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Abstra
tA hyper
lique pattern is a new type of asso
iation pattern that 
ontains itemswhi
h are highly aÆliated with ea
h other. Spe
i�
ally, the presen
e of an item inone transa
tion strongly implies the presen
e of every other item that belongs tothe same hyper
lique pattern. In this paper, we present an algorithm for miningmaximal hyper
lique patterns, whi
h spe
i�es a more 
ompa
t representation ofhyper
lique patterns and are desirable for many appli
ations, su
h as pattern-based
lustering. Our algorithm exploits key advantages of both the Depth First Sear
h(DFS) strategy and the Breadth First Sear
h (BFS) strategy. Indeed, we adapt theequivalen
e pruning method, one of the most eÆ
ient pruning methods of the DFSstrategy, into the pro
ess of the BFS strategy. Our experimental results show thatthe performan
e of our algorithm 
an be orders of magnitude faster than standardmaximal frequent pattern mining algorithms, parti
ularly at low levels of support.Key words: Asso
iation Rules, Hyper
lique Patterns� Corresponding author.Preprint submitted to Journal of Information S
ien
e 7 July 2006



1 Introdu
tionThe asso
iation-rule mining problem [3, 2℄ is 
on
erned with �nding relation-ships among items in a large-s
ale data set. In the past de
ade, the asso
iation-rule mining has been the subje
t of extensive resear
h in data mining [1, 3, 2,4, 10, 14, 11℄. Given a set of transa
tions, the obje
tive of the asso
iation-rulemining is to extra
t all rules of the form X ) Y , where X and Y are setsof items, whi
h satisfy user-spe
i�ed minimum support and minimum 
on�-den
e thresholds. Support measures the fra
tion of transa
tions that obey therule, while 
on�den
e provides an estimate of the 
onditional probability thata transa
tion 
ontains Y , given that it 
ontains X. Both metri
s are usefulbe
ause they provide an indi
ation of the strength and statisti
al signi�
an
eof an asso
iation rule.Standard asso
iation-rule mining algorithms have the emphasis on dis
overingfrequent patterns. However, these approa
hes may lose eÆ
ien
y when thesupport threshold is low. Also, frequent patterns usually 
ontain obje
ts whi
hare weakly related to ea
h other [18℄. Instead, a hyper
lique pattern [18℄ wasproposed as a new type of asso
iation patterns that 
ontain items that arehighly aÆliated with ea
h other. Spe
i�
ally, the presen
e of an item in onetransa
tion strongly implies the presen
e of every other item that belongs tothe same hyper
lique pattern. The h-
on�den
e measure 
aptures the strengthof this asso
iation and is de�ned as the minimum 
on�den
e of all asso
iationrules of an itemset.An itemset is a hyper
lique pattern if the h-
on�den
e ofthis pattern is greater than a user-spe
i�ed minimum h-
on�den
e threshold.A hyper
lique pattern is a maximal hyper
lique pattern if no superset ofthis pattern is a hyper
lique pattern.Maximal hyper
lique patterns spe
ify a more 
ompa
t representation of hyper-
lique patterns and are desirable in many appli
ation domains, su
h as patternpreserving 
lustering [17℄, whi
h 
an easily produ
e interpretable 
lusteringresults. However, to our best knowledge, there are no eÆ
ient algorithms formining maximal hyper
lique patterns in the literature. As a result, the ob-je
tive of this paper is to design an eÆ
ient algorithm for mining maximalhyper
lique patterns in large-s
ale data sets.In general, for the asso
iation pattern mining, there are two sear
h strategies:Breadth First Sear
h (BFS) and Depth First Sear
h (DFS). The BFS strat-egy performs pattern sear
h in a level-wise manner. In other words, it �rstdis
overs all the size-1 patterns at level 1, followed by all the size-2 patternsat level 2, and so on, until no pattern is generated at a parti
ular level. Ifmining maximal hyper
lique patterns using the BFS strategy, we 
ould applyPrevalen
e Pruning; that is, an itemset 
an be pruned if one of its subset isnot a hyper
lique pattern. This pruning is based on the anti-monotone prop-2



erty of support and h-
on�den
e measures. The limitation of this strategy isthat we need to generate all the subsets of a maximal hyper
lique pattern. In
ontrast, the DFS strategy avoids generating all the intermediate patterns and
an dire
tly �nd maximal hyper
lique patterns. For the DFS strategy, a lot ofpruning methods, su
h as equivalen
e pruning, leftmost pruning, full pruning,and dynami
 ordering [4, 6, 20℄, 
an be applied. However, the DFS strategy
annot apply the Prevalen
e Pruning method, sin
e we do not generate allsubsets of a 
andidate pattern for this strategy.
NULL

1 2
1st Phase:
BFS 3 4

1, 4

1, 2, 3, 4

1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4

3, 42, 42, 31, 2 1, 3
2nd Phase:
DFSFig. 1. An Illustration of the Hybrid Mining Method.In this paper, we exploit key advantages of both the DFS strategy and the BFSstrategy and design a hybrid Maximal Hyper
lique Pattern (MHP) miningalgorithm. Figure 1 illustrates our MHP algorithm, whi
h has two phases. Inthe �rst BFS phase, for a given depth L, we use the Apriori-like approa
h [2℄to generate all the size-L hyper
lique patterns. In the se
ond phase, the MHPalgorithm takes the DFS sear
h strategy. All the DFS pruning methods areused in this phase. Also, sin
e we have all the size-L hyper
lique patterns,an itemset 
an be pruned by prevalen
e pruning method if any of its size-Lsubset has not been generated. Considering the DFS strategy is mu
h moreeÆ
ient than the BFS strategy for �nding maximal patterns and the major
omputation savings of the DFS strategy is due to the equivalent pruningmethod [1, 6, 20℄, we adapt the equivalent pruning method into our algorithm.In addition, we prove the 
orre
tness and 
ompleteness of our MHP algorithm.Finally, our experimental results show that the MHP algorithm 
an be ordersof magnitude faster than maximal frequent pattern mining algorithms, su
has MAFIA [6℄, parti
ularly at low level of support.Related works:Agrawal et al. [3, 2℄ have proposed the 
lassi
al DFS and BFS algorithmto dis
over frequent patterns. Some other resear
hers proposed the 
on
epts3



of maximal [6, 4℄ and 
losed frequent patterns [20℄. These frequent patternmining algorithms are not very e�e
tive for identifying patterns at a low levelof support.Re
ently, there has been growing interest in developing te
hniques for min-ing asso
iation patterns without support 
onstraints. For example, Wang etal. proposed the use of universal existential upward 
losure property of 
on-�den
e to extra
t asso
iation rules without spe
ifying the support thresh-old [15℄. Cohen et al. have proposed using the Ja

ard similarity measure,sime(x; y) = P (x\y)P (x[y), to 
apture interesting patterns without using a minimumsupport threshold [7℄. Also, many resear
hers developed alternative te
hniquesto push various types of 
onstraints into the mining algorithm [5, 9, 12℄. Theseapproa
hes greatly redu
e the number of patterns generated and improve 
om-putational performan
e by introdu
ing additional 
onstraints, but fail to o�erany spe
i�
 me
hanism to eliminate weakly-related patterns involving itemswith di�erent support levels.Xiong et al. [18℄ introdu
ed the 
on
ept of hyper
lique patterns, whi
h in-
lude items strongly related with ea
h other. An h-
on�den
e measure wasused to identify hyper
lique patterns. This measure possesses the desired anti-monotone and 
ross-support properties, whi
h 
an be helpful for identifyingstrongly 
orrelated items even at low levels of support. In this paper, we fo
uson �nding maximal hyper
lique patterns.When Agrawal et al. [3℄ proposed the problem of asso
iation-rule mining,they provided an Apriori algorithm for mining frequent patterns. The Aprioriis a basi
 BFS approa
h. Later on, Agarwal et al. [1℄ designed a more ad-van
ed BFS algorithm, 
alled tree proje
tion. Several optimal methods havebeen implemented in this BFS algorithm. They also mentioned the possibil-ity of a hybrid sear
hing strategy, but have not put the idea into pra
ti
e.Compared to the BFS strategy, the DFS strategy is more �t to �nd maximalfrequent patterns. There are many optimal pruning methods whi
h prune non-maximal patterns to redu
e the sear
hing spa
e [4, 6, 20℄. Burdi
k et al. [6℄analyzed the performan
es of these methods and showed that the equivelantpruning method 
ould greatly speed up the pro
essing pro
edure. Han et al.[10℄ 
onstru
ted a very 
ompa
t stru
ture, FP tree, to store the information ofpatterns. Avoiding generating 
andidate patterns, FP tree 
ould extra
t maxi-mal patterns more eÆ
iently. Zaki [19℄ analyzed the performan
es of top-downand bottom-up sear
hing strategies for mining maximal frequent patterns anddesigned Clique and E
lat algorithms for this purpose.Overview: The remainder of this paper is organized as follows. Se
tion 2de�nes some basi
 
on
epts. In se
tion 3, we propose a framework for miningmaximal hyper
lique patterns. We des
ribe the algorithm details and prove the
orre
tness and 
ompleteness of the algorithm in Se
tion 4. Our experimental4



results are presented in Se
tion 5. Finally, in se
tion 6, we draw 
on
lusionsand suggest future work.2 Basi
 Con
eptsTo fa
ilitate our dis
ussion, we �rst present some basi
 
on
epts in this se
tion.De�nition 1 The h-
on�den
e of an itemset P = fi1; i2; � � � ; img, denotedas h
onf(P ), is a measure that re
e
ts the overall aÆnity among items withinthe itemset. This measure is de�ned asminf
onffi1 ! i2; : : : ; img; 
onffi2 !i1; i3; : : : ; img; : : : ; 
onffim ! i1; : : : ; im�1gg, where 
onf is the traditionalde�nition of asso
iation rule 
on�den
e [2℄.De�nition 2 An itemset P is a hyper
lique pattern if support(P ) � �and h
onf(P ) � H
, where � is a user-spe
i�ed minimal support threshold andH
 is a user-spe
i�ed minimal h-
on�den
e threshold. When the h-
on�den
ethreshold equals to 0, hyper
lique patterns be
ome frequent patterns.De�nition 3 For a hyper
lique pattern, HP, if none of its supersets is a hy-per
lique pattern, we say HP is a Maximal Hyper
lique Pattern (MHP).This means, a pattern P 2 MHP () P 2 HP and 8 P'� P, P' =2 HP.De�nition 4 The order of items: for two items i1 and i2, if support(i1) �support(i2) and the name of i1 is pre
eding of the name of i2 in the lexi
o-graphi
 order, we say i1 is lexi
ographi
 before i2. This 
an also be denotedas i1 <i2.In the rest of this paper, we arrange items in ea
h pattern in order, unlessotherwise noted.De�nition 5 The order of patterns: for two di�erent patterns P1 = fi1; i2; :::ikgand P2 = fi01; i02; :::; i0lg, if (P1 � P2) _ (9 m, m < k and m < l, 8n; 1 � n �m� 1; in = i0n and im < i0m), we say P1 lexi
ographi
 before P2. It 
an alsobe denoted as P1<P2.3 A Framework for Mining Maximal Hyper
lique PatternsIn this se
tion, we present a framework of two-phase maximal hyper
liquepattern mining. In the �rst BFS phase, we retrieve all the size-L hyper
liquepatterns. In other words, the �rst L levels of the lexi
ographi
 tree [13℄ will5



be sear
hed using Apriori-like methods [2℄. In the se
ond phase, we apply theDFS strategy to extra
t all the Maximal Hyper
lique Patterns (MHP).For better illustration, we 
onstru
t a small demo dataset. Table 1 shows thissample data set and Table 2 shows the support of items in the sample data set.For a minimumSupport Threshold (�)= 0.15, and a minimumH�
onfiden
eThreshold (H
)= 0.55, Figure 2 illustrates the two-phase maximal hyper
liquepattern mining pro
ess on the sample data set.3.1 Basi
 De�nitionsFor a pattern, there are three 
on
epts related to items of this pattern: theitem set, the equivalen
e item set, and the tail item set. We �rst introdu
ethese three 
on
epts.De�nition 6 The Item Set (P .item) of a pattern P is the set of all theitems in the pattern.De�nition 7 The Tail Item Set (P .tail) of a pattern is the set of itemswhi
h 
an be used to generate the super pattern of this pattern in the DFSphase.In the DFS phase, we retrieve all the patterns by generating the super patternsof a given pattern(P ) with its tail items [13, 1℄. All tail items are in
luded inP .tail. As 
an be seen in Figure 2, f3,4,7g is a hyper
lique pattern, and items8 and 9 
ould be used to generate super patterns of f3,4,7g, sin
e all the size-3sub patterns of f3,4,7,8g and f3,4,7,9g are hyper
lique patterns. So the tailitem set of f3,4,7g is f8,9g.De�nition 8 For a pattern P , if an item appears in all the transa
tions that
ontain P .item, but not in P .item, we say that this item is an equivalen
eitem with P .For instan
e, item 5 always appears in every transa
tion whi
h in
ludes pat-tern f1,2g. So, 5 is an equivalen
e item of pattern f1,2g.Lemma 1 If an item is an equivalen
e item of a pattern, it should also be anequivalen
e item of its super patterns.If an item i is an equivalen
e item of P , but support(P )support(i) < H
, the union of figand P .item is not a hyper
lique pattern. We 
an prune this kind of equivalen
eitems.De�nition 9 If an item is an equivalen
e item of a pattern P , and the6



Table 1A Sample Data Set TID Items1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 112 3, 4, 7, 8, 9, 113 3, 4, 5, 6, 7, 8, 9, 114 1, 2, 3, 4, 5, 6, 7, 8, 9, 115 1, 3, 4, 7, 8, 96 2, 3, 4, 7, 87 3, 4, 7, 98 3, 4, 8, 99 3, 7, 8, 910 4, 7, 8, 9Table 2Support of Items in the Sample Data SetItem TID Support1 1, 4, 5 0.32 1, 4, 6 0.33 1, 2, 3, 4, 5, 6, 7, 8, 9 0.94 1, 2, 3, 4, 5, 6, 7, 8, 10 0.95 1, 3, 4 0.36 1, 3, 4 0.37 1, 2, 3, 4, 5, 6, 7, 9, 10 0.98 1, 2, 3, 4, 5, 6, 8, 9, 10 0.99 1, 2, 3, 4, 5, 7, 8, 9, 10 0.910 1 0.111 1, 2, 3, 4 0.4Support Threshold(�)= 0.15H � 
onfiden
e Threshold(H
)= 0.55union of this item and P .item is also a hyper
lique pattern, we say this itemis a Pure Equivalen
e Item, PE item, of the pattern P .In the example dataset, we know both item 4 and 6 are equivalen
e items off1,2g. H
onf(f1,2,4g)=0.22< H
, and H
onf(f1,2,5g)=0.66> H
, so 5 is a PEitem of f1,2g, but 4 is not.If we generate the 
losed frequent itemset or maximal frequent itemset withthe DFS approa
h, the Equivalen
ePruning method 
ould move the PE itemfrom P .tail to the P .item dire
tly [6, 20℄. However, this method may break thelimitation of h-
on�den
e when we generate super patterns. As shown in thesample data set, item 11 is a PE item of f5g, but not a PE item for f1, 5g. Inother words, item 11 
annot be added into f5g, sin
e we do not know whetheritem 11 is a PE item of the super patterns of f5g or not. Also, we apply the7



equivalen
e pruning in the BFS phase. Sin
e adding items will 
hange the sizeof patterns, we need to maintain a set of PE items for patterns.
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Fig. 2. An Illustration of the Two-Phase Maximal Hyper
lique Pattern MiningDe�nition 10 The Equivalen
e Item Set of a pattern, P .equivalen
e, isthe item set of all PE items of the pattern P .If we �nd an item is a PE item of a pattern P , we 
ould add it to P .equivalen
e.While the super patterns of P are generated, they will su

eed their ownPE items from P .equivalen
e. In this 
ase, the items of P are separated inP .item and P .equivalen
e, and the real pattern of P should be P .item [P .equivalen
e. In Figure 2, items 5 and 6 are PE items of f1,2g, so the itemset of f1,2(5,6)g is f1,2g, and the equivalen
e item set is f5,6g.De�nition 11 Union of a pattern, P .union, is P:item[P:equivalen
e.P .unionis the real itemset of P . Indeed, support(P .union)=support(P .item).De�nition 12 Size of a Pattern P : we de�ne the size of P as the size ofP.item, no matter how many items in P.equivalen
e.For instan
e, the union of pattern f1,2(5,6)g are f1; 2gSf5; 6g = f1; 2; 5; 6g.However, the size of f1,2(5,6)g is 2, whi
h is the same as f1,2g.De�nition 13 Sub pattern: For two pattern P1; P2, if P1.item is a subset ofP2.item, we say that P1 is a sub pattern of P2, even P1.union is not a subsetof P2.union, and P2 is a super pattern of P1. If the size of P1 is smaller8



than the size of P2, P1 is a pure sub pattern of P2.In the sample data set, f1,5(6)g is a super pattern of both f5(6,11g and f1,5g.However, only f5(6,11)g is a pure sub pattern of f1,5(6)g, sin
e size(f5(6,11)g)< size(f1,5(6)g), and size(f1,5g) = size(f1,5(6)g),De�nition 14 For a Pattern P1, if i0 is P1's equivalen
e item and all theitems in HP1.item are lexi
ographi
 before item i0, we say item i0 is a Proequivalen
e item of P1.De�nition 15 For a Hyper
lique Pattern HP1, if item i0 is both HP1's PEitem and Pro equivalen
e item, the item i0 is a Pro Pure equivalen
e item(PPE item) of HP1.For instan
e, in the sample data set, the two equivalen
e items of patternf1,2g, 4 and 5, are pro equivalen
e items of f1,2g, sin
e items 1 and 2, arelexi
ographi
 before 4 and 5.3.2 Pruning Methods in the BFS phaseAt the initial stage, the algorithm generates the size-1 patterns and 
ountsthe support of these patterns. All items whi
h have supports less than theuser-spe
i�ed support threshold are pruned. Meanwhile, these items are sortedduring this stage. For instan
e, 
onsider the example dataset shown in Table 1,item 10 
an be pruned sin
e support(10) � �. Also, as shown in Figure 2,the algorithm 
onstru
ts the size-1 hyper
lique patterns and sort all items inlexi
ographi
 order:f1gf2gf5gf6gf11gf3gf4gf7gf8gf9g.In the BFS phase, the algorithm exploits an apriori-like approa
h to generatethe size-L hyper
lique patterns from size-(L-1) hyper
lique patterns. Thereare three pruning strategies applied in this phase as follows.Prevalen
e Pruning. For an Apriori-like algorithm, a size-k pattern Pk withPk:item = fi1; i2; :::; ikg is generated by joining two size-(k-1) patterns:Pk�1and P 0k�1, Pk�1:item = fi1; i2; :::; ik�1g and P 0k�1:item = fi1; i2; :::; ik�2; ikg. IfPk�1 and P 0k�1 exist, the algorithm �rst 
he
ks whether all the other size-(k-1)sub patterns of Pk exist. If one of the sub patterns does not exist, Pk is not ahyper
lique pattern and 
an be pruned [1℄.H-
on�den
e Pruning.Before generating a size-k pattern Pk, we 
ould 
al
ulate the ratio: support(HPk�1)support(ik) .If this ratio is less than h
, h
onf(Pk) should be also less than H
, sin
esupport(Pk) � support(Pk�1) [18℄. For instan
e, as shown in Figure 2, sup-9



port(1)=0.3, support(3)=0.9, h
onf(f1,3g)= support(f1;3g)support(3) � support(f1g)support(3) < 0:34 <H
, therefore the pattern f1,3g is pruned.Equivalen
e Pruning. We apply the Equivalen
e Pruning method to re-du
e the number of patterns generated. If support(HPk )=support(HPk�1), ikshould be a PPE item of HPk�1, and be absorbed into HPk�1.equivalen
e.For example, in Figure 2, support(f5, 6g)=support(f5g)=0.3, we add item 6to f5g.equivalen
e and prune f5, 6g.When generating a size-k hyper
lique pattern HPk, if the items in the equiv-alen
e sets of size-(k-1) sub hyper
lique patterns are PE items of HPk, HPk
an su

eed these items to its own equivalen
e set. For instan
e, in Figure2, both f1, 5g and f2, 5g su

eed item 6 from f5g.equivalen
e, but do notsu

eed item 11 sin
e it would break the limitation of h-
on�den
e.When HPk�1 absorbing item ik, all the equivalen
e items of the other size-(k-1) patterns-fi2; i3; :::; ikg; fi1; i3; :::; ikg; fi1; :::; ik�1; ikg, are also equivalen
eitems of HPk�1. HPk�1 
ould transfer these items to HPk�1.equivelan
e ifthey are PE items. In Figure 2, while generating the pattern f1, 2, 5g fromf1, 2g, f1, 5g and f2, 5g, the pattern f1, 5g will absorb item 5, and transferitem 11 from f1, 5g.equivalen
e.Indeed, when generating HPk, if item ik is in HPk�1.equivalen
e, it is unne
-essary to generate the HPk, but transfer the PE items in the other size-(k-1)patterns' equivalen
e set to HPk�1.equvialen
e.After generating the size-k hyper
lique patterns, we 
ould 
he
k all the size-(k-1) hyper
lique patterns in lexi
ographi
 order. For a size-(k-1) pattern HPk�1,if its union is not a subset of any size-k pattern's union, it will be impossibleto generate a hyper
lique pattern whose union is the superset of HPk�1.unionin the following pro
ess. If this union is not a subset of an itemset in 
urrentMaximal Hyper
lique Pattern Set (MHPS) either, this union is a max-imal hyper
lique pattern and 
ould be added to the MHPS. For example, inFigure 2, after generating the size-2 patterns, it is found that the union of f1,2g is f1, 2, 5, 6g, and no superset in either size-3 patterns' union or MHPS.Hen
e, the algorithm adds the union into MHPS. For pattern f1, 5g, the unionof this pattern is f1, 5, 6g, and this pattern has no superset in size-3 patterns'union, but has a superset in MHPS, hen
e this pattern is pruned.3.3 Pruning Methods in the DFS phaseIn the BFS phase, the algorithm has identi�ed all the size-L hyper
liquepatterns. At the beginning of the DFS phase, the algorithm adds the tailitems to the tail sets of these patterns. For a size-L hyper
lique pattern10



HP , HP .item=fi1; i2; :::; iLg, if there is an item i0 su
h that: (1) item i0 =2HP .equivalen
e, (2) all the items in HP .item are lexi
ographi
 before i', and(3) all the size-L sub patterns of fi1; i2; :::; iL; i0g have been generated, the al-gorithm adds item i0 to HP .tail. For instan
e, in Figure 2, item 8 and 9 areadded to f3, 4, 7g's tail set.The super patterns of a hyper
lique pattern(HP ) are generated with the itemin HP .tail, and su

eed the PE item from HP .equivalen
e.Equivalen
e Pruning.Similar to the BFS phase, if a tail item i0 is a PE item, we will add i0 to theequivalen
e set of the pattern. If the size-1 pattern fi0g's equivalen
e set is notnull, the super patterns will su

eed PE items from this set.Full Pruning.When we pro
ess the Pattern HP , if the union of HP .item, HP .equivalen
eand HP .tail is a subset of a pattern in 
urrent MHPS, all of the patternsgenerated byHP 
annot be MHP sin
e they have a super Hyper
liquePattern.We 
ould prune this pattern dire
tly. In Figure 2, when we pro
ess f3, 7, 8g,whi
h tail set is f9g, f3, 4, 7, 8, 9g has already been added to MHPS. We will�nd f3; 7; 8g [ f9g is a subset of f3, 4, 7, 8, 9g, and prune f3, 7, 8g.LeftMost Pruning.When pro
essing a hyper
lique pattern HP , if the pattern at the end of thispath is found to be MHP, all the patterns in the other paths should not beMHP. In this 
ase, we 
ould skip these patterns [6℄. For example, in Figure 2,the end of left most path of f3, 4, 7g is f3, 4, 7, 8, 9g, and we �nd this patternis MHP, we 
an skip all the other paths of f3, 4, 7g, and 
ontinue to pro
essthe next pattern.Dynami
 Reordering.Bayardo et al. [5℄ showed that the bene�t of dynami
ally reordering superpatterns of a pattern is important. The performan
e 
an be 2 to 4 timesfaster. In our algorithm, we sort the super patterns in the in
reasing order oftheir support.H-
on�den
e Pruning. Similar to the BFS phase, for a tail item (i0) of ahyper
lique pattern(HP ), if support(HP )support(i0) < H
, we 
ould prune i0 from HP .tail.Prevalen
e Pruning. Sin
e we have generated the size-L hyper
lique pat-terns in the BFS phase, for a hyper
lique pattern HP , if one of its size-Lsub-pattern is not generated, we 
an prune this pattern.11



In the DFS phase, if a hyper
lique pattern 
annot generate any super hyper-
lique pattern, or none of these super hyper
lique patterns 
ould su

eed allthe items in its equivalen
e set, it will be impossible to �nd a super union ofthis pattern's union in the future. We will 
he
k this union with MHPS. Ifthere is no super pattern in MHPS, we will add the union to MHPS.MHS ALGORITHMInput: (a) P = fA Patterng(b) Data = fA DataSet represent a set of transa
tion g(
) �: A minimal support threshold(d) H
: A minimal h-
on�den
e threshold(e) L: The retrieve level of the BFS phaseOutput: (1) A set of Maximal Hyper
lique Patterns(MHPS)with support � �, h
onf � H
, and its superset without bothsu
h two properties.Variables: k: the itemset sizeHPk: a set of size-k hyper
lique patterns.CMHPk: a set of size-k 
andidate maximal hyper
lique patterns.MHPS: set of maximal hyper
lique patterns.Psuper : a set of superset generated from PPhase I: generate Hyper
lique Patterns by BFS1. HP1= Initial(CP1, �, H
, Data);2. for (k=1;k < L;k++) do3. CPk+1 = Generate and Prune Super(HPk , �, H
);4. CMHPk = set of patterns in HPk without superset union in HPk+1;5. Che
k and Add(CMHPk,MHPS);Phase II: extra
t Maximal Hyper
lique Patterns from HPL by DFS6. Append Tail(HPL);7. for 8 P in HPL8. Extra
t MHP(P );Fun
tion Extra
t MHP(Pattern P)9. Psuper=Generate and Prune Super(P , �, H
, HPL);10. Sort and Append Tail(Psuper)11. for 8 item Pi 2 Psuper12. Extra
t MHP(Pi);13. if P .union hasn't a super union in Psuper14. Che
k and Add(P ,MHPS);Fig. 3. The Overview of the MHP Algorithm12



4 The Maximal Hyper
lique Pattern Mining Algorithm4.1 Algorithm Des
riptionFigure 3 shows an overview of the hybridMaximal Hyper
lique Pattern (MHP)mining algorithm, whi
h has two phases: the Breadth First Sear
h (BFS) phaseand the Depth First Sear
h (DFS) phase. In the BFS phase, Initial Fun
tiongenerates the size-1 hyper
lique patterns, and items are sorted by support innon-de
reasing order. In Generate and Prune Super Fun
tion, the prevalen
epruning, h-
on�den
e pruning, and equivalen
e pruning are applied to prunethe sear
h spa
e and size-k hyper
lique patterns are generated from size-(k-1)hyper
lique patterns. After extra
ting the size-k patterns, the algorithm ex-tra
ts all size-(k-1) hyper
lique patterns whi
h have no super union in size-khyper
lique patterns to CMHPk�1. In Che
k and Add Fun
tion, the algo-rithm 
he
ks the patterns in CMHPk�1. If their unions are not subsets inMHPS, these unions are added into MHPS.In the DFS phase, the Append Tail Fun
tion generates the tail itemsets ofsize-L patterns. Extra
t MHP is the major fun
tion for DFS mining. The tra-ditional optimal methods, su
h as full pruning, leftmost pruning, and equiv-alen
e pruning, as well as new methods in
luding prevalen
e pruning and h-
on�den
e pruning, are implemented in Fun
tion Generate and Prune Super.The Sort and Append Tail Fun
tion implements the dynami
 sorting and addstail items for the super patterns. Finally, the algorithm 
he
ks whether thepattern being pro
essed is in MHPS or not by the fun
tion Che
k and Add.Note that the proof of the 
ompleteness and 
orre
tness of the MHP algorithmis presented in the Appendix.4.2 An Example to Illustrate the MHP AlgorithmIn this subse
tion, we des
ribe the pro
ess of the MHP algorithm using a smallsample dataset as shown in Table 2. Figure 2 highlights the whole pro
ess. Asshown in the Figure, Initial Fun
tion �rst generates all the size-1 hyper
liquepatterns. Only item 10 will be pruned, sin
e support(10)=0.1< � (� = 0:15).Also, all these size-1 patterns are sorted by their support and we have HP1 =ff1g,f2g,f5g,f6g,f11g,f3g,f4g,f7g,f8g,f9gg.In the BFS phase, Generate and Prune Super Fun
tion generates size-2 
an-didate pattern set CP2 from size-1 hyper
lique pattern set HP1. The superpattern of f1g are �rst generated. f1,2g, f1,5g,f1,6g are added into CP2. Therest super pattern of f1g are pruned by H-
on�den
e Pruning. Also, sin
e13



support(f5,6g = support(f5,11g) = support(f5g) = 0.3. Items 6 and 11 areboth PPE item of pattern f5g. The Equivalen
e Pruning Method will absorb6 and 11 into the equivalen
e set of f5g, and update h-
on�den
e value of f5gto support(f5;11g)support(f11g) = 0:30:4 = 0:75. The rest super patterns of f5g are pruned byH-
on�den
e Pruning. In a similar fashion, all the size-2 super pattern are gen-erated and inserted into CP2 sin
e all of them are hyper
lique patterns. NowCP2 is: ff1,2g, f1,5g, f1,6g, f2,5g, f2,6g, f3,4g, f3,7g, f3,8g, f3,9g, f4,7g,f4,8g, f4,9g, f7,8g, f7,9g, f8,9gg.In the se
ond step of Generate and Prune Super, patterns in CP2 will su

eedPPE items from their size-1 sub patterns. Item 6 will be added into equivalen
esets of f1,5g and f2,5g, sin
e it is in f5g.equivalen
e. Now we have HP2 fromCP2: ff1,2g, f1,5(6)g, f1,6g, f2,5(6)g, f2,6g, f3,4g, f3,7g, f3,8g, f3,9g, f4,7g,f4,8g, f4,9g, f7,8g, f7,9g, f8,9gg (The item in the parenthesis are PPE itemsin equivalen
e item set). After generating HP2, we 
an extra
t size-1 
andidatemaximal hyper
lique pattern from HP1. f5(6,11)g, f6(11)g and f11g do nothave super union in HP2. So CMHP1 = ff5(6,11)g, f6(11)g, f11gg. Next,Fun
tion Che
k and Add will 
he
k whether the patterns in CMHP1 has asuper union in the 
urrent Maximal Hyper
lique Pattern Set. Initially, MHPSis an empty set. The pattern f5,6,11g, the union of f5(6,11)g, will be �rstinserted into MHPS and MHPS = ff5,6,11gg. Sin
e f5,6,11g is a super unionof f6(11)g, the union of f6(11)g or f11g will not be inserted into MHPS.In the se
ond level loop, Fun
tion Generate and Prune Super will generateCP3 from HP2. f1,2g is the �rst pattern in HP2. By Prevalen
e Pruning, onlyf1,2,5g and f1,2,6g 
an be generated. Sin
e support(f1,2,5g) = support(f1,2g)= 0.2, and item 5 is PPE item of f1,2g, 5 is absorbed into f1,2g.equivalen
e.Meanwhile, item 6 appears in f1,5g.equivalen
e and also a PPE item of f1,2g,so this item is transferred into f1,5g.equivalen
e. f1,2,6g will not be generatedsin
e 6 has already been in equivalen
e set of f1,2g now. The Fun
tion willnot generate super 
andidate patterns for f1,5(6)g, f1,6g, f2,5(6)g and f2,6g,be
ause any super pattern of them has at least one subpattern not 
ontained inHP2. For the rest patterns in HP2, f3,4,7g, f3,4,8g, f3,4,9g, f3,7,8g, f3,7,9g,f3,8,9g, f4,7,8g, f4,7,9g, f4,8,9g and f7,8,9g will be generated and insertedinto CP3, sin
e they are hyper
lique patterns.In the se
ond step of Generate and Prune Super, the size-3 
andidate pat-terns will su

eed PE items. f1,2(5,6)g is the only pattern in HP2 whi
hdoes not have super union in HP3. So CMHP2 = ff1,2(5,6)gg. Fun
tionChe
k and Add �nds this pattern whi
h does not have super union in 
urrentMHPS, and adds f1,2,5,6g into MHPS. Now, MHPS is ff5,6,11g, f1,2,5,6gg.In the DFS phase, fun
tion Append Tail will append tail items to the size-3 hyper
lique pattern in HP3. For instan
e, item 8 
ould be appended tof3,4,7g.tail sin
e all the size-3 sub patterns of f3,4,7,8g appear in HP3. After14



this step, HP3 be
ome: ff3,4,7-8,9g, f3,4,8-9g, f3,4,9g, f3,7,8-9g, f3,7,9g,f3,8,9g, f4,7,8-9g, f4,7,9g, f4,8,9g, f7,8,9gg (The items following '-' symbolare tail items). The re
ursive fun
tion Extra
t MHP will generate MaximalHyper
lique Pattern from HP3 in lexi
ographi
 order. First, this fun
tion willgenerate f3,4,7,8g and f3,4,7,9g. A dynami
 Reordering Method 
omparestheir support and order these patterns by their support. Here they have samesupport and f3,4,7,8g is lexi
ographi
 before f3,4,7,9g, so we pro
ess f3,4,7,8g�rst. Item 9 will be appended into f3,4,7,8g.tail and f3,4,7,8,9g is generated.Finally, Fun
tion Che
k and Add �nds that the union of this pattern is nota sub pattern of any MHPS pattern and add the union into MHPS. NowMHPS = f5,6,11g,f1,2,5,6g,f3,4,7,8,9gg. Sin
e f3,4,7,8,9g is in the leftmostpath of f3,4,7g, all the 
andidate super patterns derived from f3,4,7g will bepruned. All other patterns in HP3 will be pruned by Full Pruning sin
e theunions of all of their itemset, equivalen
e set and tail set are sub patterns off3,4,7,8,9g, whi
h is in the 
urrent MHPS. Therefore, we have MHPS = ff5,6, 11g, f1,2,5,6g, f3,4,7,8,9gg for �=0.15 and H
=0.55.5 Experimental EvaluationIn this se
tion, we present experiments to (1) evaluate the performan
e ofthe MHP algorithm, (2) analyze the e�e
t of the equivalent pruning methodin the BFS phase, (3) 
ompare maximal hyper
lique patterns to hyper
liquepatterns as well as maximal frequent patterns, and (4) show the appli
ationof maximal hyper
lique patterns for identifying protein fun
tional modules.5.1 The Experimental SetupExperiment Data Sets. Our experiments were performed on some real-world date sets, whi
h are ben
hmark data sets for evaluating pattern miningalgorithms. First, pumsb and pumsb� data sets 1 
orrespond to binary versionsof a 
ensus data set. The di�eren
e between them is that pumsb* does not
ontain items with support greater than 80%. The LA1 data set is part of theTREC-5 
olle
tion 2 and 
ontains news arti
les from the Los Angeles Times.In addition, the TAP-MS data set [8℄ is a protein 
omplex data set, whi
hsummarizes large-s
ale experimental studies of multi-protein 
omplexes for1 These two data sets are obtained from IBM Almaden resear
h 
enter athttp://www.almaden.ibm.
om/
s/quest/demos.html.2 The data set is available at http://tre
.nist.gov.15
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e Comparisons on the Pumsb Data Setthe yeast Sa

haromy
es Cerevisiae. Some 
hara
teristi
s of these data setsare des
ribed in Table 3 3 .Table 3Chara
teristi
s of Real-world Data Sets.Data set #Item #Transa
tion Sour
ePumsb 2113 49046 IBM AlmadenPumsb* 2089 49046 IBM AlmadenLA1 29704 3204 TREC-5TAP-MS 1440 232 Gavin's Protein ComplexesA Ben
hmark Algorithm. Re
ently, the MAFIA algorithm [6℄ was pro-posed to eÆ
iently dis
over maximal frequent patterns. MAFIA is a pureDFS sear
hing algorithm. As des
ribed in their paper, MAFIA 
an be severalorders faster than some alternative methods, su
h as DepthProje
t, for miningmaximal frequent patterns. The 
ode of the DFS phase of the MHP algorithmis built on top of MAFIA, while we have added some new optimal methods. Inthis paper, we 
hose MAFIA as the base line for our performan
e evaluation.The Experimental Platform.We implemented the MHP algorithms usingC++ and all experiments were performed on a Pentium III 550MHz PC with128 megabytes main memory, running Linux Redhat 6.1 operating system.5.2 A Performan
e ComparisonFigure 4(a) illustrates the number of patterns that MHP and MAFIA gener-ated at the di�erent support and h-
on�den
e thresholds on the pumsb data3 We have removed all the items whi
h have not appeared in any transa
tion16
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Min_Conf=0.9(b) The Running TimeFig. 5. Performan
e Comparisons on the Pumsb* Data Setset. Note that, for all the experiments illustrated in this se
tion, the levelof BFS phase is 2. As 
an be seen, for MHP, the number of patterns gener-ated is in
reasing with the de
rease of the support threshold. In pra
ti
e, the
ross-support patterns, whi
h 
ontain items with di�erent support levels, areweakly-related and are not desirable for real-world appli
ations[18℄. When thesupport threshold is low, MAFIA will generate too many 
ross-support pat-terns. However, the number of patterns generated by MHP 
an be signi�
antlysmaller than that of MAFIA even if a low h-
on�den
e threshold is spe
i�ed,sin
e many 
ross-support patterns have been removed by MHP. Consideringthat, after generating a pattern, the algorithm needs to 
ount support for thepattern. Support 
ounting is the most time-
onsuming task during the pat-tern mining pro
ess, sin
e the algorithm needs to retrieve all the transa
tionswhi
h in
lude one of its sub-patterns, or for MAFIA, retrieve all the bits ofthe bitmap of this pattern [6℄. Therefore, an algorithm is more eÆ
ient if asmaller number of patterns need to be generated.The running time of MHP and MAFIA on the Pumsb data set is des
ribed inFigure 4 (b). In the �gure, we 
an observe that the running time of MHP 
anbe signi�
antly redu
ed with the in
rease of h-
on�den
e thresholds. Also, therunning time of MHP 
an be mu
h less than that of MAFIA even if we just seta little higher h-
on�den
e threshold. The major reason is that the number ofgenerated patterns of MHP is signi�
antly smaller than that of MAFIA, andMHP doesn't need waste spa
e to store the spa
ious patterns.In addition, MAFIA is unable to generate patterns when the support thresh-old is less than or equal to 0.4, as it runs out of memory. Hui et al. haveshown that nearly 96.6 per
ent of the items have supports less than 0.4[17℄.MAFIA will fail to generate useful asso
iations from the less popular items.In 
ontrast, MHP algorithm 
an identify strong relations from these items.MHP 
an identify maximal hyper
lique patterns when the support thresholdis 0.1, if we set the h-
on�den
e threshold to 0.5. In other words, MHP has17



the ability to identify patterns whi
h 
an be diÆ
ult to identify for MAFIA.Hen
e, MHP 
an better explore the pattern spa
e and �nd interesting patternsat low levels of support.Similar results are also obtained from the pumsb* data set, as des
ribed inFigure 5. Sin
e pumsb* removes all the popular items whi
h have supportsmore than 0.8, the spa
ious patterns with popular items will not be generated.So MAFIA 
an �nd patterns when the support threshold is 0.02. There arestill too many spa
ious patterns. For the pumsb* data set, the number ofgenerated patterns of MHP is mu
h smaller than that of MAFIA. And therunning time of MHP 
an be several orders of magnitude less than that ofMAFIA, even when we just set the h-
on�den
e threshold as low as 0.3.
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Fig. 6. Performan
e Comparisons on the LA1 Data SetFor the very sparse data set LA1, the hybrid algorithm is not as eÆ
ient asthe MAFIA algorithm in mining frequent patterns. The pro
essing time andgenerated time is demonstrated in Figure 6. MHP algorithm is about 4 timeslower than the MAFIA when the support level is 0.002. The main reason isthat we need spend many memories to store the size-2 patterns. There are2,317 size-1 patterns and 59,603 size-2 patterns generated in BFS phase ofMHP, so we need store 61,920 patterns. Every pattern needs about 2317/8 =290 bytes for the items and 3204/8 = 400 bytes for the support information.Our MHP algorithm needs at least (290 + 400) * 61,920 = 42.7M bytes spa
eto store them. The total main memory in our ma
hine is only 128M, and thereis about 82.3M left for the users. Sin
e our approa
h also need many memoryspa
e during the pro
essing pro
edure, we 
an't avoid data swapping betweenthe main memory and the hard disk, whi
h will greatly a�e
t the speed. Onthe other side, MAFIA only need re
ord 2317 F1 patterns and save morememory spa
e. When we set the support threshold to 0.003, the number ofsize-2 pattern redu
e to 8894, and the pro
essing times of MHP and MAFIAare almost the same. Same as the pumsb and pumsb* data set, when we set18
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(b) Number of Partial PrevalentPruning in DFS phaseFig. 7. E�e
t of Di�erent BFS Level, on the Pumsb* Data Seta proper h-
on�den
e threshold, MHP approa
h 
an be orders faster than theMAFIA and mine mu
h lower support patterns.5.3 The E�e
t of the Choi
es of Di�erent Levels in the BFS PhaseIn this subse
tion, we evaluate the e�e
t of the 
hoi
es of di�erent sear
hlevels in the BFS phase. Indeed, if the sear
h depth is deeper, we 
ould getmore equivalent pruning in the BFS phase. Sin
e we get longer patterns inthe �rst phase, we 
ould prune more patterns with the partial prevalent prun-ing method in the se
ond phase. However, this may result in more memoryrequirement. There is a tradeo� between memory usage and better pruning.Figure 7(a) illustrates the number of equivalent pruning at di�erent sear
hlevels in the BFS phase. As it 
an be seen, with the in
rease of sear
h levels,the hybrid approa
h 
an prune 4-6 times more patterns.Figure 7(b) shows the partial prevalent pruning in the DFS phase when theBFS levels are di�erent in pumsb* data set. We observe that the approa
hwith 3 levels in BFS 
an a
hieve partially prevalent pruning twi
e better thanthe approa
h with 2 levels. Also, the approa
h with 4 levels prunes mu
h lessthan the approa
h with 3 levels. The main reason is that many size-4 patternsare pruned by prevalent pruning in BFS phase.With the above experiments, it shows that the hybrid approa
h with 3 levelsin the BFS phase may be better than the approa
hes with 2 or 4 levels.19
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Fig. 8. The Number of MFI/MHP Patterns in the Pumsb* Data Set.
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Fig. 9. The number of MFI/MHP Patterns in the Pumsb Data Set.5.4 Maximal Hyper
lique Patterns versus Maximal Frequent PatternsFigure 8 and Figure 9 illustrate the number of maximal patterns identi�ed byMHP and MAFIA on Pumsb* and Pumsb data sets respe
tively. As it 
an beseen, the number of maximal hyper
lique patterns identi�ed by MHP 
an beorders of magnitude smaller than the number of maximal frequent patternsidenti�ed by MAFIA. In other words, the number of maximal hyper
liquepatterns is mu
h easier to manage than that of maximal frequent patterns.Indeed, in real-world appli
ations, it is diÆ
ult to interpret several millionmaximal frequent patterns. However, it is possible to interpret the results ofmaximal hyper
lique pattern mining.20



5.5 Maximal Hyper
lique Patterns versus Hyper
lique Patterns�=H
 0.99 0.95 0.90 0.850 149 503 4386 297440.2 90 441 4318 296710.4 25 375 3682 275070.5 21 360 3656 27466(a) Number of HP Patterns �=H
 0.99 0.95 0.90 0.850 70 149 641 22430.2 18 95 578 21750.4 25 91 569 21630.5 10 84 564 2154(b) Number of MHP PatternsTable 4The number of maximal hyper
lique patterns and hyper
lique patterns generatedon the pumsb data set.Maximal hyper
lique patterns 
orrespond to a more 
ompa
t representationof hyper
lique patterns, while maximal hyper
lique patterns may lose the in-formation about support and h-
on�den
e of their subsets. However, in someappli
ation domains, maximal hyper
lique patterns provide suÆ
ient informa-tion in terms of pra
ti
al use, su
h as the use of maximal hyper
lique patternsfor pattern preserving 
lustering [17℄.Table 4 illustrate the number of MHP patterns and HP patterns generated onthe pumsb data set 4 . With the in
rease of the support threshold, the numberof MHP patterns and HP patterns in
rease very slowly. In 
ontrast, with thede
rease of h-
on�den
e thresholds, the number of HP patterns in
reases mu
hfaster than the MHP patterns. When the h-
on�den
e is 0.85, quite low forsome appli
ations, the number of MHP patterns is 10 times smaller than theHP patterns. This indi
ates that the number of maximal hyper
lique patternsis more manipulated than the number of hyper
lique patterns.5.6 An Appli
ation of Maximal Hyper
lique Patterns for Identifying ProteinFun
tional ModulesIn this subse
tion, we des
ribe an appli
ation of maximal hyper
lique patternsfor identifying protein fun
tional modules - groups of proteins involved in
ommon elementary biologi
al fun
tion [16℄.Figure 10 shows the subgraphs of the Gene Ontology (www.geneontology.org)
orresponding to a maximal hyper
lique pattern fCus1, Msl1, Prp3, Prp9,Sme1, Smx2, Smx3, Yh
1g identi�ed from the TAP-MS protein 
omplex data.4 We only 
ompare the patterns with size greater than 1.21
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Cus1 Msl1 Prp3 Prp9 
Sme1 Smx2 Smx3 Yhc1Fig. 10. The Gene Ontology annotations of pattern fCus1, Msl1, Prp3, Prp9, Sme1,Smx2, Smx3, Yh
1g. Figure on the left shows subgraph of fun
tion annotation ofthe pattern. Figure on the right shows subgraph of pro
ess annotation. Proteinsare listed in square box. Signi�
ant nodes are labeled with the number of proteinsannotated dire
tly or indire
tly to that term and the p-value for the term.The left subgraph in the �gure is the mole
ular fun
tion annotation of the pro-teins in the pattern. Note that all 8 proteins from this pattern are annotatedto the term RNA binding with p-value 4.97e-10. The p-value is 
al
ulated asthe probability that n or more proteins would be assigned to that term ifproteins from the entire genome are randomly assigned to that pattern. Thesmaller the p-value, the more signi�
ant the annotation. Among the pattern,4 proteins fPrp3, Sme1, Smx2, Smx3g are annotated to a more spe
i�
 termpre-mRNA spli
ing fa
tor a
tivity with p-value 2.33e-07. The annotation ofthese proteins 
on�rms that ea
h pattern form a module performing spe
i�
fun
tion. The right subgraph in Figure 10 shows the biologi
al pro
ess thispattern is involved in. The proteins are annotated to the term nu
lear mRNAspli
ing via spli
eosome with p-value 8.21e-15 whi
h is statisti
ally signi�
ant.6 Con
lusions and Future WorkIn this paper, we designed a two-phase Maximal Hyper
lique Pattern (MHP)mining algorithm for �nding maximal hyper
lique patterns. This algorithm
ombines best features of both the Breadth First Sear
h (BFS) and Depth22



First Sear
h (DFS) strategies. More spe
i�
ally, we adapted DFS pruningmethods, su
h as equivalen
e pruning, to a BFS approa
h and designed a hy-brid sear
h strategy for eÆ
iently identifying maximal hyper
lique patterns.In addition, we proved the 
orre
tness and 
ompleteness of the MHP algo-rithm. Finally, our experimental results on real-world data sets show that theMHP algorithm 
an be orders of magnitude faster than standard maximalfrequent pattern mining algorithms and has the ability to identify patterns atextremely low levels of support even for dense data sets.There are several dire
tions for future work. First, there are some other optimalmethods for pattern �nding, su
h as tree proje
tion, FP-tree, and di�set [1, 19,10℄. We plan to adapt some of these te
hniques into our algorithm. Also, sin
ethe 
on
ept of 
losed patterns is very desirable for some appli
ation domains,we would like to design algorithms for mining 
losed hyper
lique patterns.A
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tness of the MHP AlgorithmLemma 2 If a hyper
lique pattern, HP1, is generated in the BFS phase, noneof the items in HP1.item 
ould be a PPE item of any sub pattern of HP1.Proof:We prove this lemmaby 
ontradi
tion. SupposeHPk.item=fi1; i2; :::; ikg,and il is a PPE item of HPm, where HPm is a sub pattern of HPk; l � k. Wehave HPm � of fi1; i2; :::; il�1g, and il should also be a PPE item of this size-(l-1) pattern. A

ording to our algorithm, fi1; i2; :::; il�1g will absorb il intothe equivalen
e set. So the size-l pattern, fi1; i2; :::; ilg, will not be generated.HPk 
annot be generated either. The lemma is proved. 2Lemma 3 When a hyper
lique pattern, HP1, is generated in the BFS phaseand the size of HP1 < L, if 9 an item i, (1) all the items in the HP1.item arelexi
ographi
 before i, (2)i is not an equivalen
e item of HP1, and (3)HP1.item[ fig is also a hyper
lique pattern, then HP1.item [ fig will be generated bythe MHP algorithm.Proof:Suppose HP1 is a minimal size pattern in this kind of ungenerated patterns,where HP1.item=fi1; i2; :::; ik; ig, and the sub pattern HP 0 whi
h itemset isfi1; i2; :::; ikg has been generated. Then, all the size-(k-1) sub pattern of HP 0should have been generated, and i satis�es all the three 
onditions in thislemma to them. All the size-k sub patterns of HP1 will be generated sin
ethey are smaller than HP1. HP1 will been generated in the next level apriori-gen. This leads to 
ontradi
tory. 2Lemma 4 If a hyper
lique pattern, HP1, is generated in the BFS phase, allPPE items of its sub patterns will be added to the HP1.equivalen
e by the MHPalgorithm.Proof: Suppose HP1 is the minimal su
h hyper
lique pattern whi
h breaksthis lemma, and i is any PPE item of one of HP1's sub pattern, HP1.item =25



fi1; i2; :::; ikg.If i is also a PPE item of HP1's pure sub pattern, i will appear in the equiva-len
e set of this sub pattern. HP1 
ould su

eed this PE item from this patterndire
tly or indire
tly.If i is not a PPE item for any pure sub patterns, it should be a PPE item ofHP1. Now ik < i and i is not an equivalen
e item of any pure sub patternsof HP1. By Lemma 3, all the size-k sub patterns of fi1; i2; :::; ik; ig will begenerated. The item i will be absorbed or transferred to HP1.equivalen
e inthe next level apriori-gen. Here, we observe a phenomenon: if i is transferred tothe equivalen
e set, it will also be added to the equivalen
e set with absorbingand su

eeding methods if the transferring methods is not applied. 2Lemma 5 An equivalen
e item, whi
h is transferred by a hyper
lique patternHP1, 
ould also be added to equivalen
e set with the absorbing or su

eedingmethod if the transferring method is not applied.Proof: If an item is transferred from another pattern, this item is also a PPEitem of one of its sub pattern. In the proof of Lemma 4, we �nd this item willbe added to the equivalen
e set of this sub pattern even without transferringmethod. It will also be added to the equivalen
e set of this pattern. 2Lemma 6 For a hyper
lique pattern HP , all items in HP .equivalen
e arePPE items of some sub pattern of the pattern HP .Proof: This lemma is 
orre
t, sin
e all the three methods, absorbing, su

eed-ing and transferring, add an item into HP1.equivalen
e only when this itemis a PPE item of one of HP1's sub pattern. 2Lemma 7 For a hyper
lique pattern, HP , if an item is a PPE item of a subpattern of HP .union, it is also a PPE item of a sub pattern of HP .item;similarly, if an item is a PPE item of a sub pattern of HP .item, it is also aPPE item of a sub pattern of HP .union.Proof: If an item i is a PPE item of a sub pattern, SP , of HP .union,we 
ould 
onstru
t a pattern HP1:item = fi0ji0 2 HP:union ^ i0 < ig.We have HP1 � SP and i is a PPE item of HP1. 8 item i00, where i00 2(HP1:itemTHP:equivelan
e), i00 is a PPE item of a sub pattern of HP , bythe Lemma 6. Sin
e this sub pattern should also be a subset of HP1, i00 is a PEitem of HP1:item=i00. So i is also a PPE item of HP1:item=i00. After gettingrid of all the items in HP .equivalen
e, we 
ould �nd that i is a PPE item of(HP1:itemTHP .item), whi
h is a sub pattern of HP .item.Sin
e HP .union is a super set of HP .item, the se
ond part 
an be proved ina similar fashion 2. 26



De�nition 16 For a hyper
lique pattern P1, if (1) P2 is a hyper
lique pattern,(2) P2.item is a subset of P1.item, and (3) the union of P2 is a super set ofP1.item, P2 is a Covering Pattern of P1.We have support(P2.item)=support(P1.item)=support(P2.union).Lemma 8 If a pattern is a hyper
lique pattern, one of its 
overing patternsmust be generated by our approa
h if the full pruning and leftmost pruningmethods are not applied. If these two method are applied, then one of the
overing patterns of its super pattern must be generated.Proof: We �rst prove that without the full pruning and leftmost pruningmethods, a 
overing pattern of the hyper
lique pattern will be generated. Weprove it with 
ontradi
tion. Suppose HP1 is a minimal su
h hyper
lique pat-tern without generated 
overing pattern.HP1.item=fi1; i2; :::; ikg. LetHP 0.item= fi1; i2; :::; ik�1g.HP 0 should have a Covering Pattern(CP1) generated by ouralgorithm. There are two 
ases for generating CP1:The �rst 
ase is that CP1 is generated in BFS phase. (1)If ik is an equivalen
eitem of any sub pattern of CP1, ik should be also a PPE item of this subpattern. CP1 will add ik into its equivalen
e itemset and be
ome a 
overingpattern of HP1. (2)If ik is not an equivalen
e item for any sub pattern ofCP1, by the Lemma 3, a new pattern CP1:item[ fikg will be generated. Thispattern will be the Covering Pattern of HP1.The other 
ase is that CP1.item is generated in the DFS phase. (1) If ik is anequivalen
e item of any size-L sub patterns of CP1, CP1 will su

eed ik andbe
ome the 
overing pattern of HP1. (2)If ik is not an equivalen
e item forany size-L sub pattern of CP1, by the Lemma 3, all the size-L sub patterns ofCP1:item[ fikg will be generated. In the Append Tail Fun
tion, the size-L subpatterns of CP1 will add ik into their tail sets. DFS phase 
ould not get rid ofik from the tail sets of CP1's sub pattern's unless adding it to the equivalen
esets. If ik is an equivalen
e item of CP1, it will appear in CP1.equivalen
e,otherwise, the pattern CP1.item [ fikg will be generated while pro
essingCP1. Both of them will generate a Covering Pattern of HP1.From the above, both 
ases lead to 
ontradi
tion.With the Full Pruning and Leftmost Pruning methods, a node will be removedif the union of its itemset, equivalen
e set and tail set has a super patternin 
urrent MHPS. But in this 
ase, all the hyper
lique patterns 
ould begenerated by this node will have a super pattern in MHPS, whi
h meansthey should have a 
overing pattern of the super maximal pattern generatedalready. 2Theorem 1 The MHP algorithm is 
omplete. In other words, all the MaximalHyper
lique Patterns will be identi�ed by the MHP algorithm.27



Proof: 8 maximal hyper
lique pattern MHP1, by the Lemma 8, one of itssuper pattern's 
overing pattern will be generated. Sin
e MHP1 is maximal,the union of this 
overing pattern should be MHP1's itemset =) MHP1 
anbe identi�ed by the MHP algorithm. 2Theorem 2 The MHP algorithm is 
orre
t. In other words, any pattern iden-ti�ed by the MHP algorithm is a maximal hyper
lique pattern.Proof: First, any pattern identi�ed by the MHP algorithm is a hyper
liquepattern. We only need to show the pattern is maximal.Case 1: If we �nd a pattern has no super hyper
lique pattern or none of itssuper hyper
lique pattern's union set is superset of the pattern's union in DFSphase. A

ording to the pro
edure of DFS sear
hing, we de�nitely 
annot �nda super union in the rest. If there is no super pattern in 
urrent MHPS set,this union should be a MHP pattern.Case 2: If we �nd a pattern without a super union in the next level patternin BFS phase, we 
ould also make sure that the union is a MHP if there is nosuper pattern in 
urrent MHPS set.Assume that we generated a hyper
lique pattern, HP1, in BFS phase, whereHP1.item=fi1; i2; :::; ikg and HP1.union is not a MHP pattern. There shouldexists at least one item, i, whi
h belongs to HP .union's super maximal hyper-
lique pattern but not belongs to HP .union. By Lemma 4, i 
annot be PPEitem of any sub pattern of HP1.Sin
e full pruning and leftmost pruning methods are not applied in the BFSphase, a 
overing pattern (CP1) of HP1:item [ fig will be generated andthe size of CP1 � k+1. By Lemma 6, we know i 2 CP1.item. 8 item i0 2HP1.equivalen
e, also by Lemma 6, i0 is a PPE item of a sub pattern of HP1.Sin
e CP1.union � HP1.item. i0 should also be a PPE item of a sub pattern ofCP1.union. By Lemma 7, i0 is a PPE item of a sub pattern of CP1 and is addedinto CP1.equivalen
e. So, we know that CP1.union is superset of HP1.union.(1) If size(CP1) = k+1, HP1.union will not be 
onsidered as a MHP patternsin
e there is a superset in the next level.(2) If size(CP1) = k, a item in HP1.item will appear in CP1.equivalen
e.Sin
e this item should be a PPE item of a sub pattern of HP1, by Lemma 2,i should in this sub pattern. So i is lexi
ographi
 before this item and CP1is lexi
ographi
 before HP1. CP1 will be pro
essed before HP1. If CP1.unionis added into MHPS, we will �nd there is already a super set of HP1.unionin MHPS while pro
essing HP1. If CP1.union is not added into MHPS, a sizek+1 pattern, whose union is a super set of CP1.union will be generated. Thispattern's union is also a super set of HP1.union.28



(3) If size(CP1) < k, similar to (2), CP1's super patterns are also lexi
ographi
before HP1. There are two 
ases for the super patterns of CP1, one is there isone super pattern's union are added into MHPS when its size � k; the other
ase is that a size-(k+1) super pattern are generated. HP .union 
annot beadded into MHPS in both 
ases.Now it is guaranteed that our algorithm will not identify any non-maximalhyper
lique pattern as a MHP pattern. 2Note that if we set the sear
h depth in the BFS phase large enough, ouralgorithm be
omes a pure BFS algorithm. Also, if we set the h-
on�den
ethreshold to zero, the algorithm will �nd the maximal frequent itemsets.
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