only choose the second rule to score the test document since the second one
is more specific and more reliable. In contrast, if no other rules but {ISA}
and {bus, SCSI} cover another document in this class, then both rules are
combined to label this document since there is no general-to-specific ordering
between these two rules.

The second issue is how to score a test document. A simple score model is
just to sum matching rules’ confidence values, as was done in [2]. However,
in case of the skewed class distribution, the number of extracted rules and
the distribution of their confidences in different classifiers often vary over a
wide range. For a classifier consisting of a few hundred rules whose confidences
are distributed from 0.52 to 1, and a classifier consisting of only tens of rules
whose confidences distributed from 0.8 to 1, the former is more likely to have
a higher recall but a lower precision while the latter is more likely to have
a higher precision but a lower recall. We utilize two approaches to solve this
problem. The first is to set a bound on confidence. Once the rule with the
maximum confidence maxconf is found, we set a bound by subtracting from
maxconf a threshold value τ . Only rules that have confidences higher than this
bound can participate in scoring the test document. The second strategy we
adopt is to normalize the scores by a normalization factor. The normalization
factor (NormFactor) for each category, introduced to handle the rule number
discrepancy among different classifiers, is defined as the number of rules in
this classifier divided by the total number of rules in all classifiers.

The third issue is how to label the test cases without any applicable rule. Our
solution to this problem is to merge all antecedents of a classifier into one set
which corresponds to a term set of a category called ClassTermSet. We then
compute the intersection number of ClassTermSet and the test document.
The class with the maximum intersection number is assigned to the article.
The basic idea behind this heuristic is to increase the matching possibility
between the test case and the rules. We accomplish this by combining all rules
in one classifier into a virtual big rule, and then counting the terms common
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Algorithm for Associative Text Categorization
Input: D: A test document data set.

Ri : A set of rule classifiers.
τ : a bound value for maxconf
δ : a parameter for multi-label classification.

Output: Classification Results.
Method:
1. Mi = ∅, Score[i] = 0
2. foreach document d in D
3. foreach rule r ∈ Ri

4. if (r.antecedent ⊆ d)
5. Mi = Mi ∪ {r}
6. foreach rule r ∈ Mi

7. foreach rule r′ ∈ Mi

8. if (r.antecedent ⊂ r′.antecedent)
9. if (r.conf < r′.conf )
10. Mi = Mi - {r}
11. else
12. Mi = Mi - {r′}
13. find the rule rm with maxconf in all Mi

14. foreach rule r ∈ Mi

15. if (r.conf ≥ rm.conf - τ)
16. Score[i] = Score[i] + r.conf
17. normalize Score[i] with NormFactor[i]
18. find the maxScore in all Score[i]
19. if (Score[i] ≥ maxScore * δ) assign class label i to d

Fig. 3. Algo. for Associative Text Categorization

to such a big rule and the test document. If the intersection is still null, we
then assign the majority class label in the training set or a random one to the
test document, depending on whether the training example number is skewed
or evenly distributed.

Figure 3 illustrates the algorithm for associative text categorization. In this
figure, line 1 initiates some variables, lines 2 - 5 find applicable rules of doc-
ument d in all classifiers. Lines 6 - 12 find and then select the rule with the
highest confidence among all applicable rules that exist with general-to-specific
ordering. Line 13 finds the rule with maximum confidence value. Lines 14 -
16 select rules whose confidence is beyond the confidence bound. Lines 17 -
18 normalize the score of selected rules in each classifier and then find the
max score value. Line 19 attaches the class label to the new document. For a
single-labeled classification task, the threshold δ is just 1 and the class label
with the highest score is assigned to this document. For a multi-labeled task,
only those with a score exceeding the highest score timing the user-specified
value of parameter δ are assigned to the document.
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5 Experimental Results

In this section, we present extensive experimental results to show the key
design issues related to associative text categorization (ATC) and the perfor-
mance of our proposed algorithm. Specifically, we demonstrate: (1) the choices
of association patterns for ATC, (2) the effect of rule-pruning methods, and
(3) a breadth comparison of ATC algorithms.

5.1 Experimental Setup

Experimental Data Sets: We have conducted experiments on three real-
world datasets including Reuters-21578, 20NewsGroup (20NG), and WebKB,
which are widely used in text categorization research. For the Reuters-21578
data set [20], we select documents from the top-10 largest categories of the
Reuters-21578 document collection. We follow the ’ModApte’ split which re-
sults in a training set of 9603 documents and a test set of 3299 documents.
Like other researchers [2, 8, 9, 34], we use the ten largest categories for our
study. The 20 Newsgroups (20NG) data set contains approximately 20,000
articles collected from the Usenet newsgroups collection. We use the ’bydate’
version [18] of this data set along with its training/test split. The total number
of documents in this version is 18846, with a training set size of 11314 and test
set of 7532. Finally, the WebKB data set [26] contains web pages, which are
divided into seven pre-defined categories. Like many other studies [29, 27, 3],
only the four largest categories: student, faculty, course, and project, together
containing a total of 4199 pages, are used in our experiment. For each class,
we randomly select 80% (3366 web pages) as training data, and we use the
remaining 20% (833 web pages) as test data. Both the training and test data
consist of four of these universities plus the miscellaneous collection. Such a
training/test split is recommended since each university’s pages have their
idiosyncrasies, and it is easier to train and test on the web pages from the
same university than from different universities. For all data sets, we used a
stop-list to remove common words [11]. The resulting vocabulary of Reuters-
21578, 20-NewsGroup ByDate, and WebKB-4 has 14091, 45120, and 17865
words respectively.

Skewness of Experimental Data Sets The three data sets have their own
characteristics, and the corresponding classification tasks differ significantly in
their difficulty. Reuters corpus is highly skewed in class sizes. Among the top
ten categories, the most common category contains 2877 articles, while the
smallest contains only 181 articles. Similar to Reuters-21578, the WebKB-4
data set is also skewed. The largest category contains 1641 web pages, while
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the smallest one contains 504 web pages. Messages in the 20NG data set
are nearly evenly distributed in all 20 classes. However, different numbers of
training examples in different classes are not the only problem responsible
for the difficulty of the learning task. The skewed word distribution in one
class is also to blame for the loss of performance of learning algorithms. For
example, the term sets {div} and {loss, qtr} in the earn class of Reuters, have
a local support value of 17.8% and 21.1% respectively and both of them have a
global confidence value of 100%. There are many other similar term sets in the
Reuters data set. In contrast, although the distribution of training examples
in 20NG is nearly even, there are no such words of both high frequency and
high differentiate capability in most categories in 20NG data set. Previous
work in [19] introduced a new type of class normalization called term-length
normalization to solve the imbalance problem. The method proposed there
also exploits term distribution among documents in the class, but is designed
for a centroid-based classifier.

Table 3

Evaluation Measures

micro-avg macro-avg

Precision
∑n

i=1
(TPi)∑n

i=1
(TPi+FPi)

∑n

i=1

TPi
TPi+FPi
n

Recall
∑n

i=1
(TPi)∑n

i=1
(TPi+FNi)

∑n

i=1

TPi
TPi+FNi
n

BEP microPre+microRec
2

∑n

i=1
BEP (ci)

n

F1 2∗microPre∗microRec
microPre+microRec

∑n

i=1
F1(ci)

n

Evaluation Measures: Table 3 shows some commonly used measures, which
are based on the concepts of precision (Pre) and recall (Rec). Given a category
ci, let TPi be the number of items correctly placed in ci, FPi be the number
of items incorrectly placed in ci, FNi be the number of items which belong
to ci but are not placed in ci, the precision Pre(ci) = TPi

TPi+FPi
, and Rec(ci) =

TPi

TPi+FNi
. F1-measure combines Recall and Precision and is defined as F1(ci) =

2∗Pre(ci)∗Rec(ci)
Pre(ci)+Rec(ci)

. Finally, the break even point (BEP) [15] is the point where

precision equals recall and is computed as reported in [3, 9]. Given a set of
Categories C = {c1, c2, . . . , cn}, the micro-averaged and macro-averaged [32]
formulae for Pre, Rec, BEP, and F1 are listed in Table 3.

Experimental Platform: All experiments were performed on a PC with
Pentium IV 1.7GHz CPU and 1.0Gbyte of memory running the Windows
2000 Operating system.
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5.2 The Choices of Association Patterns

We first demonstrate the impact of minimum support thresholds on the perfor-
mance of associative text classification (Abbr. ATC ) using frequent itemsets
(ATC-FIs).
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Fig. 5. (a) A Comparison of Candidate Rule Number (b) A Time Comparison of
ATC using FIs and ATC using HPs on WebKB Data Set

Figure 4(a) and Figure 4(b) show microBEP values and training time at differ-
ent minimum support thresholds on Reuters, 20NG, and WebKB, respectively.
In the figure, we can observe: 1) With the decrease of minimum support thresh-
olds, the microBEP values increase steadily for all three data sets. This is due
to the fact that low support thresholds can lead to more candidate rules and
larger vocabulary coverage; 2) The training time increases very quickly on all
data sets as the minimum support thresholds decrease.

Earlier research [14] has revealed that text categorization can benefit from
larger vocabulary size. This is also true for associative text categorization as
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illustrated above. However, the improvement of microBEP is at the cost of
losing efficiency. Can we find a way which will keep the competent quality but
substantially reduce the amount of candidate rules? With this motivation,
we adopt hyperclique patterns (HPs) instead of frequent itemsets (FIs) as
candidates in this study. We choose HPs for two reasons: 1) The hyperclique
patterns have a strong affinity property [36]. 2) The number of hyperclique
patterns is much smaller than that of frequent itemsets, as is demonstrated in
Figure 5(a).

The experimental results support our choice. Table 4 shows a BEP comparison
of ATC using FIs (ATC-FIs) and ATC using HPs (ATC-HPs). In the table,
we can see that both the micro and macro values of ATC-HPs are better than
those of ATC-FIs.

Table 4
A Micro-BEP and Macro-BEP Comparison of ATC-HPs and ATC-FIs

Micro-BEP Macro-BEP

Data Sets ATC-HPs ATC-FIs ATC-HPs ATC-FIs

Reuters 92.57 92.54 87.50 87.07

20NG 70.91 70.58 69.42 69.29

WebKB 89.56 88.96 88.73 87.35

Furthermore, as shown in Figures 6(a),(b) and Figure 5(b), the training time
of ATC-HPs is significantly less than that of ATC-FIs on all observed data
sets. The computation savings become more dramatic when minimum support
thresholds decrease. This indicates that, with the help of hypercliques, we
can get better results with a larger vocabulary size by setting minsup lower,
especially for a sparse dataset such as 20NG.
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Fig. 6. A Time Comparison of ATC using FIs and ATC using HPs (a) 20NG (b)
Reuters.

In summary, hyperclique patterns are a better candidate for ATC than fre-
quent itemsets, since it is more efficient to use hyperclique patterns and ATC-
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HPs retain the competent classification performance.

5.3 The Effect of Rule-Pruning Methods

In this subsection, we evaluate the effect of rule-pruning methods on the clas-
sification performance. Specifically, there are three designed approaches in
this experiment. The first approach, called ’Pure’, is a pure version of ATC
without applying any rule-pruning strategies. The second is a complete ap-
proach, called ’Complete’, which integrates both general-to-specific pruning
and receiver deciding pruning into the ATC method. Finally, we also de-
signed a third approach, called ’Vertical’, which adopts a general-to-specific
pruning strategy along vertical paths in the prefix tree when selecting rules
and a receiver deciding pruning strategy when predicting new instances.

Table 5 shows the comparison of the micro-avg F1 measures obtained using the
above three approaches. As can be seen, both V ertical and Complete achieve
better micro-avg F1 values than the Pure approach at various different mini-
mum support thresholds. This reveals that general-to-specific pruning can help
eliminate noise rules, and thus improve the classification performance of ATC.
In addition, we observe that V ertical performs slightly better than Complete.
Finally, similar results have also been observed on Reuters and 20NG data sets.

Table 5
A Comparison of Pruning Methods on the WebKB Data Set.

minsup Pure Vertical Complete

0.03 88.84 89.20 88.96

0.04 88.84 90.16 90.16

0.05 88.12 88.96 88.96

0.08 84.51 85.59 85.47

0.10 84.15 84.99 84.99

We also investigated the computational performance of the above three ap-
proaches. Figures 7(a),(b) and Figure 8(a) show the training time of three
approaches. We can see that the complete approach (curve C) is extremely
time-consuming compared to the other two approaches. We also observe that
the difference between Pure (curve P ) and V ertical (curve V ) is not signifi-
cant. For instance, the training time of vertical and pure pruning at minsup
value 0.03 on WebKB is about 160s, while it takes near 3000s for a complete
pruning. Hence, V ertical performs the best in terms of the computational
performance and classification performance.
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Fig. 8. (a) A Time Comparison of Pruning Methods on WebKB Data Set (b) The
Effect of Feature Selection on WebKB Data Set

5.4 Feature Selection for Associative Text Categorization

We performed experiments with different feature selection methods to examine
the proper metric for associative text classification tasks and the vocabulary
size related to a certain data set.

Figures 9(a),(b) and Figure 8(b) report the micro-average F1 or BEP of sev-
eral feature set sizes. From these figures, one can clearly see that, χ2 criterion
performs best among four major metrics on all three data sets, especially at
low feature levels. At the outset, this finding seems to differ from the fact that
χ2 is unreliable for rare words. However, this phenomenon can be explained
as follows: the candidate rules of an associative classifier come from frequent
itemsets, which means that the words with low support (low document fre-
quency) have been eliminated before we select features. The performance of
χ2 here is actually boosted by the combination with DF.
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Fig. 9. The Effect of Feature Selection: (a) 20NG (b) Reuters

We further perform t-test to compare two metrics using the paired F1 values
for individual categories of 20NG. Table 6 and Table 7 show the significance
tests for small feature set sizes. The results with significant improvements (P
value < 0.05) are shown in bold in these two tables. From these tables, we
can see that the difference between CHI and other metrics is considered to be
extremely statistically significant for a small number of features.

Table 6
Statistic significance in metrics at feature set size 10.

DF 10 IG 10 MI 10

CHI 10 0.0001 0.0001 0.0001

MI 10 0.6874 0.0042

IG 10 0.0039

Table 7
Statistic significance in metrics at feature set size 30.

DF 30 IG 30 MI 30

CHI 30 0.0001 0.0001 0.0001

MI 30 0.7155 0.0659

IG 30 0.1761

Other noticeable observations from Figure 9 and Figure 8(b) are:

(1) MI has the overall worst performance in most of cases, consistent with
prior works in other classification methods [39].

(2) DF is sensitive to the characteristic of the corpus. On one hand, it per-
forms even worse than MI on 20NG, which is a diversified dataset. On the
other hand, it yields the best performance on the Reuters data set, for
which is well known that very few frequent words are sufficient to yield
high accuracy.

(3) On all of the datasets, the graphs for the IG, MI, and CHI metrics exhibit
very similar behavior when the feature number is greater than 250.
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We found that associative text categorization can also benefit from feature
selection. Extensive empirical evaluation on the three data sets shows that the
best feature number for Reuters, 20NG, and WebKB at the specific support
setting is around 300, 450, and 400, respectively.

5.5 Classifier Comparison

In this subsection, we compare ATC-HPs with some state-of-the-art text cat-
egorization algorithms. Table 8 shows the classification results of various clas-
sification methods on the Reuters data set. In the table, the overall best result
for multi-class categorization of Reuters with a SVM classifier is reported in
[8]. The results in Table 8 for Näıve -Bayes, Bayes Net, Decision Tree, and
Linear-SVM were obtained from [8]. While the microBEP values of Reuters
obtained by other associative text classifiers such as HARMONY [34] and
SAT-MOD [9] are also equal to or slightly better than that achieved by SVM,
the macroBEP values of these two methods (84.5% and 85.1%) are much less
than 87.1% of SVM. In contrast, both the micro-avg (92.6%) and the macro-
avg BEP (87.5%) values of our method are better than those of SVM and
any other classifiers. Note that micro-avg and macro-avg values emphasize
the ability of a classifier on common and rare categories respectively.

Table 8
A Comparison Result on the Reuters Data Set (Parameters: minsup=0.04, τ=0.60,
δ=0.35, K=280).

category
ATC

-HPs

ARC

-BC

HAR

MONY

SAT

-MOD

Näıve

Bayes

Bayes

Net

Decision

Trees

Linear

SVM

acq 96.5 90.9 95.3 95.1 87.8 88.3 89.7 93.6

corn 86.2 69.6 78.2 71.2 65.3 76.4 91.8 90.3

crude 87.4 77.9 85.7 90.6 79.5 79.6 85.0 88.9

earn 96.6 92.8 98.1 97.4 95.9 95.8 97.8 98.0

grain 85.8 68.8 91.8 91.3 78.8 81.4 85.0 94.6

interest 78.5 70.5 77.3 74.9 64.9 71.3 67.1 77.7

money-fx 84.4 70.5 80.5 86.6 56.6 58.8 66.2 74.5

ship 87.3 73.6 86.9 83.6 85.4 84.4 74.2 85.6

trade 90.1 68.0 88.4 84.9 63.9 69.0 72.5 75.9

wheat 82.3 84.8 62.8 75.2 69.7 82.7 92.5 91.8

micro-avg 92.6 82.1 92.0 92.2 81.5 85.0 88.4 92.0

macro-avg 87.5 76.7 84.5 85.1 74.8 78.8 82.2 87.1

We also compare the performance of ATC-HPs and SVM using the WebKB
data set. In this experiment, we used C-SVC in LIBSVM [5] as the SVM tool
and choose Radial Basis Functions as the kernel function. Table 9 shows the
classification performance of ATC-HPs on the WebKB data set. In contrast,
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Table 9
The Results of ATC-HPs on the WebKB Data Set (Parameters: minsup=0.04, τ =
0.45, K=400; Training Time: 105 sec; Testing Time: 4 Sec)

category Precision Recall F1

course 90.58 94.02 92.27

faculty 90.65 87.00 88.79

project 92.11 70.00 79.55

student 89.20 96.32 92.63

micro-avg 90.16 90.16 90.16

macro-avg 90.64 86.83 88.31

Table 10 shows the best results by SVM, which is among the results under
the combination of different feature set size and different γ settings. For a fair
comparison, we also use information gain as a feature selection metric in the
SVM experiment. If we compare the results in the above two tables, we can
observe that the macro-F1 (88.39%) of SVM is slightly better than that of
ATC-HPs (88.31%). However, the micro-F1 (90.16%) of ATC-HPs is better
than that (89.68%) of SVM. Also, SVM needs an additional feature selection
procedure, which takes up to 83 seconds.

Table 10
The Results of SVM on the WebKB Data Set (Parameters: γ=0.01, K=450; Feature
Selection Time: 83 sec; Training Time: 328 sec; Testing Time: 14 sec).

category Precision Recall F1

course 84.19 88.34 86.21

faculty 81.44 79.00 80.20

project 97.18 93.48 95.29

student 92.00 91.72 91.86

micro-avg 89.68 89.68 89.68

macro-avg 88.70 88.13 88.39

Table 11 shows the results of ATC-HPs on the 20NG data set. As can be seen,
the micro-F1 value of ATC-HPs is 75.77%. Our result is nearly equal to the
value (around 76%) in [38], which is achieved by applying SVM and a complex
feature selection method called OCFS. Since we do not have the source code
from [38], we cannot compare the computation performance. However, due to
the nature of SVM, the computation efficiency should be a concern for OCFS.

In summary, ATC-HPs have an equivalent or better performance for text cat-
egorization compared to SVM, ATC-FIs, and other classification methods.
In addition to this, ATC-HPs have computational advantage over SVM and
ATC-FIs. Most importantly, ATC-HPs are rule-based classifiers, and thus are
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Table 11
The Results of ATC-HPs on the 20NG-Bydate collection (Parameters: minsup=0.02,
τ = 0.15, K=450).

class Precision Recall F1

alt.atheism 61.56 66.77 64.06

comp.graphics 47.48 65.30 54.98

comp.os.ms-windows.misc 69.16 77.61 73.14

comp.sys.ibm.pc.hardware 59.71 62.76 61.19

comp.sys.mac.hardware 81.15 77.14 79.09

comp.windows.x 73.45 72.15 72.80

misc.forsale 80.76 81.79 81.27

rec.autos 77.50 78.28 77.89

rec.motorcycles 84.83 92.71 88.60

rec.sport.baseball 88.81 91.94 90.35

rec.sport.hockey 93.25 93.48 93.37

sci.crypt 82.20 88.64 85.30

sci.electronics 70.93 40.97 51.94

sci.med 84.32 78.79 81.46

sci.space 85.10 85.53 85.32

soc.religion.christian 75.43 77.89 76.64

talk.politics.guns 69.59 84.89 76.49

talk.politics.mideast 91.52 80.32 85.55

talk.politics.misc 77.45 50.97 61.48

talk.religion.misc 67.36 51.79 58.56

micro-avg 75.77 75.77 75.77

macro-avg 76.08 74.99 74.97

semantic-aware classifiers. The categorization results from ATC-HPs are much
more easy to understand and interpret than those of SVM. Meaningful descrip-
tion of the classifiers is clearly desirable for end users. Over the past decades,
a great deal of attention has been paid to developing semantic preserving ap-
proaches. By using a singular value decomposition of the term-by-document
matrix, Latent Semantic Indexing (LSI) [6] can provide information beyond
the lexical level and handle effectively with the synonymy problem. Latent
Dirichlet Allocation (LDA) [4] uses the Dirichlet distribution to model the
distribution of topics for each document. The words in the documents are
generated by selecting a topic from this distribution and then choosing a
word from that topic. Through this process, LDA can reduce documents to
a fixed set of real-valued features and provide topic-based representation of
documents. Though these methods have been proved to be very effective for
dimension reduction, they need to be combined with some methods such as
SVM or kNN for a classification task, That is to say, the classification pro-
cedure is still out of the user’s control. In contrast, an associative classifier
provides users with the opportunity to view or adjust the process of classifi-
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cation.

Table 12
Sample Classification Rules

Classification Rules Local Support Global Confidence

{inc, commission, shares} ⇒ acq 6.1% 97.1%

{merger, shareholders} ⇒ acq 5.1% 96.6%

{maize, cereals } ⇒ corn 4.4% 100.0%

{agriculture, corn, price } ⇒ corn 9.4% 100.0%

{west, barrel, crude } ⇒ crude 5.1% 100.0%

Table 12 shows some classification rules identified from the Reuters collection
using our approach. As can be seen, the classification rules in the table are easy
to understand and can be used to interpret the text categorization results. For
instance, in the table, there is a classification rule {maize, cereals } ⇒ corn
with 4.4% local support and 100.0% global confidence.

6 Conclusions

In this paper, we exploit hyperclique patterns for associative text categoriza-
tion. Specifically, we first demonstrate why the hyperclique pattern is a bet-
ter candidate for text categorization than frequent itemsets. Along this line,
we design a new algorithm for text categorization using hyperclique patterns.
This algorithm deploys a vertical rule-pruning method, which can greatly help
reduce the computational cost.

Also, we proposed a feature selection method based on several widely used
metrics, which can be mathematically represented in the terms of support
and confidence. Moreover, we have integrated this feature selection method
into the rule pruning step of our proposed algorithm.

Finally, our experiments on several real-world document data sets showed that
our algorithm achieves much better computational performance than state-of-
the-art approaches while retaining classification accuracy.
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