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Abstract

A hyperclique pattern is a new type of association pattern that contains items
which are highly affiliated with each other. Specifically, the presence of an item in
one transaction strongly implies the presence of every other item that belongs to
the same hyperclique pattern. In this paper, we present an algorithm for mining
maximal hyperclique patterns, which specifies a more compact representation of
hyperclique patterns and are desirable for many applications, such as pattern-based
clustering. Our algorithm exploits key advantages of both the Depth First Search
(DFS) strategy and the Breadth First Search (BFS) strategy. Indeed, we adapt the
equivalence pruning method, one of the most efficient pruning methods of the DFS
strategy, into the process of the BE'S strategy. Our experimental results show that
the performance of our algorithm can be orders of magnitude faster than standard
maximal frequent pattern mining algorithms, particularly at low levels of support.

Key words: Association Rules, Hyperclique Patterns

* Corresponding author.

Preprint submitted to Journal of Information Science 7 July 2006



1 Introduction

The association-rule mining problem [3, 2] is concerned with finding relation-
ships among items in a large-scale data set. In the past decade, the association-
rule mining has been the subject of extensive research in data mining [1, 3, 2,
4, 10, 14, 11]. Given a set of transactions, the objective of the association-rule
mining is to extract all rules of the form X = Y, where X and Y are sets
of items, which satisfy user-specified minimum support and minimum confi-
dence thresholds. Support measures the fraction of transactions that obey the
rule, while confidence provides an estimate of the conditional probability that
a transaction contains Y, given that it contains X. Both metrics are useful
because they provide an indication of the strength and statistical significance
of an association rule.

Standard association-rule mining algorithms have the emphasis on discovering
frequent patterns. However, these approaches may lose efficiency when the
support threshold is low. Also, frequent patterns usually contain objects which
are weakly related to each other [18]. Instead, a hyperclique pattern [18] was
proposed as a new type of association patterns that contain items that are
highly affiliated with each other. Specifically, the presence of an item in one
transaction strongly implies the presence of every other item that belongs to
the same hyperclique pattern. The h-confidence measure captures the strength
of this association and is defined as the minimum confidence of all association
rules of an itemset. An itemset is a hyperclique pattern if the h-confidence of
this pattern is greater than a user-specified minimum h-confidence threshold.
A hyperclique pattern is a maximal hyperclique pattern if no superset of
this pattern is a hyperclique pattern.

Maximal hyperclique patterns specify a more compact representation of hyper-
clique patterns and are desirable in many application domains, such as pattern
preserving clustering [17], which can easily produce interpretable clustering
results. However, to our best knowledge, there are no efficient algorithms for
mining maximal hyperclique patterns in the literature. As a result, the ob-
jective of this paper is to design an efficient algorithm for mining maximal
hyperclique patterns in large-scale data sets.

In general, for the association pattern mining, there are two search strategies:
Breadth First Search (BFS) and Depth First Search (DFS). The BFS strat-
egy performs pattern search in a level-wise manner. In other words, it first
discovers all the size-1 patterns at level 1, followed by all the size-2 patterns
at level 2, and so on, until no pattern is generated at a particular level. If
mining maximal hyperclique patterns using the BFS strategy, we could apply
Prevalence Pruning; that is, an itemset can be pruned if one of its subset is
not a hyperclique pattern. This pruning is based on the anti-monotone prop-



erty of support and h-confidence measures. The limitation of this strategy is
that we need to generate all the subsets of a maximal hyperclique pattern. In
contrast, the DFS strategy avoids generating all the intermediate patterns and
can directly find maximal hyperclique patterns. For the DFS strategy, a lot of
pruning methods, such as equivalence pruning, leftmost pruning, full pruning,
and dynamic ordering [4, 6, 20], can be applied. However, the DFS strategy
cannot apply the Prevalence Pruning method, since we do not generate all
subsets of a candidate pattern for this strategy.
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Fig. 1. An Illustration of the Hybrid Mining Method.

In this paper, we exploit key advantages of both the DF'S strategy and the BFS
strategy and design a hybrid Maximal Hyperclique Pattern (MHP) mining
algorithm. Figure 1 illustrates our MHP algorithm, which has two phases. In
the first BF'S phase, for a given depth L, we use the Apriori-like approach [2]
to generate all the size-L. hyperclique patterns. In the second phase, the MHP
algorithm takes the DFS search strategy. All the DFS pruning methods are
used in this phase. Also, since we have all the size-L. hyperclique patterns,
an itemset can be pruned by prevalence pruning method if any of its size-L
subset has not been generated. Considering the DFS strategy is much more
efficient than the BFS strategy for finding maximal patterns and the major
computation savings of the DFS strategy is due to the equivalent pruning
method [1, 6, 20], we adapt the equivalent pruning method into our algorithm.
In addition, we prove the correctness and completeness of our MHP algorithm.
Finally, our experimental results show that the MHP algorithm can be orders
of magnitude faster than maximal frequent pattern mining algorithms, such
as MAFIA [6], particularly at low level of support.

Related works:

Agrawal et al. [3, 2] have proposed the classical DFS and BFS algorithm
to discover frequent patterns. Some other researchers proposed the concepts



of maximal [6, 4] and closed frequent patterns [20]. These frequent pattern
mining algorithms are not very effective for identifying patterns at a low level
of support.

Recently, there has been growing interest in developing techniques for min-
ing association patterns without support constraints. For example, Wang et
al. proposed the use of universal existential upward closure property of con-
fidence to extract association rules without specifying the support thresh-
old [15]. Cohen et al. have proposed using the Jaccard similarity measure,
sime(x,y) = %i—gg%, to capture interesting patterns without using a minimum
support threshold [7]. Also, many researchers developed alternative techniques
to push various types of constraints into the mining algorithm [5, 9, 12]. These
approaches greatly reduce the number of patterns generated and improve com-
putational performance by introducing additional constraints, but fail to offer
any specific mechanism to eliminate weakly-related patterns involving items
with different support levels.

Xiong et al. [18] introduced the concept of hyperclique patterns, which in-
clude items strongly related with each other. An h-confidence measure was
used to identify hyperclique patterns. This measure possesses the desired anti-
monotone and cross-support properties, which can be helpful for identifying
strongly correlated items even at low levels of support. In this paper, we focus
on finding maximal hyperclique patterns.

When Agrawal et al. [3] proposed the problem of association-rule mining,
they provided an Apriori algorithm for mining frequent patterns. The Apriori
is a basic BFS approach. Later on, Agarwal et al. [1] designed a more ad-
vanced BFS algorithm, called tree projection. Several optimal methods have
been implemented in this BFS algorithm. They also mentioned the possibil-
ity of a hybrid searching strategy, but have not put the idea into practice.
Compared to the BFS strategy, the DFS strategy is more fit to find maximal
frequent patterns. There are many optimal pruning methods which prune non-
maximal patterns to reduce the searching space [4, 6, 20]. Burdick et al. [6]
analyzed the performances of these methods and showed that the equivelant
pruning method could greatly speed up the processing procedure. Han et al.
[10] constructed a very compact structure, FP tree, to store the information of
patterns. Avoiding generating candidate patterns, FP tree could extract maxi-
mal patterns more efficiently. Zaki [19] analyzed the performances of top-down
and bottom-up searching strategies for mining maximal frequent patterns and
designed Clique and Eclat algorithms for this purpose.

Overview: The remainder of this paper is organized as follows. Section 2
defines some basic concepts. In section 3, we propose a framework for mining
maximal hyperclique patterns. We describe the algorithm details and prove the
correctness and completeness of the algorithm in Section 4. Our experimental



results are presented in Section 5. Finally, in section 6, we draw conclusions
and suggest future work.

2 Basic Concepts

To facilitate our discussion, we first present some basic concepts in this section.

Definition 1 The h-confidence of an itemset P = {iy, i3, - -+ ,1,,}, denoted
as heonf(P), is a measure that reflects the overall affinity among items within
the itemset. This measure is defined as min{conf{i;y = ia,...,0,}, conf{is —
U503y ey Uty o ovy CcONf{ly — 11, oo im_1}}, where conf is the traditional
definition of association rule confidence [2].

Definition 2 An itemset P is a hyperclique pattern if support(P) > 0
and heconf(P) > H., where 0 is a user-specified minimal support threshold and
H. is a user-specified minimal h-confidence threshold. When the h-confidence

threshold equals to 0, hyperclique patterns become frequent patterns.

Definition 3 For a hyperclique pattern, HP, if none of ils supersets is a hy-
perclique pattern, we say HP is « Maximal Hyperclique Pattern (MHP).
This means, a pattern P € MHP <— P € HP and V P’D> P, P’ ¢ HP.

Definition 4 The order of items: for two items iy and iz, if support(iy) <
support(iz) and the name of iy is preceding of the name of iy in the lexico-
graphic order, we say i, is lexicographic before iy. This can also be denoted
as il <i2.

In the rest of this paper, we arrange items in each pattern in order, unless
otherwise noted.

Definition 5 The order of patterns: for two different patterns Py = {11, 12, ...13}
and Py = {i{, iy, ...t} if (PLC Py)V (3m,m<kandm <, Vn,1<n<
m— 1,1, =1 andi, <1 ), we say P; lexicographic before P. It can also
be denoted as P < P,.

3 A Framework for Mining Maximal Hyperclique Patterns

In this section, we present a framework of two-phase maximal hyperclique
pattern mining. In the first BFS phase, we retrieve all the size-L. hyperclique
patterns. In other words, the first L levels of the lexicographic tree [13] will



be searched using Apriori-like methods [2]. In the second phase, we apply the
DFS strategy to extract all the Maximal Hyperclique Patterns (MHP).

For better illustration, we construct a small demo dataset. Table 1 shows this
sample data set and Table 2 shows the support of items in the sample data set.
For a minimum Support Threshold ()= 0.15, and a minimum H —con fidence
Threshold (H.)=0.55, Figure 2 illustrates the two-phase maximal hyperclique
pattern mining process on the sample data set.

3.1 Basic Definitions

For a pattern, there are three concepts related to items of this pattern: the
item set, the equivalence item set, and the tail item set. We first introduce
these three concepts.

Definition 6 The Item Set (P.item) of a pattern P is the set of all the
items in the pattern.

Definition 7 The Tail Item Set (P.tail) of a pattern is the set of items
which can be used to generate the super pattern of this pattern in the DFS
phase.

In the DFS phase, we retrieve all the patterns by generating the super patterns
of a given pattern(P) with its tail items [13, 1]. All tail items are included in
P.tail. As can be seen in Figure 2, {3,4,7} is a hyperclique pattern, and items
8 and 9 could be used to generate super patterns of {3,4,7}, since all the size-3
sub patterns of {3,4,7.8} and {3,4,7,9} are hyperclique patterns. So the tail
item set of {3,4,7} is {8,9}.

Definition 8 For a pattern P, if an item appears in all the transactions that
contain P.item, but not in P.item, we say that this item is an equivalence
item with P.

For instance, item 5 always appears in every transaction which includes pat-
tern {1,2}. So, 5 is an equivalence item of pattern {1,2}.

Lemma 1 If an item is an equivalence item of a pattern, it should also be an
equivalence item of its super patterns.

If an item 7 is an equivalence item of P, but % < H., the union of {7}
and P.item is not a hyperclique pattern. We can prune this kind of equivalence

items.

Definition 9 If an item is an equivalence item of a patiern P, and the



Table 1
A Sample Data Set

TID Ttems

1 |1,2,3/4,56,7,8,9,10, 11

2 3,4,7,8,9,11

3 3,4,5,6,7,8 9, 11

4 1,2,3,4,5,6,7,8,9,11

5 1,3,4,7,8,9

6 2,3,4,7,8

7 3,4,7,9

8 3,4,8,9

9 3,7,89

10 4,7,8,9

Table 2
Support of Items in the Sample Data Set
Item | TID Support

1| 1,45 0.3
2 | 1,4,6 0.3
3 [1,2,34,5,6,7,89 |09
4 |1,2,34,56,7,810 | 0.9
5 |1,3,4 0.3
6 | 1,34 0.3
7 | 1,2,3,4,56,7,9,10 | 0.9
8 |1,2,34,56,89,10 | 09
9 |1,2,34,5/7,89,10 | 0.9
0 |1 0.1
11 ]1,2,3,4 0.4

Support Threshold(8)= 0.15
H — con fidence Threshold(H.)= 0.55

union of this item and P.item is also a hyperclique pattern, we say this item
is a Pure Fquivalence Item, PE item, of the pattern P.

In the example dataset, we know both item 4 and 6 are equivalence items of
{1,2}. Heonf({1,2,4})=0.22< H., and Hconf({1,2,5})=0.66> H., so 5 is a PE
item of {1,2}, but 4 is not.

If we generate the closed frequent itemset or maximal frequent itemset with
the DFS approach, the Fquivalence Pruning method could move the PE item
from P.tail to the P.item directly [6, 20]. However, this method may break the
limitation of h-confidence when we generate super patterns. As shown in the
sample data set, item 11 is a PE item of {5}, but not a PE item for {1, 5}. In
other words, item 11 cannot be added into {5}, since we do not know whether
item 11 is a PE item of the super patterns of {5} or not. Also, we apply the



equivalence pruning in the BF'S phase. Since adding items will change the size
of patterns, we need to maintain a set of PE items for patterns.

Null
%1% 1 2 5 _6 A 3 4 71 8 9
. 11) ©031) (031 (031 031 04 0971) 091) 091) 09,1) 091)
e =7 Absorb
1 é(G,ll) g(ll)
@205 ([©@20%) (03075 (030.75)
w
3
(%]
3 12 15() 16 25(6) 2,6 34 37 38 39 47 48 49 7.8 7.9 89
ﬁ (0.2,0.67) (0.2,0.67) (0.2,0.67) (0.2,0.67) (0.2,0.67) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89) (0.8,0.89)
L _-5isabsorbed
#" Bistransferred
1,2(5,6)
0.2,067)
34,7 348 349 378 379 389 478 47,9 489 7,89
(07,078 (07078 (0.70.78 (0.70.78) (0.70.78) (0.7,0.78) (0.7,0.78) (0.7,0.78) (0.7,0.78) (0.7.0.79)
34789 3489 37,89 4,789
(0.7,0.78) (0.7,0.78) (0.7,0.78) (0.70.78)
o P
A
%]
; ’
% 34,789 Item Set
(0.9,0.67) Equivalent Set
4 3,4(89)-6 ~— Tail Set
N 08067 H-confidence
Ve
3,4,7,89 Support
0.7,079)

Fig. 2. An Illustration of the Two-Phase Maximal Hyperclique Pattern Mining

Definition 10 The Equivalence Item Set of a pattern, P.equivalence, is
the item set of all PFE items of the pattern P.

If we find an item is a PE item of a pattern P, we could add it to P.equivalence.
While the super patterns of P are generated, they will succeed their own
PE items from P.equivalence. In this case, the items of P are separated in
P.item and P.equivalence, and the real pattern of P should be P.item U
P.equivalence. In Figure 2, items 5 and 6 are PE items of {1,2}, so the item
set of {1,2(5,6)} is {1,2}, and the equivalence item set is {5,6}.

Definition 11 Union of a pattern, P.union, is P.itemUP.equivalence. P.union
is the real itemset of P. Indeed, support(P.union)=support(P.item).

Definition 12 Size of a Paltern P: we define the size of P as the size of
P.item, no matter how many items in P.equivalence.

For instance, the union of pattern {1,2(5,6)} are {1,2}U{5,6} = {1,2,5,6}.
However, the size of {1,2(5,6)} is 2, which is the same as {1,2}.

Definition 13 Sub pattern: For two pattern Py, Py, if Py.item is a subsel of
Ps.item, we say that Py is a sub pattern of P, even Pj.union is not a subset
of Py.union, and P, is a super pattern of P;. If the size of P, is smaller



than the size of Py, Py is a pure sub pattern of P;.

In the sample data set, {1,5(6)} is a super pattern of both {5(6,11} and {1,5}.
However, only {5(6,11)} is a pure sub pattern of {1,5(6)}, since size({5(6,11)})

< size({1,5(6)}), and size({1,5}) = size({1,5(6)}),

Definition 14 For a Pattern Py, if i/ is Py’s equivalence item and all the
items in HP,.item are lexicographic before item o', we say item ¢ is a Pro
equivalence item of P;.

Definition 15 For a Hyperclique Pattern HP,, if item 1’ is both HP,’s PE
item and Pro equivalence item, the item i’ is a Pro Pure equivalence item

(PPE item) of HP;.

For instance, in the sample data set, the two equivalence items of pattern
{1,2}, 4 and 5, are pro equivalence items of {1,2}, since items 1 and 2, are
lexicographic before 4 and 5.

3.2 Pruning Methods in the BFS phase

At the initial stage, the algorithm generates the size-1 patterns and counts
the support of these patterns. All items which have supports less than the
user-specified support threshold are pruned. Meanwhile, these items are sorted
during this stage. For instance, consider the example dataset shown in Table 1,
item 10 can be pruned since support(10) < 6. Also, as shown in Figure 2,
the algorithm constructs the size-1 hyperclique patterns and sort all items in

lexicographic order:{1 {2 }{5H{6 H{11}{3}{4H{7}H{8}{9}.

In the BFS phase, the algorithm exploits an apriori-like approach to generate
the size-L hyperclique patterns from size-(L-1) hyperclique patterns. There
are three pruning strategies applied in this phase as follows.

Prevalence Pruning. For an Apriori-like algorithm, a size-k pattern Py with
Py.atem = {iq,19,...,1%} is generated by joining two size-(k-1) patterns: Pr_;
and P/_,, Pr_y.item = {11,192, ...,15_1} and P[_j.item = {iy, 2, ..., 059, 13 }. If
Pp_1 and P]_, exist, the algorithm first checks whether all the other size-(k-1)
sub patterns of P, exist. If one of the sub patterns does not exist, P is not a
hyperclique pattern and can be pruned [1].

H-confidence Pruning.

Before generating a size-k pattern Py, we could calculate the ratio: %ﬁ(ﬁ?l)

If this ratio is less than h., hconf(P;) should be also less than H., since
support(FPy) < support(Pr_1) [18]. For instance, as shown in Figure 2, sup-



port(1)=0.3, support(3)=0.9, hconf({1,3}):Suff;;zg(lé?})ﬂ SZ%;ZZ{(;)}) <034 <
H., therefore the pattern {1,3} is pruned.

Equivalence Pruning. We apply the Equivalence Pruning method to re-
duce the number of patterns generated. If support(H Py, )=support(H Py_1 ), i)
should be a PPE item of HP;_;, and be absorbed into H P,_;.equivalence.
For example, in Figure 2, support({5, 6})=support({5})=0.3, we add item 6
to {5}.equivalence and prune {5, 6}.

When generating a size-k hyperclique pattern H Py, if the items in the equiv-
alence sets of size-(k-1) sub hyperclique patterns are PE items of HFPy, H P
can succeed these items to its own equivalence set. For instance, in Figure

2, both {1, 5} and {2, 5} succeed item 6 from {5}.equivalence, but do not
succeed item 11 since it would break the limitation of h-confidence.

When H Py, absorbing item iy, all the equivalence items of the other size-
(k-1) patterns—{iz, is, ..oy ik}, {01,935 cous ik by {015 ooy k-1, Uk |, aTe also equivalence
items of HP,_;. HP._; could transfer these items to H Pj._;.equivelance if
they are PE items. In Figure 2, while generating the pattern {1, 2, 5} from
{1, 2}, {1, 5} and {2, 5}, the pattern {1, 5} will absorb item 5, and transfer

item 11 from {1, 5}.equivalence.

Indeed, when generating H Py, if item 75 1s in H Py_;.equivalence, it is unnec-
essary to generate the H Py, but transfer the PE items in the other size-(k-1)
patterns’ equivalence set to H P,_;.equvialence.

After generating the size-k hyperclique patterns, we could check all the size-(k-
1) hyperclique patterns in lexicographic order. For a size-(k-1) pattern H P,_y,
if its union is not a subset of any size-k pattern’s union, it will be impossible
to generate a hyperclique pattern whose union is the superset of H P,_;.union
in the following process. If this union is not a subset of an itemset in current
Maximal Hyperclique Pattern Set (MHPS) either, this union is a max-
imal hyperclique pattern and could be added to the MHPS. For example, in
Figure 2, after generating the size-2 patterns, it is found that the union of {1,
2} is {1, 2, 5, 6}, and no superset in either size-3 patterns’ union or MHPS.
Hence, the algorithm adds the union into MHPS. For pattern {1, 5}, the union
of this pattern is {1, 5, 6}, and this pattern has no superset in size-3 patterns’
union, but has a superset in MHPS, hence this pattern is pruned.

3.3  Pruning Methods in the DFS phase

In the BFS phase, the algorithm has identified all the size-L. hyperclique
patterns. At the beginning of the DFS phase, the algorithm adds the tail
items to the tail sets of these patterns. For a size-L. hyperclique pattern

10



HP, HP.item={iy,1s,...,11}, if there is an item ¢’ such that: (1) item ¢ ¢
H P.equivalence, (2) all the items in H P.item are lexicographic before i’, and
(3) all the size-L sub patterns of {iy,12,...,i1,7'} have been generated, the al-
gorithm adds item ¢’ to H P.tail. For instance, in Figure 2, item 8 and 9 are

added to {3, 4, 7}’s tail set.

The super patterns of a hyperclique pattern(H P) are generated with the item
in H P.tail, and succeed the PE item from H P.equivalence.

Equivalence Pruning.

Similar to the BFS phase, if a tail item ¢’ is a PE item, we will add ¢ to the
equivalence set of the pattern. If the size-1 pattern {i'}’s equivalence set is not
null, the super patterns will succeed PE items from this set.

Full Pruning.

When we process the Pattern H P, if the union of H P.item, H P.equivalence
and H P.tail is a subset of a pattern in current MHPS, all of the patterns
generated by H P cannot be MHP since they have a super Hyperclique Pattern.
We could prune this pattern directly. In Figure 2, when we process {3, 7, 8},
which tail set is {9}, {3, 4, 7, 8, 9} has already been added to MHPS. We will
find {3,7,8} U {9} is a subset of {3, 4, 7, 8, 9}, and prune {3, 7, 8}.

LeftMost Pruning.

When processing a hyperclique pattern H P, if the pattern at the end of this
path is found to be MHP, all the patterns in the other paths should not be
MHP. In this case, we could skip these patterns [6]. For example, in Figure 2,
the end of left most path of {3, 4, 7} is {3, 4, 7, 8, 9}, and we find this pattern
is MHP, we can skip all the other paths of {3, 4, 7}, and continue to process
the next pattern.

Dynamic Reordering.

Bayardo et al. [5] showed that the benefit of dynamically reordering super
patterns of a pattern is important. The performance can be 2 to 4 times
faster. In our algorithm, we sort the super patterns in the increasing order of
their support.

H-confidence Pruning. Similar to the BFS phase, for a tail item (¢') of a
hyperclique pattern( H P), if % < H., we could prune ¢’ from H P.tail.
Prevalence Pruning. Since we have generated the size-L. hyperclique pat-
terns in the BFS phase, for a hyperclique pattern H P, if one of its size-L
sub-pattern is not generated, we can prune this pattern.

11



In the DFS phase, if a hyperclique pattern cannot generate any super hyper-
clique pattern, or none of these super hyperclique patterns could succeed all
the items in its equivalence set, it will be impossible to find a super union of
this pattern’s union in the future. We will check this union with MHPS. If
there is no super pattern in MHPS, we will add the union to MHPS.

Input:

Output:

Variables:

w1 o o e wn =

9.

10.
11.
12.
13.
14.

MHS ALGORITHM

(a) P = {A Pattern}

(b) Data = {A DataSet represent a set of transaction }

(c) #: A minimal support threshold

(d) H.: A minimal h-confidence threshold

(e) L: The retrieve level of the BF'S phase

(1) A set of Maximal Hyperclique Patterns(MHPS)

with support > 6, hconf > H,., and its superset without both
such two properties.

k: the itemset size

H Py: a set of size-k hyperclique patterns.

CMH Py a set of size-k candidate maximal hyperclique patterns.
MHPS: set of maximal hyperclique patterns.

Poyper: a set of superset generated from P

Phase I: generate Hyperclique Patterns by BFS

H Py= Iitial(C'Py, 6, H., Data);

for (k=1;k < L;k++) do
C' P41 = Generate_and_Prune_Super(H Py, 0, H.);
CMH Py, = set of patterns in H P, without superset union in H Pyy1;
Check_and_Add(CM H Py, M HPS);

hase II: extract Maximal Hyperclique Patterns from H P by DFS

Append_Tail(H Pr,);
for V P wn HPy,
Extract MHP(P);

Function Extract_MHP(Pattern P)

Py per=Generate_and _Prune_Super(P, 6, H., H Pr);
Sort_and_Append_Tail( Psyper )
for Vitem P; € Psyper

Extract MHP(F;);

if P.union hasn’t a super union in Psype,

Check_and_Add (P ,MHPS);

Fig. 3. The Overview of the MHP Algorithm
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4 The Maximal Hyperclique Pattern Mining Algorithm

4.1 Algorithm Description

Figure 3 shows an overview of the hybrid Maximal Hyperclique Pattern (MHP)
mining algorithm, which has two phases: the Breadth First Search (BFS) phase
and the Depth First Search (DFS) phase. In the BFS phase, Initial Function
generates the size-1 hyperclique patterns, and items are sorted by support in
non-decreasing order. In Generate_and_Prune_Super Function, the prevalence
pruning, h-confidence pruning, and equivalence pruning are applied to prune
the search space and size-k hyperclique patterns are generated from size-(k-1)
hyperclique patterns. After extracting the size-k patterns, the algorithm ex-
tracts all size-(k-1) hyperclique patterns which have no super union in size-k
hyperclique patterns to CMHPy_;. In Check_and_Add Function, the algo-
rithm checks the patterns in CMH P,_,. If their unions are not subsets in
MHPS, these unions are added into MHPS.

In the DFS phase, the Append_Tail Function generates the tail itemsets of
size-L. patterns. Extract_MHP is the major function for DFS mining. The tra-
ditional optimal methods, such as full pruning, leftmost pruning, and equiv-
alence pruning, as well as new methods including prevalence pruning and h-
confidence pruning, are implemented in Function Generate_and_Prune_Super.
The Sort_and_Append_Tail Function implements the dynamic sorting and adds
tail items for the super patterns. Finally, the algorithm checks whether the
pattern being processed is in MHPS or not by the function Check_and_Add.

Note that the proof of the completeness and correctness of the MHP algorithm
is presented in the Appendix.

4.2 An Ezxample to lllustrate the MHP Algorithm

In this subsection, we describe the process of the MHP algorithm using a small
sample dataset as shown in Table 2. Figure 2 highlights the whole process. As
shown in the Figure, Initial Function first generates all the size-1 hyperclique
patterns. Only item 10 will be pruned, since support(10)=0.1< 6 (§ = 0.15).
Also, all these size-1 patterns are sorted by their support and we have H P, =

A3 {55 {63111 {33, {45 {7} {8},{9} ).

In the BFS phase, Generate_and_Prune_Super Function generates size-2 can-
didate pattern set C'P, from size-1 hyperclique pattern set H P;. The super
pattern of {1} are first generated. {1,2}, {1,5},{1,6} are added into C'P,. The

rest super pattern of {1} are pruned by H-confidence Pruning. Also, since
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support({5,6} = support({5,11}) = support({5}) = 0.3. Items 6 and 11 are
both PPE item of pattern {5}. The Equivalence Pruning Method will absorb
6 and 11 into the equivalence set of {5}, and update h-confidence value of {5}

5:55;;:7(5{?1111}% = = 0.75. The rest super patterns of {5} are pruned by
H- Conﬁdence runlng In a similar fashion, all the size-2 super pattern are gen-
erated and inserted into C'P; since all of thern are hyperclique patterns. Now
CPyis: {{1,2}, {1,5}, {1,6}, {2,5}, {2,6}, {3.,4}, {3.7}, {3.8}, {3,9}, {4,7},
{48}, {49}, {7.8}, {7,9}, {8,9}}.

In the second step of Generate_and_Prune_Super, patterns in C' P, will succeed
PPE items from their size-1 sub patterns. Item 6 will be added into equivalence
sets of {1,5} and {2,5}, since it is in {5}.equivalence. Now we have H P, from
CPy: {{172}7 {175(6)}7 {176}7 {275(6)}7 {276}7 {374}7 {377}7 {378}7 {379}7 {477}7
{4,8}, {4,9}, {7.8}, {7,9}, {8,9}} (The item in the parenthesis are PPE items
in equivalence item set). After generating H P,, we can extract size-1 candidate
maximal hyperclique pattern from HP;. {5(6,11)}, {6(11)} and {11} do not
have super union in HP,. So CMHP, = {{5(6,11)}, {6(11)}, {11}}. Next,
Function Check_and_Add will check whether the patterns in CMH P, has a
super union in the current Maximal Hyperclique Pattern Set. Initially, MHPS
is an empty set. The pattern {5,6,11}, the union of {5(6,11)}, will be first
inserted into MHPS and MHPS = {{5,6,11}}. Since {5,6,11} is a super union
of {6(11)}, the union of {6(11)} or {11} will not be inserted into MHPS.

In the second level loop, Function Generate_and_Prune_Super will generate
C P; from HP,. {1,2} is the first pattern in H P,. By Prevalence Pruning, only
{1,2,5} and {1,2,6} can be generated. Since support({1,2,5}) = support({1,2})
= 0.2, and item 5 is PPE item of {1,2}, 5 is absorbed into {1,2}.equivalence.
Meanwhile, item 6 appears in {1,5}.equivalence and also a PPE item of {1,2},
so this item is transferred into {1,5}.equivalence. {1,2,6} will not be generated
since 6 has already been in equivalence set of {1,2} now. The Function will
not generate super candidate patterns for {1,5(6)}, {1,6}, {2,5(6)} and {2,6},
because any super pattern of them has at least one subpattern not contained in
H P,. For the rest patterns in HP,, {3,4,7}, {3,4,8}, {3,4,9}, {3,7,8}, {3,7,9},
{3,8,9}, {4,7,8}, {4,7,9}, {4,8,9} and {7,8,9} will be generated and inserted
into (' Ps, since they are hyperclique patterns.

In the second step of Generate_and_Prune_Super, the size-3 candidate pat-
terns will succeed PE items. {1,2(5,6)} is the only pattern in H P, which
does not have super union in HP;. So CMHP, = {{1,2(5,6)}}. Function
Check_and_Add finds this pattern which does not have super union in current

MHPS, and adds {1,2,5,6} into MHPS. Now, MHPS is {{5,6,11}, {1,2,5,6}}.

In the DFS phase, function Append_Tail will append tail items to the size-
3 hyperclique pattern in H Ps. For instance, item 8 could be appended to
{3,4,7}.tail since all the size-3 sub patterns of {3,4,7,8} appear in H P5. After
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this step, HPs; become: {{3.4,7-8,9}, {3.4,8-9}, {3,4,9}, {3,7,8-9}, {3,7,9},
{3,8,9}, {4,7,8-9}, {4,7,9}, {4,8,9}, {7,8,9}} (The items following -* symbol
are tail items). The recursive function Extract_MHP will generate Maximal
Hyperclique Pattern from H P; in lexicographic order. First, this function will
generate {3,4,7,8} and {3,4,7,9}. A dynamic Reordering Method compares
their support and order these patterns by their support. Here they have same
support and {3,4,7,8} is lexicographic before {3,4,7,9}, so we process {3,4,7,8}
first. Item 9 will be appended into {3.,4,7,8}.tail and {3,4,7,8,9} is generated.

Finally, Function Check_and_Add finds that the union of this pattern is not
a sub pattern of any MHPS pattern and add the union into MHPS. Now
MHPS = {5,6,11},{1,2,5,6},{3,4,7.8,9}}. Since {3,4,7,8,9} is in the leftmost
path of {3,4,7}, all the candidate super patterns derived from {3,4,7} will be
pruned. All other patterns in H P; will be pruned by Full Pruning since the
unions of all of their itemset, equivalence set and tail set are sub patterns of
{3,4,7,8,9}, which is in the current MHPS. Therefore, we have MHPS = {{5,
6, 11}, {1.2,5,6}, {3,4,7,8,9}} for §=0.15 and H.=0.55.

5 Experimental Evaluation

In this section, we present experiments to (1) evaluate the performance of
the MHP algorithm, (2) analyze the effect of the equivalent pruning method
in the BFS phase, (3) compare maximal hyperclique patterns to hyperclique
patterns as well as maximal frequent patterns, and (4) show the application
of maximal hyperclique patterns for identifying protein functional modules.

5.1 The Experimental Setup

Experiment Data Sets. Our experiments were performed on some real-
world date sets, which are benchmark data sets for evaluating pattern mining
algorithms. First, pumsb and pumsb* data sets® correspond to binary versions
of a census data set. The difference between them is that pumsb* does not
contain items with support greater than 80%. The LAl data set is part of the
TREC-5 collection? and contains news articles from the Los Angeles Times.
In addition, the TAP-MS data set [8] is a protein complex data set, which
summarizes large-scale experimental studies of multi-protein complexes for

! These two data sets are obtained from IBM Almaden research center at
http://www.almaden.ibm.com/cs/quest /demos.html.
2 The data set is available at http://trec.nist.gov.
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Fig. 4. Performance Comparisons on the Pumsb Data Set

the yeast Saccharomyces Cerevisiae. Some characteristics of these data sets

are described in Table 32,

Table 3
Characteristics of Real-world Data Sets.
Data set | #ltem | #Transaction | Source
Pumsb | 2113 49046 IBM Almaden
Pumsb* | 2089 49046 IBM Almaden
LAl 29704 | 3204 TREC-5
TAP-MS | 1440 232 Gavin’s Protein Complexes

A Benchmark Algorithm. Recently, the MAFIA algorithm [6] was pro-
posed to efficiently discover maximal frequent patterns. MAFIA is a pure
DF'S searching algorithm. As described in their paper, MAFIA can be several
orders faster than some alternative methods, such as DepthProject, for mining
maximal frequent patterns. The code of the DFS phase of the MHP algorithm
is built on top of MAFIA, while we have added some new optimal methods. In
this paper, we chose MAFIA as the base line for our performance evaluation.

The Experimental Platform. We implemented the MHP algorithms using
C++ and all experiments were performed on a Pentium III 550MHz PC with
128 megabytes main memory, running Linux Redhat 6.1 operating system.

5.2 A Performance Comparison

Figure 4(a) illustrates the number of patterns that MHP and MAFIA gener-
ated at the different support and h-confidence thresholds on the pumsb data

3 We have removed all the items which have not appeared in any transaction
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Fig. 5. Performance Comparisons on the Pumsb* Data Set

set. Note that, for all the experiments illustrated in this section, the level
of BFS phase is 2. As can be seen, for MHP, the number of patterns gener-
ated is increasing with the decrease of the support threshold. In practice, the
cross-support patterns, which contain items with different support levels, are
weakly-related and are not desirable for real-world applications[18]. When the
support threshold is low, MAFIA will generate too many cross-support pat-
terns. However, the number of patterns generated by MHP can be significantly
smaller than that of MAFIA even if a low h-confidence threshold is specified,
since many cross-support patterns have been removed by MHP. Considering
that, after generating a pattern, the algorithm needs to count support for the
pattern. Support counting is the most time-consuming task during the pat-
tern mining process, since the algorithm needs to retrieve all the transactions
which include one of its sub-patterns, or for MAFIA, retrieve all the bits of
the bitmap of this pattern [6]. Therefore, an algorithm is more efficient if a
smaller number of patterns need to be generated.

The running time of MHP and MAFIA on the Pumsb data set is described in
Figure 4 (b). In the figure, we can observe that the running time of MHP can
be significantly reduced with the increase of h-confidence thresholds. Also, the
running time of MHP can be much less than that of MAFIA even if we just set
a little higher h-confidence threshold. The major reason is that the number of
generated patterns of MHP is significantly smaller than that of MAFIA, and
MHP doesn’t need waste space to store the spacious patterns.

In addition, MAFTA is unable to generate patterns when the support thresh-
old is less than or equal to 0.4, as it runs out of memory. Hui et al. have
shown that nearly 96.6 percent of the items have supports less than 0.4[17].
MAFTA will fail to generate useful associations from the less popular items.
In contrast, MHP algorithm can identify strong relations from these items.
MHP can identify maximal hyperclique patterns when the support threshold
is 0.1, if we set the h-confidence threshold to 0.5. In other words, MHP has
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the ability to identify patterns which can be difficult to identify for MAFIA.
Hence, MHP can better explore the pattern space and find interesting patterns
at low levels of support.

Similar results are also obtained from the pumsb* data set, as described in
Figure 5. Since pumsb* removes all the popular items which have supports
more than 0.8, the spacious patterns with popular items will not be generated.
So MAFIA can find patterns when the support threshold is 0.02. There are
still too many spacious patterns. For the pumsb* data set, the number of
generated patterns of MHP is much smaller than that of MAFIA. And the
running time of MHP can be several orders of magnitude less than that of
MAFTA, even when we just set the h-confidence threshold as low as 0.3.
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Fig. 6. Performance Comparisons on the LA1 Data Set

For the very sparse data set LA1, the hybrid algorithm is not as efficient as
the MAFIA algorithm in mining frequent patterns. The processing time and
generated time is demonstrated in Figure 6. MHP algorithm is about 4 times
lower than the MAFIA when the support level is 0.002. The main reason is
that we need spend many memories to store the size-2 patterns. There are
2,317 size-1 patterns and 59,603 size-2 patterns generated in BFS phase of
MHP, so we need store 61,920 patterns. Every pattern needs about 2317/8 =
290 bytes for the items and 3204/8 = 400 bytes for the support information.
Our MHP algorithm needs at least (290 + 400) * 61,920 = 42.7M bytes space
to store them. The total main memory in our machine is only 128M, and there
is about 82.3M left for the users. Since our approach also need many memory
space during the processing procedure, we can’t avoid data swapping between
the main memory and the hard disk, which will greatly affect the speed. On
the other side, MAFIA only need record 2317 F1 patterns and save more
memory space. When we set the support threshold to 0.003, the number of
size-2 pattern reduce to 8894, and the processing times of MHP and MAFIA
are almost the same. Same as the pumsb and pumsb* data set, when we set

18



10000 T T T 10000

=3 Level=2 =
= Level=3 - £
=4 —— =1
& Level=4 &
% 1000 ¢ \ % 1000
z 3
ij g
B 100} - B 00
8 8
3 A
5 5
H* H
10 ‘ ‘ ‘ 10 ‘ ‘ ‘
0.2 0.25 03 0.35 0.4 0.2 0.25 03 0.35 0.4
Support Threshold Support Threshold
(a) Number of Equivalent Prun- (b) Number of Partial Prevalent
ing in BES phase Pruning in DFS phase

Fig. 7. Effect of Different BES Level, on the Pumsb* Data Set

a proper h-confidence threshold, MHP approach can be orders faster than the
MAFIA and mine much lower support patterns.

5.3 The Effect of the Choices of Different Levels in the BFS Phase

In this subsection, we evaluate the effect of the choices of different search
levels in the BFS phase. Indeed, if the search depth is deeper, we could get
more equivalent pruning in the BFS phase. Since we get longer patterns in
the first phase, we could prune more patterns with the partial prevalent prun-
ing method in the second phase. However, this may result in more memory
requirement. There is a tradeoff between memory usage and better pruning.

Figure 7(a) illustrates the number of equivalent pruning at different search
levels in the BF'S phase. As it can be seen, with the increase of search levels,
the hybrid approach can prune 4-6 times more patterns.

Figure 7(b) shows the partial prevalent pruning in the DFS phase when the
BFS levels are different in pumsb* data set. We observe that the approach
with 3 levels in BFS can achieve partially prevalent pruning twice better than
the approach with 2 levels. Also, the approach with 4 levels prunes much less
than the approach with 3 levels. The main reason is that many size-4 patterns
are pruned by prevalent pruning in BFS phase.

With the above experiments, it shows that the hybrid approach with 3 levels
in the BFS phase may be better than the approaches with 2 or 4 levels.
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5.4 Mazimal Hyperclique Patterns versus Mazimal Frequent Patterns

Figure 8 and Figure 9 illustrate the number of maximal patterns identified by
MHP and MAFIA on Pumsb* and Pumsb data sets respectively. As it can be
seen, the number of maximal hyperclique patterns identified by MHP can be
orders of magnitude smaller than the number of maximal frequent patterns
identified by MAFIA. In other words, the number of maximal hyperclique
patterns is much easier to manage than that of maximal frequent patterns.
Indeed, in real-world applications, it is difficult to interpret several million
maximal frequent patterns. However, it is possible to interpret the results of
maximal hyperclique pattern mining.
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5.5 Mazimal Hyperclique Patterns versus Hyperclique Patterns

6/H. | 0.99 | 0.95 | 0.90 | 0.85 6/H. | 0.99 | 0.95 | 0.90 | 0.85

0 149 | 503 | 4386 | 29744 0 70 149 | 641 | 2243

0.2 |90 441 | 4318 | 29671 0.2 |18 95 578 | 2175

0.4 |25 375 | 3682 | 27507 0.4 |25 91 569 | 2163

0.5 |21 360 | 3656 | 27466 0.5 | 10 84 564 | 2154

(a) Number of HP Patterns (b) Number of MHP Patterns

Table 4
The number of maximal hyperclique patterns and hyperclique patterns generated
on the pumsb data set.

Maximal hyperclique patterns correspond to a more compact representation
of hyperclique patterns, while maximal hyperclique patterns may lose the in-
formation about support and h-confidence of their subsets. However, in some
application domains, maximal hyperclique patterns provide sufficient informa-
tion in terms of practical use, such as the use of maximal hyperclique patterns
for pattern preserving clustering [17].

Table 4 illustrate the number of MHP patterns and HP patterns generated on
the pumsb data set *. With the increase of the support threshold, the number
of MHP patterns and HP patterns increase very slowly. In contrast, with the
decrease of h-confidence thresholds, the number of HP patterns increases much
faster than the MHP patterns. When the h-confidence is 0.85, quite low for
some applications, the number of MHP patterns is 10 times smaller than the
HP patterns. This indicates that the number of maximal hyperclique patterns
is more manipulated than the number of hyperclique patterns.

5.6 An Application of Mazimal Hyperclique Patterns for Identifying Protein
Functional Modules

In this subsection, we describe an application of maximal hyperclique patterns
for identifying protein functional modules - groups of proteins involved in
common elementary biological function [16].

Figure 10 shows the subgraphs of the Gene Ontology (www.geneontology.org)
corresponding to a maximal hyperclique pattern {Cus1, Msll, Prp3, Prp9,
Smel, Smx2, Smx3, Yhcl}identified from the TAP-MS protein complex data.

1 We only compare the patterns with size greater than 1.
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Fig. 10. The Gene Ontology annotations of pattern {Cusl, Msl1, Prp3, Prp9, Smel,
Smx2, Smx3, Yhcl}. Figure on the left shows subgraph of function annotation of
the pattern. Figure on the right shows subgraph of process annotation. Proteins
are listed in square box. Significant nodes are labeled with the number of proteins
annotated directly or indirectly to that term and the p-value for the term.

The left subgraph in the figure is the molecular function annotation of the pro-
teins in the pattern. Note that all 8 proteins from this pattern are annotated
to the term RNA binding with p-value 4.97e-10. The p-value is calculated as
the probability that n or more proteins would be assigned to that term if
proteins from the entire genome are randomly assigned to that pattern. The
smaller the p-value, the more significant the annotation. Among the pattern,
4 proteins {Prp3 , Smel, Smx2, Smx3} are annotated to a more specific term
pre-mRNA splicing factor activity with p-value 2.33e-07. The annotation of
these proteins confirms that each pattern form a module performing specific
function. The right subgraph in Figure 10 shows the biological process this
pattern is involved in. The proteins are annotated to the term nuclear mRNA
splicing via spliceosome with p-value 8.21e-15 which is statistically significant.

6 Conclusions and Future Work

In this paper, we designed a two-phase Maximal Hyperclique Pattern (MHP)
mining algorithm for finding maximal hyperclique patterns. This algorithm
combines best features of both the Breadth First Search (BFS) and Depth
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First Search (DFS) strategies. More specifically, we adapted DFS pruning
methods, such as equivalence pruning, to a BFS approach and designed a hy-
brid search strategy for efficiently identifying maximal hyperclique patterns.
In addition, we proved the correctness and completeness of the MHP algo-
rithm. Finally, our experimental results on real-world data sets show that the
MHP algorithm can be orders of magnitude faster than standard maximal
frequent pattern mining algorithms and has the ability to identify patterns at
extremely low levels of support even for dense data sets.

There are several directions for future work. First, there are some other optimal
methods for pattern finding, such as tree projection, FP-tree, and diffset [1, 19,
10]. We plan to adapt some of these techniques into our algorithm. Also, since
the concept of closed patterns is very desirable for some application domains,
we would like to design algorithms for mining closed hyperclique patterns.
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Appendiz: A Proof of the Completeness and Correctness of the MHP Algorithm

Lemma 2 If a hyperclique pattern, H Py, is generated in the BFS phase, none
of the items in H P;.item could be a PPE item of any sub pattern of HP;.

Proof: We prove this lemma by contradiction. Suppose H Py.item={i1, 15, ..., 14},
and ¢; is a PPE item of HP,,, where HFP,, is a sub pattern of HP;,l < k. We
have HP,, C of {i1,12,...,7;-1}, and 7; should also be a PPE item of this size-
(I-1) pattern. According to our algorithm, {i1,12,...,4,—1} will absorb ¢; into
the equivalence set. So the size-l pattern, {i1, 2, ...,2;}, will not be generated.
H Py, cannot be generated either. The lemma is proved. O

Lemma 3 When a hyperclique pattern, H Py, is generated in the BFS phase
and the size of HPy < L, if 3 an item i, (1) all the items in the H Py.item are
lexicographic before i, (2)i is not an equivalence item of H Py, and (3)H Py .item
U {i} is also a hyperclique pattern, then H Py .item U {i} will be generated by
the MHP algorithm.

Proof:

Suppose H Py is a minimal size pattern in this kind of ungenerated patterns,
where H Py.item={iy,12,...,1,1}, and the sub pattern H P’ which itemset is
{1,172, ..., 11} has been generated. Then, all the size-(k-1) sub pattern of H P’
should have been generated, and ¢ satisfies all the three conditions in this
lemma to them. All the size-k sub patterns of H P, will be generated since
they are smaller than H P;. H P, will been generated in the next level apriori-
gen. This leads to contradictory. O

Lemma 4 If a hyperclique pattern, H Py, is generated in the BFS phase, all
PPE items of its sub patterns will be added to the H Py .equivalence by the MHP
algorithm.

Proof: Suppose HP; is the minimal such hyperclique pattern which breaks
this lemma, and 7 is any PPE item of one of HP;’s sub pattern, H P;.item =
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{81,089, ey Tg )

If 7 is also a PPE item of H P;’s pure sub pattern, ¢ will appear in the equiva-
lence set of this sub pattern. H P, could succeed this PE item from this pattern
directly or indirectly.

If ¢ is not a PPE item for any pure sub patterns, it should be a PPE item of
HP;. Now 15, < 1 and 7 is not an equivalence item of any pure sub patterns
of HP,. By Lemma 3, all the size-k sub patterns of {iy,14,...,1x,1} will be
generated. The item ¢ will be absorbed or transferred to H P;.equivalence in
the next level apriori-gen. Here, we observe a phenomenon: if 7 is transferred to
the equivalence set, it will also be added to the equivalence set with absorbing
and succeeding methods if the transferring methods is not applied. O

Lemma 5 An equivalence item, which is transferred by a hyperclique pattern
HPy, could also be added to equivalence set with the absorbing or succeeding
method if the transferring method is not applied.

Proof: If an item is transferred from another pattern, this item is also a PPE
item of one of its sub pattern. In the proof of Lemma 4, we find this item will
be added to the equivalence set of this sub pattern even without transferring
method. It will also be added to the equivalence set of this pattern. a

Lemma 6 For a hyperclique pattern HP, all items in H P.equivalence are
PPE items of some sub pattern of the pattern HP.

Proof: This lemma is correct, since all the three methods, absorbing, succeed-
ing and transferring, add an item into H P;.equivalence only when this item
is a PPE item of one of HP,’s sub pattern. a

Lemma 7 For a hyperclique pattern, HP, if an item is a PPE item of a sub
pattern of HP.union, it is also a PPE item of a sub pattern of HP.item;
similarly, if an item is a PPE item of a sub pattern of HP.item, it is also a
PPE item of a sub pattern of HP.union.

Proof: If an item ¢ is a PPE item of a sub pattern, SP, of HP.union,
we could construct a pattern HPiatem = {/|i/ € HPunion N1i' < i}.
We have HP, O SP and ¢ is a PPE item of HP,. V item ”, where " €
(HPy.item (N H P.equivelance), 1" is a PPE item of a sub pattern of HP, by
the Lemma 6. Since this sub pattern should also be a subset of H Py, " is a PE
item of HPy.utem/i". So i is also a PPE item of HPy.item/i". After getting
rid of all the items in H P.equivalence, we could find that ¢ is a PPE item of
(HPy.item (N H P.item), which is a sub pattern of H P.item.

Since H P.union is a super set of H P.item, the second part can be proved in
a similar fashion 0.
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Definition 16 For a hyperclique pattern Py, if (1) Py is a hyperclique pattern,
(2) Py.item is a subset of Py.item, and (3) the union of Py is a super set of
Py .item, P, is a Covering Pattern of P;.

We have support(Py.item)=support(P;.item)=support(P,.union).

Lemma 8 If a pattern is a hyperclique pattern, one of its covering patterns
must be generated by our approach if the full pruning and leftmost pruning
methods are not applied. If these two method are applied, then one of the
covering patterns of its super pattern must be generated.

Proof: We first prove that without the full pruning and leftmost pruning
methods, a covering pattern of the hyperclique pattern will be generated. We
prove it with contradiction. Suppose H P; is a minimal such hyperclique pat-
tern without generated covering pattern. H Py.item={iy, s, ..., 1;}. Let H P'".item
= {i1,19, ..., 751 }. H P’ should have a Covering Pattern(C P, ) generated by our
algorithm. There are two cases for generating C'P;:

The first case is that C' Py is generated in BES phase. (1)If i), is an equivalence
item of any sub pattern of C'Py, 15 should be also a PPE item of this sub
pattern. C'P; will add ¢ into its equivalence itemset and become a covering
pattern of HP;. (2)If i) is not an equivalence item for any sub pattern of
C Py, by the Lemma 3, a new pattern C'Py.item U {i;} will be generated. This
pattern will be the Covering Pattern of HP;.

The other case is that C' Py.item is generated in the DFS phase. (1) If ¢}, is an
equivalence item of any size-L. sub patterns of C'P;, C'P; will succeed 15 and
become the covering pattern of HP;. (2)If i is not an equivalence item for
any size-L sub pattern of C'P;, by the Lemma 3, all the size-L. sub patterns of
C Py.itemU {11} will be generated. In the Append_Tail Function, the size-L sub
patterns of C'P; will add ¢; into their tail sets. DF'S phase could not get rid of
1, from the tail sets of C'P;’s sub pattern’s unless adding it to the equivalence
sets. If ¢ 1s an equivalence item of C'Py, it will appear in C Pj.equivalence,
otherwise, the pattern CPj.item U {i} will be generated while processing
C'Py,. Both of them will generate a Covering Pattern of H P;.

From the above, both cases lead to contradiction.

With the Full Pruning and Leftmost Pruning methods, a node will be removed
if the union of its itemset, equivalence set and tail set has a super pattern
in current MHPS. But in this case, all the hyperclique patterns could be
generated by this node will have a super pattern in MHPS, which means
they should have a covering pattern of the super maximal pattern generated
already. a

Theorem 1 The MHP algorithm is complete. In other words, all the Mazximal
Hyperclique Patterns will be identified by the MHP algorithm.
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Proof: V maximal hyperclique pattern M H Py, by the Lemma 8, one of its
super pattern’s covering pattern will be generated. Since M H P, is maximal,
the union of this covering pattern should be M H P;’s itemset = M H P, can
be identified by the MHP algorithm. O

Theorem 2 The MHP algorithm is correct. In other words, any pattern iden-
tified by the MHP algorithm is a maximal hyperclique pattern.

Proof: First, any pattern identified by the MHP algorithm is a hyperclique
pattern. We only need to show the pattern is maximal.

Case 1: If we find a pattern has no super hyperclique pattern or none of its
super hyperclique pattern’s union set is superset of the pattern’s union in DFS
phase. According to the procedure of DFS searching, we definitely cannot find
a super union in the rest. If there is no super pattern in current MHPS set,
this union should be a MHP pattern.

Case 2: If we find a pattern without a super union in the next level pattern
in BFS phase, we could also make sure that the union is a MHP if there is no
super pattern in current MHPS set.

Assume that we generated a hyperclique pattern, H P, in BFS phase, where
H Py .item={iy,19,...,1;} and H Pj.union is not a MHP pattern. There should
exists at least one item, ¢, which belongs to H P.union’s super maximal hyper-
clique pattern but not belongs to H P.union. By Lemma 4, ¢ cannot be PPE
item of any sub pattern of HP;.

Since full pruning and leftmost pruning methods are not applied in the BFS
phase, a covering pattern (C'P;) of HP.item U {i} will be generated and
the size of CP; < k+1. By Lemma 6, we know 7 € C'P,.item. V item ¢’ €
H Py .equivalence, also by Lemma 6, ¢’ is a PPE item of a sub pattern of H F;.
Since C'Py.union O H P, .item. ¢’ should also be a PPE item of a sub pattern of
C'Py.union. By Lemma 7, ¢’ is a PPE item of a sub pattern of C'P; and is added
into (' P;.equivalence. So, we know that (' P;.union is superset of H P;.union.

(1) If size(C' P1) = k+1, H Py.union will not be considered as a MHP pattern

since there is a superset in the next level.

(2) If size(CPy) = k, a item in HPj.item will appear in C Pj.equivalence.
Since this item should be a PPE item of a sub pattern of H P;, by Lemma 2,
¢ should in this sub pattern. So ¢ is lexicographic before this item and C'P;
is lexicographic before HP;. C'P; will be processed before H P;. If C'P;.union
is added into MHPS, we will find there is already a super set of H P;.union
in MHPS while processing H P;. If C'P;.union is not added into MHPS, a size
k+1 pattern, whose union is a super set of C'P;.union will be generated. This
pattern’s union is also a super set of H P;.union.
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(3) If size(C P1) < k, similar to (2), C' Py’s super patterns are also lexicographic
before H P;. There are two cases for the super patterns of C' Py, one is there is
one super pattern’s union are added into MHPS when its size < k; the other
case is that a size-(k+1) super pattern are generated. H P.union cannot be

added into MHPS in both cases.

Now it is guaranteed that our algorithm will not identify any non-maximal
hyperclique pattern as a MHP pattern. a

Note that if we set the search depth in the BFS phase large enough, our
algorithm becomes a pure BFS algorithm. Also, if we set the h-confidence
threshold to zero, the algorithm will find the maximal frequent itemsets.
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