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AbstratA hyperlique pattern is a new type of assoiation pattern that ontains itemswhih are highly aÆliated with eah other. Spei�ally, the presene of an item inone transation strongly implies the presene of every other item that belongs tothe same hyperlique pattern. In this paper, we present an algorithm for miningmaximal hyperlique patterns, whih spei�es a more ompat representation ofhyperlique patterns and are desirable for many appliations, suh as pattern-basedlustering. Our algorithm exploits key advantages of both the Depth First Searh(DFS) strategy and the Breadth First Searh (BFS) strategy. Indeed, we adapt theequivalene pruning method, one of the most eÆient pruning methods of the DFSstrategy, into the proess of the BFS strategy. Our experimental results show thatthe performane of our algorithm an be orders of magnitude faster than standardmaximal frequent pattern mining algorithms, partiularly at low levels of support.Key words: Assoiation Rules, Hyperlique Patterns� Corresponding author.Preprint submitted to Journal of Information Siene 7 July 2006



1 IntrodutionThe assoiation-rule mining problem [3, 2℄ is onerned with �nding relation-ships among items in a large-sale data set. In the past deade, the assoiation-rule mining has been the subjet of extensive researh in data mining [1, 3, 2,4, 10, 14, 11℄. Given a set of transations, the objetive of the assoiation-rulemining is to extrat all rules of the form X ) Y , where X and Y are setsof items, whih satisfy user-spei�ed minimum support and minimum on�-dene thresholds. Support measures the fration of transations that obey therule, while on�dene provides an estimate of the onditional probability thata transation ontains Y , given that it ontains X. Both metris are usefulbeause they provide an indiation of the strength and statistial signi�aneof an assoiation rule.Standard assoiation-rule mining algorithms have the emphasis on disoveringfrequent patterns. However, these approahes may lose eÆieny when thesupport threshold is low. Also, frequent patterns usually ontain objets whihare weakly related to eah other [18℄. Instead, a hyperlique pattern [18℄ wasproposed as a new type of assoiation patterns that ontain items that arehighly aÆliated with eah other. Spei�ally, the presene of an item in onetransation strongly implies the presene of every other item that belongs tothe same hyperlique pattern. The h-on�dene measure aptures the strengthof this assoiation and is de�ned as the minimum on�dene of all assoiationrules of an itemset.An itemset is a hyperlique pattern if the h-on�dene ofthis pattern is greater than a user-spei�ed minimum h-on�dene threshold.A hyperlique pattern is a maximal hyperlique pattern if no superset ofthis pattern is a hyperlique pattern.Maximal hyperlique patterns speify a more ompat representation of hyper-lique patterns and are desirable in many appliation domains, suh as patternpreserving lustering [17℄, whih an easily produe interpretable lusteringresults. However, to our best knowledge, there are no eÆient algorithms formining maximal hyperlique patterns in the literature. As a result, the ob-jetive of this paper is to design an eÆient algorithm for mining maximalhyperlique patterns in large-sale data sets.In general, for the assoiation pattern mining, there are two searh strategies:Breadth First Searh (BFS) and Depth First Searh (DFS). The BFS strat-egy performs pattern searh in a level-wise manner. In other words, it �rstdisovers all the size-1 patterns at level 1, followed by all the size-2 patternsat level 2, and so on, until no pattern is generated at a partiular level. Ifmining maximal hyperlique patterns using the BFS strategy, we ould applyPrevalene Pruning; that is, an itemset an be pruned if one of its subset isnot a hyperlique pattern. This pruning is based on the anti-monotone prop-2



erty of support and h-on�dene measures. The limitation of this strategy isthat we need to generate all the subsets of a maximal hyperlique pattern. Inontrast, the DFS strategy avoids generating all the intermediate patterns andan diretly �nd maximal hyperlique patterns. For the DFS strategy, a lot ofpruning methods, suh as equivalene pruning, leftmost pruning, full pruning,and dynami ordering [4, 6, 20℄, an be applied. However, the DFS strategyannot apply the Prevalene Pruning method, sine we do not generate allsubsets of a andidate pattern for this strategy.
NULL

1 2
1st Phase:
BFS 3 4

1, 4

1, 2, 3, 4

1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4

3, 42, 42, 31, 2 1, 3
2nd Phase:
DFSFig. 1. An Illustration of the Hybrid Mining Method.In this paper, we exploit key advantages of both the DFS strategy and the BFSstrategy and design a hybrid Maximal Hyperlique Pattern (MHP) miningalgorithm. Figure 1 illustrates our MHP algorithm, whih has two phases. Inthe �rst BFS phase, for a given depth L, we use the Apriori-like approah [2℄to generate all the size-L hyperlique patterns. In the seond phase, the MHPalgorithm takes the DFS searh strategy. All the DFS pruning methods areused in this phase. Also, sine we have all the size-L hyperlique patterns,an itemset an be pruned by prevalene pruning method if any of its size-Lsubset has not been generated. Considering the DFS strategy is muh moreeÆient than the BFS strategy for �nding maximal patterns and the majoromputation savings of the DFS strategy is due to the equivalent pruningmethod [1, 6, 20℄, we adapt the equivalent pruning method into our algorithm.In addition, we prove the orretness and ompleteness of our MHP algorithm.Finally, our experimental results show that the MHP algorithm an be ordersof magnitude faster than maximal frequent pattern mining algorithms, suhas MAFIA [6℄, partiularly at low level of support.Related works:Agrawal et al. [3, 2℄ have proposed the lassial DFS and BFS algorithmto disover frequent patterns. Some other researhers proposed the onepts3



of maximal [6, 4℄ and losed frequent patterns [20℄. These frequent patternmining algorithms are not very e�etive for identifying patterns at a low levelof support.Reently, there has been growing interest in developing tehniques for min-ing assoiation patterns without support onstraints. For example, Wang etal. proposed the use of universal existential upward losure property of on-�dene to extrat assoiation rules without speifying the support thresh-old [15℄. Cohen et al. have proposed using the Jaard similarity measure,sime(x; y) = P (x\y)P (x[y), to apture interesting patterns without using a minimumsupport threshold [7℄. Also, many researhers developed alternative tehniquesto push various types of onstraints into the mining algorithm [5, 9, 12℄. Theseapproahes greatly redue the number of patterns generated and improve om-putational performane by introduing additional onstraints, but fail to o�erany spei� mehanism to eliminate weakly-related patterns involving itemswith di�erent support levels.Xiong et al. [18℄ introdued the onept of hyperlique patterns, whih in-lude items strongly related with eah other. An h-on�dene measure wasused to identify hyperlique patterns. This measure possesses the desired anti-monotone and ross-support properties, whih an be helpful for identifyingstrongly orrelated items even at low levels of support. In this paper, we fouson �nding maximal hyperlique patterns.When Agrawal et al. [3℄ proposed the problem of assoiation-rule mining,they provided an Apriori algorithm for mining frequent patterns. The Aprioriis a basi BFS approah. Later on, Agarwal et al. [1℄ designed a more ad-vaned BFS algorithm, alled tree projetion. Several optimal methods havebeen implemented in this BFS algorithm. They also mentioned the possibil-ity of a hybrid searhing strategy, but have not put the idea into pratie.Compared to the BFS strategy, the DFS strategy is more �t to �nd maximalfrequent patterns. There are many optimal pruning methods whih prune non-maximal patterns to redue the searhing spae [4, 6, 20℄. Burdik et al. [6℄analyzed the performanes of these methods and showed that the equivelantpruning method ould greatly speed up the proessing proedure. Han et al.[10℄ onstruted a very ompat struture, FP tree, to store the information ofpatterns. Avoiding generating andidate patterns, FP tree ould extrat maxi-mal patterns more eÆiently. Zaki [19℄ analyzed the performanes of top-downand bottom-up searhing strategies for mining maximal frequent patterns anddesigned Clique and Elat algorithms for this purpose.Overview: The remainder of this paper is organized as follows. Setion 2de�nes some basi onepts. In setion 3, we propose a framework for miningmaximal hyperlique patterns. We desribe the algorithm details and prove theorretness and ompleteness of the algorithm in Setion 4. Our experimental4



results are presented in Setion 5. Finally, in setion 6, we draw onlusionsand suggest future work.2 Basi ConeptsTo failitate our disussion, we �rst present some basi onepts in this setion.De�nition 1 The h-on�dene of an itemset P = fi1; i2; � � � ; img, denotedas honf(P ), is a measure that reets the overall aÆnity among items withinthe itemset. This measure is de�ned asminfonffi1 ! i2; : : : ; img; onffi2 !i1; i3; : : : ; img; : : : ; onffim ! i1; : : : ; im�1gg, where onf is the traditionalde�nition of assoiation rule on�dene [2℄.De�nition 2 An itemset P is a hyperlique pattern if support(P ) � �and honf(P ) � H, where � is a user-spei�ed minimal support threshold andH is a user-spei�ed minimal h-on�dene threshold. When the h-on�denethreshold equals to 0, hyperlique patterns beome frequent patterns.De�nition 3 For a hyperlique pattern, HP, if none of its supersets is a hy-perlique pattern, we say HP is a Maximal Hyperlique Pattern (MHP).This means, a pattern P 2 MHP () P 2 HP and 8 P'� P, P' =2 HP.De�nition 4 The order of items: for two items i1 and i2, if support(i1) �support(i2) and the name of i1 is preeding of the name of i2 in the lexio-graphi order, we say i1 is lexiographi before i2. This an also be denotedas i1 <i2.In the rest of this paper, we arrange items in eah pattern in order, unlessotherwise noted.De�nition 5 The order of patterns: for two di�erent patterns P1 = fi1; i2; :::ikgand P2 = fi01; i02; :::; i0lg, if (P1 � P2) _ (9 m, m < k and m < l, 8n; 1 � n �m� 1; in = i0n and im < i0m), we say P1 lexiographi before P2. It an alsobe denoted as P1<P2.3 A Framework for Mining Maximal Hyperlique PatternsIn this setion, we present a framework of two-phase maximal hyperliquepattern mining. In the �rst BFS phase, we retrieve all the size-L hyperliquepatterns. In other words, the �rst L levels of the lexiographi tree [13℄ will5



be searhed using Apriori-like methods [2℄. In the seond phase, we apply theDFS strategy to extrat all the Maximal Hyperlique Patterns (MHP).For better illustration, we onstrut a small demo dataset. Table 1 shows thissample data set and Table 2 shows the support of items in the sample data set.For a minimumSupport Threshold (�)= 0.15, and a minimumH�onfideneThreshold (H)= 0.55, Figure 2 illustrates the two-phase maximal hyperliquepattern mining proess on the sample data set.3.1 Basi De�nitionsFor a pattern, there are three onepts related to items of this pattern: theitem set, the equivalene item set, and the tail item set. We �rst introduethese three onepts.De�nition 6 The Item Set (P .item) of a pattern P is the set of all theitems in the pattern.De�nition 7 The Tail Item Set (P .tail) of a pattern is the set of itemswhih an be used to generate the super pattern of this pattern in the DFSphase.In the DFS phase, we retrieve all the patterns by generating the super patternsof a given pattern(P ) with its tail items [13, 1℄. All tail items are inluded inP .tail. As an be seen in Figure 2, f3,4,7g is a hyperlique pattern, and items8 and 9 ould be used to generate super patterns of f3,4,7g, sine all the size-3sub patterns of f3,4,7,8g and f3,4,7,9g are hyperlique patterns. So the tailitem set of f3,4,7g is f8,9g.De�nition 8 For a pattern P , if an item appears in all the transations thatontain P .item, but not in P .item, we say that this item is an equivaleneitem with P .For instane, item 5 always appears in every transation whih inludes pat-tern f1,2g. So, 5 is an equivalene item of pattern f1,2g.Lemma 1 If an item is an equivalene item of a pattern, it should also be anequivalene item of its super patterns.If an item i is an equivalene item of P , but support(P )support(i) < H, the union of figand P .item is not a hyperlique pattern. We an prune this kind of equivaleneitems.De�nition 9 If an item is an equivalene item of a pattern P , and the6



Table 1A Sample Data Set TID Items1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 112 3, 4, 7, 8, 9, 113 3, 4, 5, 6, 7, 8, 9, 114 1, 2, 3, 4, 5, 6, 7, 8, 9, 115 1, 3, 4, 7, 8, 96 2, 3, 4, 7, 87 3, 4, 7, 98 3, 4, 8, 99 3, 7, 8, 910 4, 7, 8, 9Table 2Support of Items in the Sample Data SetItem TID Support1 1, 4, 5 0.32 1, 4, 6 0.33 1, 2, 3, 4, 5, 6, 7, 8, 9 0.94 1, 2, 3, 4, 5, 6, 7, 8, 10 0.95 1, 3, 4 0.36 1, 3, 4 0.37 1, 2, 3, 4, 5, 6, 7, 9, 10 0.98 1, 2, 3, 4, 5, 6, 8, 9, 10 0.99 1, 2, 3, 4, 5, 7, 8, 9, 10 0.910 1 0.111 1, 2, 3, 4 0.4Support Threshold(�)= 0.15H � onfidene Threshold(H)= 0.55union of this item and P .item is also a hyperlique pattern, we say this itemis a Pure Equivalene Item, PE item, of the pattern P .In the example dataset, we know both item 4 and 6 are equivalene items off1,2g. Honf(f1,2,4g)=0.22< H, and Honf(f1,2,5g)=0.66> H, so 5 is a PEitem of f1,2g, but 4 is not.If we generate the losed frequent itemset or maximal frequent itemset withthe DFS approah, the EquivalenePruning method ould move the PE itemfrom P .tail to the P .item diretly [6, 20℄. However, this method may break thelimitation of h-on�dene when we generate super patterns. As shown in thesample data set, item 11 is a PE item of f5g, but not a PE item for f1, 5g. Inother words, item 11 annot be added into f5g, sine we do not know whetheritem 11 is a PE item of the super patterns of f5g or not. Also, we apply the7



equivalene pruning in the BFS phase. Sine adding items will hange the sizeof patterns, we need to maintain a set of PE items for patterns.
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Fig. 2. An Illustration of the Two-Phase Maximal Hyperlique Pattern MiningDe�nition 10 The Equivalene Item Set of a pattern, P .equivalene, isthe item set of all PE items of the pattern P .If we �nd an item is a PE item of a pattern P , we ould add it to P .equivalene.While the super patterns of P are generated, they will sueed their ownPE items from P .equivalene. In this ase, the items of P are separated inP .item and P .equivalene, and the real pattern of P should be P .item [P .equivalene. In Figure 2, items 5 and 6 are PE items of f1,2g, so the itemset of f1,2(5,6)g is f1,2g, and the equivalene item set is f5,6g.De�nition 11 Union of a pattern, P .union, is P:item[P:equivalene.P .unionis the real itemset of P . Indeed, support(P .union)=support(P .item).De�nition 12 Size of a Pattern P : we de�ne the size of P as the size ofP.item, no matter how many items in P.equivalene.For instane, the union of pattern f1,2(5,6)g are f1; 2gSf5; 6g = f1; 2; 5; 6g.However, the size of f1,2(5,6)g is 2, whih is the same as f1,2g.De�nition 13 Sub pattern: For two pattern P1; P2, if P1.item is a subset ofP2.item, we say that P1 is a sub pattern of P2, even P1.union is not a subsetof P2.union, and P2 is a super pattern of P1. If the size of P1 is smaller8



than the size of P2, P1 is a pure sub pattern of P2.In the sample data set, f1,5(6)g is a super pattern of both f5(6,11g and f1,5g.However, only f5(6,11)g is a pure sub pattern of f1,5(6)g, sine size(f5(6,11)g)< size(f1,5(6)g), and size(f1,5g) = size(f1,5(6)g),De�nition 14 For a Pattern P1, if i0 is P1's equivalene item and all theitems in HP1.item are lexiographi before item i0, we say item i0 is a Proequivalene item of P1.De�nition 15 For a Hyperlique Pattern HP1, if item i0 is both HP1's PEitem and Pro equivalene item, the item i0 is a Pro Pure equivalene item(PPE item) of HP1.For instane, in the sample data set, the two equivalene items of patternf1,2g, 4 and 5, are pro equivalene items of f1,2g, sine items 1 and 2, arelexiographi before 4 and 5.3.2 Pruning Methods in the BFS phaseAt the initial stage, the algorithm generates the size-1 patterns and ountsthe support of these patterns. All items whih have supports less than theuser-spei�ed support threshold are pruned. Meanwhile, these items are sortedduring this stage. For instane, onsider the example dataset shown in Table 1,item 10 an be pruned sine support(10) � �. Also, as shown in Figure 2,the algorithm onstruts the size-1 hyperlique patterns and sort all items inlexiographi order:f1gf2gf5gf6gf11gf3gf4gf7gf8gf9g.In the BFS phase, the algorithm exploits an apriori-like approah to generatethe size-L hyperlique patterns from size-(L-1) hyperlique patterns. Thereare three pruning strategies applied in this phase as follows.Prevalene Pruning. For an Apriori-like algorithm, a size-k pattern Pk withPk:item = fi1; i2; :::; ikg is generated by joining two size-(k-1) patterns:Pk�1and P 0k�1, Pk�1:item = fi1; i2; :::; ik�1g and P 0k�1:item = fi1; i2; :::; ik�2; ikg. IfPk�1 and P 0k�1 exist, the algorithm �rst heks whether all the other size-(k-1)sub patterns of Pk exist. If one of the sub patterns does not exist, Pk is not ahyperlique pattern and an be pruned [1℄.H-on�dene Pruning.Before generating a size-k pattern Pk, we ould alulate the ratio: support(HPk�1)support(ik) .If this ratio is less than h, honf(Pk) should be also less than H, sinesupport(Pk) � support(Pk�1) [18℄. For instane, as shown in Figure 2, sup-9



port(1)=0.3, support(3)=0.9, honf(f1,3g)= support(f1;3g)support(3) � support(f1g)support(3) < 0:34 <H, therefore the pattern f1,3g is pruned.Equivalene Pruning. We apply the Equivalene Pruning method to re-due the number of patterns generated. If support(HPk )=support(HPk�1), ikshould be a PPE item of HPk�1, and be absorbed into HPk�1.equivalene.For example, in Figure 2, support(f5, 6g)=support(f5g)=0.3, we add item 6to f5g.equivalene and prune f5, 6g.When generating a size-k hyperlique pattern HPk, if the items in the equiv-alene sets of size-(k-1) sub hyperlique patterns are PE items of HPk, HPkan sueed these items to its own equivalene set. For instane, in Figure2, both f1, 5g and f2, 5g sueed item 6 from f5g.equivalene, but do notsueed item 11 sine it would break the limitation of h-on�dene.When HPk�1 absorbing item ik, all the equivalene items of the other size-(k-1) patterns-fi2; i3; :::; ikg; fi1; i3; :::; ikg; fi1; :::; ik�1; ikg, are also equivaleneitems of HPk�1. HPk�1 ould transfer these items to HPk�1.equivelane ifthey are PE items. In Figure 2, while generating the pattern f1, 2, 5g fromf1, 2g, f1, 5g and f2, 5g, the pattern f1, 5g will absorb item 5, and transferitem 11 from f1, 5g.equivalene.Indeed, when generating HPk, if item ik is in HPk�1.equivalene, it is unne-essary to generate the HPk, but transfer the PE items in the other size-(k-1)patterns' equivalene set to HPk�1.equvialene.After generating the size-k hyperlique patterns, we ould hek all the size-(k-1) hyperlique patterns in lexiographi order. For a size-(k-1) pattern HPk�1,if its union is not a subset of any size-k pattern's union, it will be impossibleto generate a hyperlique pattern whose union is the superset of HPk�1.unionin the following proess. If this union is not a subset of an itemset in urrentMaximal Hyperlique Pattern Set (MHPS) either, this union is a max-imal hyperlique pattern and ould be added to the MHPS. For example, inFigure 2, after generating the size-2 patterns, it is found that the union of f1,2g is f1, 2, 5, 6g, and no superset in either size-3 patterns' union or MHPS.Hene, the algorithm adds the union into MHPS. For pattern f1, 5g, the unionof this pattern is f1, 5, 6g, and this pattern has no superset in size-3 patterns'union, but has a superset in MHPS, hene this pattern is pruned.3.3 Pruning Methods in the DFS phaseIn the BFS phase, the algorithm has identi�ed all the size-L hyperliquepatterns. At the beginning of the DFS phase, the algorithm adds the tailitems to the tail sets of these patterns. For a size-L hyperlique pattern10



HP , HP .item=fi1; i2; :::; iLg, if there is an item i0 suh that: (1) item i0 =2HP .equivalene, (2) all the items in HP .item are lexiographi before i', and(3) all the size-L sub patterns of fi1; i2; :::; iL; i0g have been generated, the al-gorithm adds item i0 to HP .tail. For instane, in Figure 2, item 8 and 9 areadded to f3, 4, 7g's tail set.The super patterns of a hyperlique pattern(HP ) are generated with the itemin HP .tail, and sueed the PE item from HP .equivalene.Equivalene Pruning.Similar to the BFS phase, if a tail item i0 is a PE item, we will add i0 to theequivalene set of the pattern. If the size-1 pattern fi0g's equivalene set is notnull, the super patterns will sueed PE items from this set.Full Pruning.When we proess the Pattern HP , if the union of HP .item, HP .equivaleneand HP .tail is a subset of a pattern in urrent MHPS, all of the patternsgenerated byHP annot be MHP sine they have a super HyperliquePattern.We ould prune this pattern diretly. In Figure 2, when we proess f3, 7, 8g,whih tail set is f9g, f3, 4, 7, 8, 9g has already been added to MHPS. We will�nd f3; 7; 8g [ f9g is a subset of f3, 4, 7, 8, 9g, and prune f3, 7, 8g.LeftMost Pruning.When proessing a hyperlique pattern HP , if the pattern at the end of thispath is found to be MHP, all the patterns in the other paths should not beMHP. In this ase, we ould skip these patterns [6℄. For example, in Figure 2,the end of left most path of f3, 4, 7g is f3, 4, 7, 8, 9g, and we �nd this patternis MHP, we an skip all the other paths of f3, 4, 7g, and ontinue to proessthe next pattern.Dynami Reordering.Bayardo et al. [5℄ showed that the bene�t of dynamially reordering superpatterns of a pattern is important. The performane an be 2 to 4 timesfaster. In our algorithm, we sort the super patterns in the inreasing order oftheir support.H-on�dene Pruning. Similar to the BFS phase, for a tail item (i0) of ahyperlique pattern(HP ), if support(HP )support(i0) < H, we ould prune i0 from HP .tail.Prevalene Pruning. Sine we have generated the size-L hyperlique pat-terns in the BFS phase, for a hyperlique pattern HP , if one of its size-Lsub-pattern is not generated, we an prune this pattern.11



In the DFS phase, if a hyperlique pattern annot generate any super hyper-lique pattern, or none of these super hyperlique patterns ould sueed allthe items in its equivalene set, it will be impossible to �nd a super union ofthis pattern's union in the future. We will hek this union with MHPS. Ifthere is no super pattern in MHPS, we will add the union to MHPS.MHS ALGORITHMInput: (a) P = fA Patterng(b) Data = fA DataSet represent a set of transation g() �: A minimal support threshold(d) H: A minimal h-on�dene threshold(e) L: The retrieve level of the BFS phaseOutput: (1) A set of Maximal Hyperlique Patterns(MHPS)with support � �, honf � H, and its superset without bothsuh two properties.Variables: k: the itemset sizeHPk: a set of size-k hyperlique patterns.CMHPk: a set of size-k andidate maximal hyperlique patterns.MHPS: set of maximal hyperlique patterns.Psuper : a set of superset generated from PPhase I: generate Hyperlique Patterns by BFS1. HP1= Initial(CP1, �, H, Data);2. for (k=1;k < L;k++) do3. CPk+1 = Generate and Prune Super(HPk , �, H);4. CMHPk = set of patterns in HPk without superset union in HPk+1;5. Chek and Add(CMHPk,MHPS);Phase II: extrat Maximal Hyperlique Patterns from HPL by DFS6. Append Tail(HPL);7. for 8 P in HPL8. Extrat MHP(P );Funtion Extrat MHP(Pattern P)9. Psuper=Generate and Prune Super(P , �, H, HPL);10. Sort and Append Tail(Psuper)11. for 8 item Pi 2 Psuper12. Extrat MHP(Pi);13. if P .union hasn't a super union in Psuper14. Chek and Add(P ,MHPS);Fig. 3. The Overview of the MHP Algorithm12



4 The Maximal Hyperlique Pattern Mining Algorithm4.1 Algorithm DesriptionFigure 3 shows an overview of the hybridMaximal Hyperlique Pattern (MHP)mining algorithm, whih has two phases: the Breadth First Searh (BFS) phaseand the Depth First Searh (DFS) phase. In the BFS phase, Initial Funtiongenerates the size-1 hyperlique patterns, and items are sorted by support innon-dereasing order. In Generate and Prune Super Funtion, the prevalenepruning, h-on�dene pruning, and equivalene pruning are applied to prunethe searh spae and size-k hyperlique patterns are generated from size-(k-1)hyperlique patterns. After extrating the size-k patterns, the algorithm ex-trats all size-(k-1) hyperlique patterns whih have no super union in size-khyperlique patterns to CMHPk�1. In Chek and Add Funtion, the algo-rithm heks the patterns in CMHPk�1. If their unions are not subsets inMHPS, these unions are added into MHPS.In the DFS phase, the Append Tail Funtion generates the tail itemsets ofsize-L patterns. Extrat MHP is the major funtion for DFS mining. The tra-ditional optimal methods, suh as full pruning, leftmost pruning, and equiv-alene pruning, as well as new methods inluding prevalene pruning and h-on�dene pruning, are implemented in Funtion Generate and Prune Super.The Sort and Append Tail Funtion implements the dynami sorting and addstail items for the super patterns. Finally, the algorithm heks whether thepattern being proessed is in MHPS or not by the funtion Chek and Add.Note that the proof of the ompleteness and orretness of the MHP algorithmis presented in the Appendix.4.2 An Example to Illustrate the MHP AlgorithmIn this subsetion, we desribe the proess of the MHP algorithm using a smallsample dataset as shown in Table 2. Figure 2 highlights the whole proess. Asshown in the Figure, Initial Funtion �rst generates all the size-1 hyperliquepatterns. Only item 10 will be pruned, sine support(10)=0.1< � (� = 0:15).Also, all these size-1 patterns are sorted by their support and we have HP1 =ff1g,f2g,f5g,f6g,f11g,f3g,f4g,f7g,f8g,f9gg.In the BFS phase, Generate and Prune Super Funtion generates size-2 an-didate pattern set CP2 from size-1 hyperlique pattern set HP1. The superpattern of f1g are �rst generated. f1,2g, f1,5g,f1,6g are added into CP2. Therest super pattern of f1g are pruned by H-on�dene Pruning. Also, sine13



support(f5,6g = support(f5,11g) = support(f5g) = 0.3. Items 6 and 11 areboth PPE item of pattern f5g. The Equivalene Pruning Method will absorb6 and 11 into the equivalene set of f5g, and update h-on�dene value of f5gto support(f5;11g)support(f11g) = 0:30:4 = 0:75. The rest super patterns of f5g are pruned byH-on�dene Pruning. In a similar fashion, all the size-2 super pattern are gen-erated and inserted into CP2 sine all of them are hyperlique patterns. NowCP2 is: ff1,2g, f1,5g, f1,6g, f2,5g, f2,6g, f3,4g, f3,7g, f3,8g, f3,9g, f4,7g,f4,8g, f4,9g, f7,8g, f7,9g, f8,9gg.In the seond step of Generate and Prune Super, patterns in CP2 will sueedPPE items from their size-1 sub patterns. Item 6 will be added into equivalenesets of f1,5g and f2,5g, sine it is in f5g.equivalene. Now we have HP2 fromCP2: ff1,2g, f1,5(6)g, f1,6g, f2,5(6)g, f2,6g, f3,4g, f3,7g, f3,8g, f3,9g, f4,7g,f4,8g, f4,9g, f7,8g, f7,9g, f8,9gg (The item in the parenthesis are PPE itemsin equivalene item set). After generating HP2, we an extrat size-1 andidatemaximal hyperlique pattern from HP1. f5(6,11)g, f6(11)g and f11g do nothave super union in HP2. So CMHP1 = ff5(6,11)g, f6(11)g, f11gg. Next,Funtion Chek and Add will hek whether the patterns in CMHP1 has asuper union in the urrent Maximal Hyperlique Pattern Set. Initially, MHPSis an empty set. The pattern f5,6,11g, the union of f5(6,11)g, will be �rstinserted into MHPS and MHPS = ff5,6,11gg. Sine f5,6,11g is a super unionof f6(11)g, the union of f6(11)g or f11g will not be inserted into MHPS.In the seond level loop, Funtion Generate and Prune Super will generateCP3 from HP2. f1,2g is the �rst pattern in HP2. By Prevalene Pruning, onlyf1,2,5g and f1,2,6g an be generated. Sine support(f1,2,5g) = support(f1,2g)= 0.2, and item 5 is PPE item of f1,2g, 5 is absorbed into f1,2g.equivalene.Meanwhile, item 6 appears in f1,5g.equivalene and also a PPE item of f1,2g,so this item is transferred into f1,5g.equivalene. f1,2,6g will not be generatedsine 6 has already been in equivalene set of f1,2g now. The Funtion willnot generate super andidate patterns for f1,5(6)g, f1,6g, f2,5(6)g and f2,6g,beause any super pattern of them has at least one subpattern not ontained inHP2. For the rest patterns in HP2, f3,4,7g, f3,4,8g, f3,4,9g, f3,7,8g, f3,7,9g,f3,8,9g, f4,7,8g, f4,7,9g, f4,8,9g and f7,8,9g will be generated and insertedinto CP3, sine they are hyperlique patterns.In the seond step of Generate and Prune Super, the size-3 andidate pat-terns will sueed PE items. f1,2(5,6)g is the only pattern in HP2 whihdoes not have super union in HP3. So CMHP2 = ff1,2(5,6)gg. FuntionChek and Add �nds this pattern whih does not have super union in urrentMHPS, and adds f1,2,5,6g into MHPS. Now, MHPS is ff5,6,11g, f1,2,5,6gg.In the DFS phase, funtion Append Tail will append tail items to the size-3 hyperlique pattern in HP3. For instane, item 8 ould be appended tof3,4,7g.tail sine all the size-3 sub patterns of f3,4,7,8g appear in HP3. After14



this step, HP3 beome: ff3,4,7-8,9g, f3,4,8-9g, f3,4,9g, f3,7,8-9g, f3,7,9g,f3,8,9g, f4,7,8-9g, f4,7,9g, f4,8,9g, f7,8,9gg (The items following '-' symbolare tail items). The reursive funtion Extrat MHP will generate MaximalHyperlique Pattern from HP3 in lexiographi order. First, this funtion willgenerate f3,4,7,8g and f3,4,7,9g. A dynami Reordering Method omparestheir support and order these patterns by their support. Here they have samesupport and f3,4,7,8g is lexiographi before f3,4,7,9g, so we proess f3,4,7,8g�rst. Item 9 will be appended into f3,4,7,8g.tail and f3,4,7,8,9g is generated.Finally, Funtion Chek and Add �nds that the union of this pattern is nota sub pattern of any MHPS pattern and add the union into MHPS. NowMHPS = f5,6,11g,f1,2,5,6g,f3,4,7,8,9gg. Sine f3,4,7,8,9g is in the leftmostpath of f3,4,7g, all the andidate super patterns derived from f3,4,7g will bepruned. All other patterns in HP3 will be pruned by Full Pruning sine theunions of all of their itemset, equivalene set and tail set are sub patterns off3,4,7,8,9g, whih is in the urrent MHPS. Therefore, we have MHPS = ff5,6, 11g, f1,2,5,6g, f3,4,7,8,9gg for �=0.15 and H=0.55.5 Experimental EvaluationIn this setion, we present experiments to (1) evaluate the performane ofthe MHP algorithm, (2) analyze the e�et of the equivalent pruning methodin the BFS phase, (3) ompare maximal hyperlique patterns to hyperliquepatterns as well as maximal frequent patterns, and (4) show the appliationof maximal hyperlique patterns for identifying protein funtional modules.5.1 The Experimental SetupExperiment Data Sets. Our experiments were performed on some real-world date sets, whih are benhmark data sets for evaluating pattern miningalgorithms. First, pumsb and pumsb� data sets 1 orrespond to binary versionsof a ensus data set. The di�erene between them is that pumsb* does notontain items with support greater than 80%. The LA1 data set is part of theTREC-5 olletion 2 and ontains news artiles from the Los Angeles Times.In addition, the TAP-MS data set [8℄ is a protein omplex data set, whihsummarizes large-sale experimental studies of multi-protein omplexes for1 These two data sets are obtained from IBM Almaden researh enter athttp://www.almaden.ibm.om/s/quest/demos.html.2 The data set is available at http://tre.nist.gov.15
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the ability to identify patterns whih an be diÆult to identify for MAFIA.Hene, MHP an better explore the pattern spae and �nd interesting patternsat low levels of support.Similar results are also obtained from the pumsb* data set, as desribed inFigure 5. Sine pumsb* removes all the popular items whih have supportsmore than 0.8, the spaious patterns with popular items will not be generated.So MAFIA an �nd patterns when the support threshold is 0.02. There arestill too many spaious patterns. For the pumsb* data set, the number ofgenerated patterns of MHP is muh smaller than that of MAFIA. And therunning time of MHP an be several orders of magnitude less than that ofMAFIA, even when we just set the h-on�dene threshold as low as 0.3.
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(b) Number of Partial PrevalentPruning in DFS phaseFig. 7. E�et of Di�erent BFS Level, on the Pumsb* Data Seta proper h-on�dene threshold, MHP approah an be orders faster than theMAFIA and mine muh lower support patterns.5.3 The E�et of the Choies of Di�erent Levels in the BFS PhaseIn this subsetion, we evaluate the e�et of the hoies of di�erent searhlevels in the BFS phase. Indeed, if the searh depth is deeper, we ould getmore equivalent pruning in the BFS phase. Sine we get longer patterns inthe �rst phase, we ould prune more patterns with the partial prevalent prun-ing method in the seond phase. However, this may result in more memoryrequirement. There is a tradeo� between memory usage and better pruning.Figure 7(a) illustrates the number of equivalent pruning at di�erent searhlevels in the BFS phase. As it an be seen, with the inrease of searh levels,the hybrid approah an prune 4-6 times more patterns.Figure 7(b) shows the partial prevalent pruning in the DFS phase when theBFS levels are di�erent in pumsb* data set. We observe that the approahwith 3 levels in BFS an ahieve partially prevalent pruning twie better thanthe approah with 2 levels. Also, the approah with 4 levels prunes muh lessthan the approah with 3 levels. The main reason is that many size-4 patternsare pruned by prevalent pruning in BFS phase.With the above experiments, it shows that the hybrid approah with 3 levelsin the BFS phase may be better than the approahes with 2 or 4 levels.19
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Fig. 8. The Number of MFI/MHP Patterns in the Pumsb* Data Set.
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Fig. 9. The number of MFI/MHP Patterns in the Pumsb Data Set.5.4 Maximal Hyperlique Patterns versus Maximal Frequent PatternsFigure 8 and Figure 9 illustrate the number of maximal patterns identi�ed byMHP and MAFIA on Pumsb* and Pumsb data sets respetively. As it an beseen, the number of maximal hyperlique patterns identi�ed by MHP an beorders of magnitude smaller than the number of maximal frequent patternsidenti�ed by MAFIA. In other words, the number of maximal hyperliquepatterns is muh easier to manage than that of maximal frequent patterns.Indeed, in real-world appliations, it is diÆult to interpret several millionmaximal frequent patterns. However, it is possible to interpret the results ofmaximal hyperlique pattern mining.20



5.5 Maximal Hyperlique Patterns versus Hyperlique Patterns�=H 0.99 0.95 0.90 0.850 149 503 4386 297440.2 90 441 4318 296710.4 25 375 3682 275070.5 21 360 3656 27466(a) Number of HP Patterns �=H 0.99 0.95 0.90 0.850 70 149 641 22430.2 18 95 578 21750.4 25 91 569 21630.5 10 84 564 2154(b) Number of MHP PatternsTable 4The number of maximal hyperlique patterns and hyperlique patterns generatedon the pumsb data set.Maximal hyperlique patterns orrespond to a more ompat representationof hyperlique patterns, while maximal hyperlique patterns may lose the in-formation about support and h-on�dene of their subsets. However, in someappliation domains, maximal hyperlique patterns provide suÆient informa-tion in terms of pratial use, suh as the use of maximal hyperlique patternsfor pattern preserving lustering [17℄.Table 4 illustrate the number of MHP patterns and HP patterns generated onthe pumsb data set 4 . With the inrease of the support threshold, the numberof MHP patterns and HP patterns inrease very slowly. In ontrast, with thederease of h-on�dene thresholds, the number of HP patterns inreases muhfaster than the MHP patterns. When the h-on�dene is 0.85, quite low forsome appliations, the number of MHP patterns is 10 times smaller than theHP patterns. This indiates that the number of maximal hyperlique patternsis more manipulated than the number of hyperlique patterns.5.6 An Appliation of Maximal Hyperlique Patterns for Identifying ProteinFuntional ModulesIn this subsetion, we desribe an appliation of maximal hyperlique patternsfor identifying protein funtional modules - groups of proteins involved inommon elementary biologial funtion [16℄.Figure 10 shows the subgraphs of the Gene Ontology (www.geneontology.org)orresponding to a maximal hyperlique pattern fCus1, Msl1, Prp3, Prp9,Sme1, Smx2, Smx3, Yh1g identi�ed from the TAP-MS protein omplex data.4 We only ompare the patterns with size greater than 1.21
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Florida, USA, pages 387{394, 2003.[19℄ Mohammed Javeed Zaki. Salable algorithms for assoiation mining.IEEE Transation on Knowledge and Data Engineer, 12:372{390, May-June 2000.[20℄ Mohammed Javeed Zaki and Ching-Jiu Hsiao. Charm: An eÆient algo-rithm for losed itemset mining. In Pro. 2nd SIAM International Con-ferene on Data Mining (SDM), Arlington, VA, USA, pages 457{473,2002.Appendix: A Proof of the Completeness and Corretness of the MHP AlgorithmLemma 2 If a hyperlique pattern, HP1, is generated in the BFS phase, noneof the items in HP1.item ould be a PPE item of any sub pattern of HP1.Proof:We prove this lemmaby ontradition. SupposeHPk.item=fi1; i2; :::; ikg,and il is a PPE item of HPm, where HPm is a sub pattern of HPk; l � k. Wehave HPm � of fi1; i2; :::; il�1g, and il should also be a PPE item of this size-(l-1) pattern. Aording to our algorithm, fi1; i2; :::; il�1g will absorb il intothe equivalene set. So the size-l pattern, fi1; i2; :::; ilg, will not be generated.HPk annot be generated either. The lemma is proved. 2Lemma 3 When a hyperlique pattern, HP1, is generated in the BFS phaseand the size of HP1 < L, if 9 an item i, (1) all the items in the HP1.item arelexiographi before i, (2)i is not an equivalene item of HP1, and (3)HP1.item[ fig is also a hyperlique pattern, then HP1.item [ fig will be generated bythe MHP algorithm.Proof:Suppose HP1 is a minimal size pattern in this kind of ungenerated patterns,where HP1.item=fi1; i2; :::; ik; ig, and the sub pattern HP 0 whih itemset isfi1; i2; :::; ikg has been generated. Then, all the size-(k-1) sub pattern of HP 0should have been generated, and i satis�es all the three onditions in thislemma to them. All the size-k sub patterns of HP1 will be generated sinethey are smaller than HP1. HP1 will been generated in the next level apriori-gen. This leads to ontraditory. 2Lemma 4 If a hyperlique pattern, HP1, is generated in the BFS phase, allPPE items of its sub patterns will be added to the HP1.equivalene by the MHPalgorithm.Proof: Suppose HP1 is the minimal suh hyperlique pattern whih breaksthis lemma, and i is any PPE item of one of HP1's sub pattern, HP1.item =25



fi1; i2; :::; ikg.If i is also a PPE item of HP1's pure sub pattern, i will appear in the equiva-lene set of this sub pattern. HP1 ould sueed this PE item from this patterndiretly or indiretly.If i is not a PPE item for any pure sub patterns, it should be a PPE item ofHP1. Now ik < i and i is not an equivalene item of any pure sub patternsof HP1. By Lemma 3, all the size-k sub patterns of fi1; i2; :::; ik; ig will begenerated. The item i will be absorbed or transferred to HP1.equivalene inthe next level apriori-gen. Here, we observe a phenomenon: if i is transferred tothe equivalene set, it will also be added to the equivalene set with absorbingand sueeding methods if the transferring methods is not applied. 2Lemma 5 An equivalene item, whih is transferred by a hyperlique patternHP1, ould also be added to equivalene set with the absorbing or sueedingmethod if the transferring method is not applied.Proof: If an item is transferred from another pattern, this item is also a PPEitem of one of its sub pattern. In the proof of Lemma 4, we �nd this item willbe added to the equivalene set of this sub pattern even without transferringmethod. It will also be added to the equivalene set of this pattern. 2Lemma 6 For a hyperlique pattern HP , all items in HP .equivalene arePPE items of some sub pattern of the pattern HP .Proof: This lemma is orret, sine all the three methods, absorbing, sueed-ing and transferring, add an item into HP1.equivalene only when this itemis a PPE item of one of HP1's sub pattern. 2Lemma 7 For a hyperlique pattern, HP , if an item is a PPE item of a subpattern of HP .union, it is also a PPE item of a sub pattern of HP .item;similarly, if an item is a PPE item of a sub pattern of HP .item, it is also aPPE item of a sub pattern of HP .union.Proof: If an item i is a PPE item of a sub pattern, SP , of HP .union,we ould onstrut a pattern HP1:item = fi0ji0 2 HP:union ^ i0 < ig.We have HP1 � SP and i is a PPE item of HP1. 8 item i00, where i00 2(HP1:itemTHP:equivelane), i00 is a PPE item of a sub pattern of HP , bythe Lemma 6. Sine this sub pattern should also be a subset of HP1, i00 is a PEitem of HP1:item=i00. So i is also a PPE item of HP1:item=i00. After gettingrid of all the items in HP .equivalene, we ould �nd that i is a PPE item of(HP1:itemTHP .item), whih is a sub pattern of HP .item.Sine HP .union is a super set of HP .item, the seond part an be proved ina similar fashion 2. 26



De�nition 16 For a hyperlique pattern P1, if (1) P2 is a hyperlique pattern,(2) P2.item is a subset of P1.item, and (3) the union of P2 is a super set ofP1.item, P2 is a Covering Pattern of P1.We have support(P2.item)=support(P1.item)=support(P2.union).Lemma 8 If a pattern is a hyperlique pattern, one of its overing patternsmust be generated by our approah if the full pruning and leftmost pruningmethods are not applied. If these two method are applied, then one of theovering patterns of its super pattern must be generated.Proof: We �rst prove that without the full pruning and leftmost pruningmethods, a overing pattern of the hyperlique pattern will be generated. Weprove it with ontradition. Suppose HP1 is a minimal suh hyperlique pat-tern without generated overing pattern.HP1.item=fi1; i2; :::; ikg. LetHP 0.item= fi1; i2; :::; ik�1g.HP 0 should have a Covering Pattern(CP1) generated by ouralgorithm. There are two ases for generating CP1:The �rst ase is that CP1 is generated in BFS phase. (1)If ik is an equivaleneitem of any sub pattern of CP1, ik should be also a PPE item of this subpattern. CP1 will add ik into its equivalene itemset and beome a overingpattern of HP1. (2)If ik is not an equivalene item for any sub pattern ofCP1, by the Lemma 3, a new pattern CP1:item[ fikg will be generated. Thispattern will be the Covering Pattern of HP1.The other ase is that CP1.item is generated in the DFS phase. (1) If ik is anequivalene item of any size-L sub patterns of CP1, CP1 will sueed ik andbeome the overing pattern of HP1. (2)If ik is not an equivalene item forany size-L sub pattern of CP1, by the Lemma 3, all the size-L sub patterns ofCP1:item[ fikg will be generated. In the Append Tail Funtion, the size-L subpatterns of CP1 will add ik into their tail sets. DFS phase ould not get rid ofik from the tail sets of CP1's sub pattern's unless adding it to the equivalenesets. If ik is an equivalene item of CP1, it will appear in CP1.equivalene,otherwise, the pattern CP1.item [ fikg will be generated while proessingCP1. Both of them will generate a Covering Pattern of HP1.From the above, both ases lead to ontradition.With the Full Pruning and Leftmost Pruning methods, a node will be removedif the union of its itemset, equivalene set and tail set has a super patternin urrent MHPS. But in this ase, all the hyperlique patterns ould begenerated by this node will have a super pattern in MHPS, whih meansthey should have a overing pattern of the super maximal pattern generatedalready. 2Theorem 1 The MHP algorithm is omplete. In other words, all the MaximalHyperlique Patterns will be identi�ed by the MHP algorithm.27



Proof: 8 maximal hyperlique pattern MHP1, by the Lemma 8, one of itssuper pattern's overing pattern will be generated. Sine MHP1 is maximal,the union of this overing pattern should be MHP1's itemset =) MHP1 anbe identi�ed by the MHP algorithm. 2Theorem 2 The MHP algorithm is orret. In other words, any pattern iden-ti�ed by the MHP algorithm is a maximal hyperlique pattern.Proof: First, any pattern identi�ed by the MHP algorithm is a hyperliquepattern. We only need to show the pattern is maximal.Case 1: If we �nd a pattern has no super hyperlique pattern or none of itssuper hyperlique pattern's union set is superset of the pattern's union in DFSphase. Aording to the proedure of DFS searhing, we de�nitely annot �nda super union in the rest. If there is no super pattern in urrent MHPS set,this union should be a MHP pattern.Case 2: If we �nd a pattern without a super union in the next level patternin BFS phase, we ould also make sure that the union is a MHP if there is nosuper pattern in urrent MHPS set.Assume that we generated a hyperlique pattern, HP1, in BFS phase, whereHP1.item=fi1; i2; :::; ikg and HP1.union is not a MHP pattern. There shouldexists at least one item, i, whih belongs to HP .union's super maximal hyper-lique pattern but not belongs to HP .union. By Lemma 4, i annot be PPEitem of any sub pattern of HP1.Sine full pruning and leftmost pruning methods are not applied in the BFSphase, a overing pattern (CP1) of HP1:item [ fig will be generated andthe size of CP1 � k+1. By Lemma 6, we know i 2 CP1.item. 8 item i0 2HP1.equivalene, also by Lemma 6, i0 is a PPE item of a sub pattern of HP1.Sine CP1.union � HP1.item. i0 should also be a PPE item of a sub pattern ofCP1.union. By Lemma 7, i0 is a PPE item of a sub pattern of CP1 and is addedinto CP1.equivalene. So, we know that CP1.union is superset of HP1.union.(1) If size(CP1) = k+1, HP1.union will not be onsidered as a MHP patternsine there is a superset in the next level.(2) If size(CP1) = k, a item in HP1.item will appear in CP1.equivalene.Sine this item should be a PPE item of a sub pattern of HP1, by Lemma 2,i should in this sub pattern. So i is lexiographi before this item and CP1is lexiographi before HP1. CP1 will be proessed before HP1. If CP1.unionis added into MHPS, we will �nd there is already a super set of HP1.unionin MHPS while proessing HP1. If CP1.union is not added into MHPS, a sizek+1 pattern, whose union is a super set of CP1.union will be generated. Thispattern's union is also a super set of HP1.union.28



(3) If size(CP1) < k, similar to (2), CP1's super patterns are also lexiographibefore HP1. There are two ases for the super patterns of CP1, one is there isone super pattern's union are added into MHPS when its size � k; the otherase is that a size-(k+1) super pattern are generated. HP .union annot beadded into MHPS in both ases.Now it is guaranteed that our algorithm will not identify any non-maximalhyperlique pattern as a MHP pattern. 2Note that if we set the searh depth in the BFS phase large enough, ouralgorithm beomes a pure BFS algorithm. Also, if we set the h-on�denethreshold to zero, the algorithm will �nd the maximal frequent itemsets.
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