
Mining Strong Affinity Association Patterns in Data Sets with Skewed Support
Distribution

Hui Xiong
�

Computer Science and Engineering

Univ. of Minnesota - Twin Cities

huix@cs.umn.edu

Pang-Ning Tan
Computer Science and Engineering

Michigan State University

ptan@cse.msu.edu

Vipin Kumar
Computer Science and Engineering

Univ. of Minnesota - Twin Cities

kumar@cs.umn.edu

Abstract

Existing association-rule mining algorithms often rely
on the support-based pruning strategy to prune its combi-
natorial search space. This strategy is not quite effective
for data sets with skewed support distributions because they
tend to generate many spurious patterns involving items
from different support levels or miss potentially interesting
low-support patterns. To overcome these problems, we pro-
pose the concept of hyperclique pattern, which uses an ob-
jective measure called h-confidence to identify strong affin-
ity patterns. We also introduce the novel concept of cross-
support property for eliminating patterns involving items
with substantially different support levels. Our experimen-
tal results demonstrate the effectiveness of this method for
finding patterns in dense data sets even at very low support
thresholds, where most of the existing algorithms would
break down. Finally, hyperclique patterns also show great
promise for clustering items in high dimensional space.

1 Introduction

Many data sets have inherently skewed support distri-
butions. For example, the frequency distribution of En-
glish words appearing in text documents is highly skewed
— while a few of the words appear many times, most of the
words appear only a few times. Such a distribution has been
observed in other application domains, including retail data,
Web click-streams, and telecommunication data.

This paper examines the problem of applying associa-
tion analysis [1, 2] to data sets with skewed support dis-
tributions. Existing algorithms often use a minimum sup-
port threshold to prune its combinatorial search space [2].
Two major problems arise when applying such strategy to
skewed data sets.�
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� If the minimum support threshold is too low, many un-
interesting patterns involving items with substantially
different support levels are extracted. (We call such
patterns as cross-support patterns.) An example
of a cross-support pattern is

�
Caviar, Milk � , where

Caviar is a low support item and Milk is a high sup-
port item. It is not surprising to find Milk in transac-
tions that contain Caviar since Milk is present in
many transactions. Cross-support patterns also tend to
have very low pairwise correlations [4].� If the minimum support threshold is too high, many
strong affinity patterns involving items with low sup-
port levels are missed [8]. Such patterns are useful for
capturing associations among rare but expensive items
such as caviar and vodka or necklaces and earrings.

To illustrate these problems, consider the support dis-
tribution for the pumsb census data set shown in Figure
1. Pumsb is often used as benchmark for evaluating the
performance of association rule algorithms on dense data
sets. Observe the skewed nature of the support distribution,
with 81.5% of the items having support less than 1% while
0.95% of them having support greater than 90%.
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Figure 1. The support distribution of Pumsb.

We can partition the items into five disjoint groups based
on their support levels, as shown in Table 1. The group



Table 1. Groups of items for pumsb data set.
Group ��� �	� ��
 �
� �	�

Support 0-1% 1%-5% 5%-40% 40%-90% � 90%�
Items 1735 206 101 51 20

���
has the lowest support level (less than or equal to 1%)

but contains the most number of items, i.e., 1735 items.
To detect patterns involving items from

���
, the minimum

support threshold must be less than 1%, but such a low
threshold will degrade the performance of existing algo-
rithms considerably. Our experiments showed that state-
of-the-art algorithms such as Apriori [2], Charm [16], and
MAFIA [5] break down when applied to pumsb at sup-
port threshold less than 40% 1. Furthermore, if the support
threshold is low, e.g., 0.05%, many cross-support patterns
involving items from both

���
(rare items) and

���
(very fre-

quent items) are generated. Just to give an indication of the
scale, out of the 18847 frequent pairs involving items from���

and
���

, about 93% of them are cross-support patterns.
These cross-support patterns have extremely poor correla-
tion because the presence of the item from

���
does not nec-

essarily imply the presence of the item from
���

. It would be
advantageous to develop techniques that can automatically
eliminate such patterns during the mining process.

Omiecinski recently proposed an alternative to the sup-
port measure called all-confidence [10], which represents
the minimum confidence of all association rules extracted
from an itemset. Omiecinski proved that all-confidence has
the desirable anti-monotone property that allows us to in-
corporate the measure directly into the mining process. We
call the patterns derived from this measure as hyperclique
patterns. (Note that we had independently proposed a mea-
sure called h-confidence [15] to capture the degree of affin-
ity in a hyperclique pattern. The equivalence between h-
confidence and all-confidence measures is shown in Section
2. For brevity, we will use the term h-confidence when re-
ferring to the affinity measure of hyperclique patterns.)

In this paper, we introduce a novel concept called the
cross-support property, which is useful for eliminating can-
didate patterns having items with widely differing sup-
port levels. We show that h-confidence possesses such a
property and develop an efficient algorithm called hyper-
clique miner that utilizes both the cross-support and anti-
monotone properties of the h-confidence measure. Our ex-
perimental results suggest that hyperclique miner can effi-
ciently discover strong affinity patterns even when the sup-
port threshold is set to zero.

Hyperclique patterns are also valuable patterns in their
own right because they correspond to itemsets involving
only tightly-coupled items. Discovering such patterns can

1This is observed on a Sun Ultra 10 workstation with a 440MHz CPU
and 128 Mbytes of memory

be potentially useful for a variety of applications such as
item clustering, copy detection, and collaborative filtering.
We demonstrate one potential application of hyperclique
patterns in the area of item clustering, where such patterns
can be used to provide high-quality hyperedges to seed the
hypergraph-based clustering algorithms [7].

Related Work: Support-based pruning does not work
well with dense data sets, nor is it effective at finding low
support patterns. The concepts of maximal [3, 5] and closed
itemsets [11, 16] were proposed to address these limitations.
Although these concepts can identify a smaller set of repre-
sentative patterns, their algorithms may still break down at
low support thresholds, especially for data sets with skewed
support distribution. Both closed and maximal itemsets are
also not designed to explicitly remove the cross-support pat-
terns. There has also been growing interest in developing
techniques for mining association patterns without support
constraints [6, 14]. However, such techniques are either
limited to analyzing pairs of items [6] or does not address
the cross-support problem [14].

2 Hyperclique Pattern

In this section, we describe the concept of a hyperclique
pattern and introduce some important properties of the h-
confidence measure.

2.1 Hyperclique Pattern Concepts

Definition 1 The h-confidence of an itemset � ���� ��� � ��������� � �"! � , denoted as #%$�&�')()*+�-, , is a mea-
sure that reflects the overall affinity among items
within the itemset. This measure is defined as. � ' � $�&�')( ��� �0/ � ����121�1 � �3! � � $�&�')( ��� �4/ � �2� � 
5��1�1216��3! � �71�1�1 � $8&�')( ���3! / � �2�6121�1 � �3!:9 � �
� , where $�&�')( fol-
lows from the definition of association rule confidence [1].

Example 1 Consider an itemset �0� �<; �>=?�>@ � . Assume
that A8B�C�C)* �<; �5,D�FE 1 � , A�B�C
CG* � = �5,D�HE 1 � , A8B�C�C)* � @ ��,D�E 1 E�I , and A�B�C
C)* �<; �>=?�>@ �5,J�KE 1 E
I , where A�B�C
C is the
support [1] of an itemset. Then $8&�')( �<; / =L�>@ � =
supp(

�
A, B, C � )/supp(

�
A � ) = 0.6, $�&�')( � =M/ ; �>@ �J�E 1 I , and $8&�')( � @N/ ; �>= �J� �

. Hence, #%$8&�')(G*+�-,O�. � ' � $�&�')( � =P/ ; �>@ � � $8&�')( �<; /Q=L�>@ � � $8&�')( � @H/; �R= �5� = 0.6.

Definition 2 Given a transaction database and the set of
all items ST� � S �2� S ����121�1 � S�UV� , an itemset � is a hyper-
clique pattern if and only if: 1) �XWYS and Z �[Z]\HE . 2)#%$�&�')()*+�-,�^T#`_ , where #`_ is the h-confidence threshold.

A hyperclique pattern � is a strong-affinity association
pattern because the presence of any item acbd� in a trans-
action strongly implies the presence of �ce � a � in the same



transaction. To that end, the h-confidence measure is de-
signed specifically for capturing such strong affinity rela-
tionships. Nevertheless, hyperclique patterns can also miss
some interesting patterns; e.g., an itemset

�
A, B, C � that

produces low confidence rules
; /f=g@ , =h/ ; @ , and@Y/ ; = but a high confidence rule

; =F/Q@ . Such type
of patterns are not the focus of this paper.

2.2 Properties of h-confidence

We illustrate three important properties of the h-
confidence measure in this subsection.

2.2.1 Anti-monotone Property

As previously noted, the h-confidence measure is mathe-
matically equivalent to the all-confidence measure proposed
by Omiecinski [10], even though both measures are devel-
oped from different perspectives.

Definition 3 The all-confidence measure [10] for an item-
set �i� ��� �2� � �<���2��� � �3! � is defined as jlknm)* � $8&�')(G* ; /= Z o ; �>=Yp � � ;rq = �T� � ;rs = �ut��5, 1
Lemma 1 If � � �2� �2� � �������2�6� �3! � is an itemset,
then #%$8&�')(G*+�-, is mathematically equivalent to all-
confidence *+�-, and is equal to

A�B�C
CG* �2� �8� � �<�21�1216� �3! �5,.Ov a �Rwyx�w !z� A�B�C
CG* �2� x ��,R� 1 (1)

Omiecinski proved that all-confidence is an anti-
monotone measure [10], i.e., if an itemset

��� �2��1�1216� �3! � is
above the all-confidence threshold, so is every subset of
size m-1. Since h-confidence is mathematically identical
to all-confidence, it is also monotonically non-increasing
as the size of the hyperclique pattern increases. This anti-
monotone property allows us to push the h-confidence con-
straint into the search algorithm. Thus, when searching
for hyperclique patterns, the support of a candidate pattern��� �2��121�1 � �3! � is counted only if all its subsets of size m-1
are hyperclique patterns.

2.2.2 Cross-Support Property

In this section, we introduce the concept of cross-support
property. This property is useful to avoid generating cross-
support patterns, which are patterns containing items from
substantially different support levels. We also show that the
h-confidence measure possesses such a property.

Before presenting the concept of $>{
&5A<A - A�B�C
Cy&�{�| prop-
erty, we first introduce the idea of an upper bound function
for a measure of association.

Definition 4 Let ( be a measure of association and (�}]~��
be its maximum possible value. We define B�C
Cy��{�*"(y, as an
upper bound function for ( if oV�F�y()*+�-,���B�C�CV��{�*"(G*+�-,�, ,
where � is an association pattern. An upper bound function
is trivial if B�C�CV��{�*"(6,���(<}G~�� .

For example B�C
Cy��{�*"A�B�C
C)*+�-,�,r� �
is a trivial upper

bound function for the support measure. An example of a
non-trivial upper bound function for the h-confidence mea-
sure is presented below.

Lemma 2 Given an itemset ��� ��� �2��121�16� �"! � , the h-
confidence for � has the following upper bound:

B�C
Cy��{�*"#%$�&�')()*+�-,�,]� . � ' �RwV��w !z� A�B�C
CG* �2� � ��,R�.�v a �Rwyx�w !z� A�B�C
C)* ��� x �5,R� 1 (2)

We will use the notion of upper bound function to de-
scribe cross-support property. In a nutshell, given a speci-
fied threshold t, if a function ( has the cross-support prop-
erty, we can find two itemsets from different support levels
such that, for any $�{
&5A�A - A�B�C
Cy&�{�| pattern � , we are guaran-
teed to have (G*+�-,���| . The formal definition of the cross-
support property of a function ( is given below.

Definition 5 Let S�� ��� �2� � ���2���2�6� � UV� be an ordered set
of items, sorted according to their support values, i.e.,o6���rA�B�C
CG* � x ,H��A�B�C
CG* � x��G� , . In addition, for each
item aFb�S , let ��*�a6,�� � a`��Z A�B�C
CG*�a`��,���A8B�C�C)*�a6,R� and� *�a6,�� � a`��Z A�B�C
CG*�a`��,�^�A�B�C
CG*�a6,R� .

A function ( satisfies the cross-support property if� a ��  b¡S such that A�B�C
C)*�a6,0��A�B�C�C)*   , and B�C
Cy��{*"()*�a �R  ,�,)�J| implies oV�¢�£()*+�-,��¤| , where � is an itemset
containing at least one item from �¥*�a6, and at least one item
from

� *   , and | is the specified threshold.

In the following, we provide a sufficient condition for (
to satisfy the cross-support property.

Theorem 1 Given: 1) A measure of association, ( ; 2) A
pair of items a and   with A�B�C�C)*�a6,z��A�B�C�C)*   , ; 3) A pair
of itemsets ��*�a6,�� � aV��Z A�B�C
CG*�a`��,¦�uA�B�C
CG*�a6,R� and

� *   ,���   ��Z A8B�C�C)*   ��,§^�A�B�C
CG*   ,R� ;
If the following conditions hold,

1) A non-trivial upper bound function for ( exists;
2) B�C
CV�2{�*"()* � a ��  �5,�, is computed using only A�B�C�C)*�a6,

and A8B�C�C)*   , ;
3) B�C�CV��{�*"(G* � a �R  �5,�, decreases monotonically with

increasing A�B�C
C)*   , if a is fixed;
4) B�C�CV��{�*"(G* � a �R  �5,�, decreases monotonically with

decreasing A8B�C�C)*�a6, if   is fixed;
5) ( is an anti-monotone measure when applied to

patterns of size two or more;



Then ()*¨C6,h� B�C
Cy��{�*"()* � a �R  �5,�, , where C is a cross-
support pattern that contains at least one item from ��*�a6,
and at least one item from

� *   , .
The proof of this theorem is given in [15]. As a conse-
quence, B�C
CV�2{�*"()* � a ��  �5,�,z�h| implies ()*¨C6,��h| , which
means that ( must satisfy the cross-support property.

Lemma 3 The h-confidence measure satisfies the $>{
&5A<A -A�B�C
Cy&�{�| property. Furthermore, the h-confidence value for
any cross-support pattern �©� � ayª�« � a`ª�¬ �	1�1216� a`ª®­ �� <¯ « �� <¯ ¬ �1�1216�� <¯�° � has an upper bound as

!¦±8² «�³�´�³
µ�¶R·�¸�¹>¹5º»¶ ² ´2¼R½�¼! ª¾U «�³�¿�³
À5¶R·�¸�¹>¹5º»¶�Á ¿ ¼R½�¼
Lemma 3 provides an upper bound of the h-confidence

values for all possible cross-support patterns from two item-
sets with different support levels. Thus, if the h-confidence
threshold is set higher than this upper bound, we will not
generate any cross-support pattern as candidate hyperclique
pattern during the mining process.

h-confidence is not the only measure that satisfies the
cross-support property. Table 2 provides a list of other mea-
sures of association that possess such a property. Among
the measures that do not have the $>{
&5A<A - A�B�C
CV&�{�| property
include support and odds ratio [13].

Table 2. Measures with the $>{
&5A<A - A�B�C�CV&�{�| prop-
erty (Assume that A�B�C
CG*�a6,��TA�B�C
C)*   , ).

Measure Computation Formula Upper Bound

Cosine Â�Ã ´�´RÄÆÅ�Ç È�ÉÊ Â+Ã ´�´>ÄÆÅ�É Â+Ã ´�´RÄÆÈ�É Ë Â�Ã ´�´>ÄÆÅ�ÉÂ+Ã ´�´RÄÆÈ�É
Jaccard Â�Ã ´�´RÄÆÅ�Ç È�ÉÂ+Ã ´�´>ÄÆÅ�ÉnÌ Â+Ã ´�´RÄÆÈ�É®Í Â�Ã ´�´RÄÆÅ�Ç È�É Â+Ã ´�´>ÄÆÅRÉÂ�Ã ´�´>ÄÆÈ�ÉPS supp(x, y)-supp(x)supp(y) supp(x)(1-supp(y))

2.2.3 Strong Affinity Property

In this subsection, we investigate the relationships between
h-confidence and other similarity measures such as cosine
(Lemma 4) and Jaccard (Lemma 5) measures. Our goal is
to derive the lower bounds for these similarity measures in
terms of the h-confidence threshold, #y_ .
Definition 6 Given a pair of items � � �2� �2� � � � ,
the cosine measure [12] for � can be computed as·�¸2¹R¹5º»¶ ª�«RÎ ª�¬ ¼R½Ï ·�¸�¹>¹5º ª�« ½�Ð ·"¸2¹>¹�º ª�¬ ½ � while the Jaccard measure [12] for �
is

·�¸�¹>¹5º»¶ ª�«RÎ ª®¬ ¼�½·�¸�¹>¹5º»¶ ª�« ¼R½ � ·�¸2¹R¹5º»¶ ª�¬ ¼R½ 9 ·�¸�¹>¹5º»¶ ª�«�Î ª�¬ ¼R½ 1
Lemma 4 If �4� �2� �2� � � � is a size-2 hyperclique pattern,
then $8&5A � '7��*+�-,�^�#`_ .
Lemma 5 If �4� �2� �2� � � � is a size-2 hyperclique pattern,
then Ñ v $8$ v {5ÒV*+�-,�^�#`_>Ó5Ô .

The above lemmas suggest that if #V_ is sufficiently high,
then all size-2 hyperclique patterns contain items that are
strongly affiliated with each other in terms of their cosine
and Jaccard values. For a hyperclique pattern that contains
more than two items, we can compute the average Jaccard
and cosine measure for all pairs of items within this pattern.
Due to the antimonotone property of the h-confidence mea-
sure, every pair of items within a hyperclique pattern must
have an h-confidence value greater than or equal to #y_ . As
a result, the average Jaccard or cosine measure of a hyper-
clique pattern must also satisfy the above lemmas.

3 Hyperclique Miner Algorithm

In this section, we design a level-wise algorithm, called
hyperclique miner, for discovering hyperclique patterns.

Example 2 We illustrate how hyperclique miner works us-
ing the running example shown in Figure 2 . As can be seen,
the process of searching hyperclique patterns is illustrated
by the generation of branches of a set-enumeration tree. For
this running example, suppose the minimum support thresh-
old is zero and the minimum h-confidence threshold is 55%.
There are two major pruning techniques incorporated into
our algorithm.

1. We can prune itemsets by the anti-monotone property
of the h-confidence measure. For instance, applying
Equation 1, the h-confidence of the candidate pattern�
4, 5 � is supp(

�
4, 5 � )/max

�
supp(

�
4 � ), supp(

�
5 � ) � =

0.1/0.2 = 0.5, which is less than 55%. Hence, the item-
set

�
4, 5 � is not a hyperclique pattern and is imme-

diately pruned. In turn, we can prune the candidate
pattern

�
3, 4, 5 � by the anti-monotone property of the

h-confidence measure since one of its subset,
�
4, 5 � , is

not a hyperclique pattern.

2. We can do pruning by the cross-support property of h-
confidence. For instance, given a sorted list of items,�
1, 2, 3, 4, 5 � , suppose we split the list into two sets� � = � 1, 2 � and

� � = � 3, 4, 5 � . We can compute the up-
per bound of h-confidence for any cross-support pat-
tern between these two item sets by Lemma 3. In this
example, the upper bound is equal to max

�
supp(

�
3 � ),

supp(
�
4 � ), supp(

�
5 � ) � /min

�
supp (

�
1 � ), supp(

�
2 � ) � =

3/9= 0.33. Therefore, the h-confidence for every cross-
support pattern involving these items must be less than
33%. If the h-confidence threshold is 55%, we may
prune all these cross-support patterns even before they
are generated as candidate patterns. Without applying
cross-support pruning, we have to generate six addi-
tional patterns, including

�
1, 3 � , � 1, 4 � , � 1, 5 � , � 2,

3 � , � 2, 4 � , and
�
2, 5 � , as candidate hyperclique pat-

terns and prune them later upon computing their ac-
tual h-confidence values. Note that the anti-monotone



property does not help us to pre-prune the six candi-
date patterns, since every subset of these patterns are
hyperclique patterns (according to Equation 1, the h-
confidence values of size-1 itemsets are 1).
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Figure 2. A running example.

Hyperclique Miner
Input:

1) a set F of Õ Boolean feature types
F=
� ( �2� ( ����121�16� (<Ö-�
2) a set T of × transactions T=

� | � 121�1 |�ØÙ� , each |�ª¥b�Ú
is a record with K attributes

��� ��� � ����121�1 � � Öz� taking values
in
�
0, 1 � , where the

� ¹ is the Boolean value for the feature
type ( ¹ , for

� �ÛC��¤Õ .
3) A user specified h-confidence threshold (min conf)
4) A user specified support threshold (min supp)

Output:
hyperclique patterns with h-confidence \ . � ' $8&�')(

and support \ . � ' A�B�C
C
Method:

1) Get size-1 prevalent items
2) Construct item sets at different levels of support
3) for size of itemsets in (2, 3, 1�121 , Õ4e �

) do
4) Generate candidate hyperclique patterns
5) Prune based on the support measure
6) Prune based on the h-confidence measure
7) Generate hyperclique patterns

Algorithm Description: The Hyperclique Miner prunes
the exponential search space based on the following three
conditions: 1) Pruning based on anti-monotone property of
h-confidence and support. 2) Pruning based on the upper
bound of h-confidence. By Lemma 2, if the upper bound
for #%$�&�')()*3$�, is less than #`_ , then #`$8&�')()*3$�, must also be
less than #`_ . We can easily compute the upper bound of the

h-confidence for any candidate itemset since the support
for every individual item is stored in memory, 3) Pruning
by the $>{
&5A<A - A�B�C�CV&�{�| property of h-confidence.

4 Hyperclique-based Item Clustering

This section describes how to use hyperclique patterns
for clustering items in high dimensional space. For high
dimensional data, traditional clustering schemes such as
K-means [9] tend to produce poor results when directly
applied to large, high-dimensional data sets. One promis-
ing approach proposed by Han et al. [7] is to cluster the
data using a hypergraph partitioning algorithm. More
specifically, a hypergraph is constructed with individual
items as vertices and frequent itemsets as hyperedges
connecting between these vertices. For example, if

�
A,

B, C � is a frequent itemset, then a hyperedge connecting
the vertices for A, B, and C will be added. The weight
of the hyperedge is given by the average confidence of
all association rules generated from the corresponding
itemset. The resulting hypergraph is then partitioned
using a hypergraph partitioning algorithm such as HMETIS
(http://www.cs.umn.edu/ Ü karypis/metis/hmetis/index.html)
to obtain clusters.

Although the hypergraph-based clustering algorithm has
produced promising results [7], it can be further improved
if the initial hypergraph contains a good representative set
of high-quality hyperedges. Frequent itemsets may not pro-
vide such a good representation because they include cross-
support patterns, which may have low affinity but relatively
high average confidence. In addition, many low support
items cannot be covered by frequent itemsets unless the
minimum support threshold is sufficiently low. However,
if the threshold is indeed low enough, a large number of
frequent itemsets will be extracted, thus resulting in a very
dense hypergraph. It will be difficult for a hypergraph par-
titioning algorithm to partition such a dense hypergraph,
which often leads to poor clustering results.

In this paper, we use hyperclique patterns as an alterna-
tive to frequent itemsets. In the hypergraph model, each
hyperclique pattern is represented by a hyperedge whose
weight is equal to the h-confidence of the hyperclique pat-
tern. For example, if

�<; �R=L�>@ � is a hyperclique pattern
with the h-confidence equals to 0.8, then the hypergraph
contains a hyperedge that connects the vertices

;
, = , and@ . The weight for this hyperedge is 0.8.

There are several advantages of using the hyperclique-
based clustering algorithm. First, since hyperclique patterns
are strong affinity patterns, they can provide a good rep-
resentative set of hyperedges to seed a hypergraph-based
clustering algorithm. Second, hyperclique patterns can be
extracted for very low support items without making the
hypergraph becomes too dense. Finally, hyperclique-based



clustering algorithm is also more tolerant to noise compared
to traditional clustering algorithms such as k-means because
it can explicitly remove the weakly related items.

5 Experimental Evaluation

For evaluation purposes, we have performed our exper-
iments on real data sets obtained from several application
domains. The characteristics of these data sets are summa-
rized in Table 3.

Table 3. Real Data set Characteristics.
Data set #Item #Record Avg. Length Source
Pumsb 2113 49046 74 IBM Almaden

S&P 500 932 716 75 Stock Market
Retail 14462 57671 8 Retail Store

The pumsb data set corresponds to a binary version of a
census data set. Retail is a masked data set obtained from
a large mail-order company. In addition, the stock market
data set contains events representing the price movement
of various stocks that belong to the S&P 500 index from
January 1994 to October 1996.

All experiments were performed on a Sun Ultra 10 work-
station with a 440 MHz CPU and 128 Mbytes of memory
running the SunOS 5.7 operating system. Note that we
have implemented hyperclique miner as an extension to the
publicly available implementation of the Apriori algorithm
by Borgelt (http://fuzzy.cs.uni-magdeburg.de/ Ü borgelt). As
a result, the performance of hyperclique miner is almost
equivalent to Apriori when the h-confidence threshold is set
to zero.

5.1 The Pruning Effect of Hyperclique Miner

The purpose of this experiment is to demonstrate the
effectiveness of the h-confidence pruning on hyperclique
pattern generation. Recently, the CHARM algorithm was
proposed by Zaki et al.[16] to efficiently discover frequent
closed itemsets. As shown in their paper, for a dense data set
with skewed support distribution such as �DB . A�Ý , CHARM
can achieve relatively better performance than other state-
of-the-art pattern mining algorithms such as CLOSET [11],
and MAFIA [5] when the support threshold is low. Hence,
we chose CHARM as the baseline to compare against the
performance of hyperclique miner on dense data sets (even
though hyperclique miner and CHARM are actually tar-
geted towards different kinds of patterns).

Figure 3 shows the number of patterns generated by hy-
perclique miner and CHARM on the pumsb data set. As
can be seen, the number of patterns discovered by our al-
gorithm is several orders of magnitude smaller than the
number of patterns found by CHARM provided that the
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Figure 3. The effect of h-confidence pruning
in terms of the number of patterns generated.
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Figure 4. The effect of h-confidence pruning
in terms of execution time.

h-confidence threshold is sufficiently high. In addition,
CHARM has difficulties in identifying patterns when the
support threshold is less than or equals to 0.4. However,
our technique identifies many strong affinity patterns with
very low support. For instance, we obtain a long pattern
containing 9 items with the support 0.23 and h-confidence
94.2%. Recall from Table 1 that nearly 96.6% of the items
have support less than 0.4. With a support threshold greater
than 0.4, CHARM can only identify associations among a
very small fraction of the items. Figure 4 shows the rela-
tively performance of hyperclique miner and CHARM on
pumsb data set. With h-confidence pruning, we can use
hyperclique miner to identify hyperclique patterns even at
support threshold equal to zero.

5.2 Quality of Hyperclique Patterns

Table 4 shows some of the interesting hyperclique pat-
terns extracted from the retail data set. For example,
we identified a hyperclique pattern involving closely related
items such as Nokia battery, Nokia adapter, and Nokia cell
phone. We also discovered several interesting patterns con-
taining very low support items such as

�
earrings, gold ring,

bracelet � . These items are expensive, rarely bought by cus-
tomers, and belong to the same product category.



Table 4. Hyperclique Patterns from Retail.
Hyperclique patterns support h-conf¶ earrings, gold ring, bracelet ¼ 0.019% 45.8%¶ nokia battery, nokia adapter, nokia cell phone ¼ 0.049% 52.8%¶ coffee maker, can opener, toaster ¼ 0.014% 61.5%¶ baby bumper pad, diaper stacker, baby crib sheet ¼ 0.028% 72.7%¶ skirt tub, 3pc bath set, shower curtain ¼ 0.26% 74.4%
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Figure 5. Average Correlation.

We also evaluated the affinity of hyperclique patterns by
the correlation measure. Specifically, for each hyperclique
pattern Þß� � a ��� a �<�2����� a x � , we calculate the correlation
for each pair of items *�aVª � a ¯ , within the pattern. The over-
all correlation of a hyperclique pattern is then defined as the
average pair wise correlation. Note that this experiment was
conducted on Retail data set with the h-confidence thresh-
old 0.8 and the support threshold 0.0005.

Figure 5 compares the average correlation for hyper-
clique patterns versus non-hyperclique patterns. We sorted
the average correlation and displayed them in increasing or-
der. Notice that the hyperclique patterns have extremely
high average pair wise correlation compared to the non-
hyperclique patterns. This result supports our previous as-
sertion that hyperclique patterns can identify itemsets that
contain only tightly-coupled items.

5.3 Hyperclique-based Item Clustering

In this section, we illustrate the application of hyper-
clique patterns as an alternative to frequent patterns in
hypergraph-based clustering approach [7]. We use the S&P
500 index data set for our clustering experiments.

Table 5 shows the dramatic increase in the number of
frequent patterns as the minimum support threshold is de-
creased. As can be seen, the number of frequent patterns
increases up to 11,486,914 when we reduce the support
threshold to 1%. If all these frequent itemsets are used for
hypergraph clustering, this will create an extremely dense
hypergraph and makes the hypergraph-based clustering al-
gorithm becomes computationally intractable. In [7], the
authors have used a higher minimum support threshold,
i.e., 3%, for their experiments and obtained 19,602 frequent

itemsets covering 440 items. A hypergraph consisting of
440 vertices and 19,602 hyperedges was then constructed
and 40 partitions were generated. Out of 40 partitions, 16
of them are clean clusters as they contain stocks primarily
from the same or closely related industry groups.

Table 5. Number of frequent patterns.
Support No. of frequent patterns items covered

3% 19602 440
2% 149215 734
1% 11486914 915

With hyperclique patterns, we can construct hypergraphs
at any support threshold, and thus covering more items. For
instance, with a minimum h-confidence threshold 20% and
a support threshold 0%, we obtain 11,207 hyperclique pat-
terns covering 861 items. A hypergraph consisting of 861
vertices and 11,207 hyperedges is then constructed and par-
titioned into smaller clusters. For comparison purposes, we
partitioned the hypergraph into 80 partitions to ensure that
the average size of clusters is almost the same as the aver-
age size of the 40 clusters obtained using frequent patterns.
Note that for both approaches, we only use patterns contain-
ing two or more items as hyperedges.

Our experimental results suggest that the hyperclique
pattern approach can systematically produce better cluster-
ing results than the frequent pattern approach. First, many
items with low levels of support are not included in the fre-
quent pattern approach. Specifically, there are 421 items
covered by hyperclique pattern based clusters that are not
covered by frequent pattern based clusters. Second, the hy-
pergraph clustering algorithm can produce a larger fraction
of clean clusters using hyperclique patterns than frequent
patterns — 41 out of 80 partitions versus 16 out of 40 parti-
tions. Third, all the clean clusters identified by the frequent
pattern approach were also present in the results by the hy-
perclique pattern approach. Finally, for the same clean clus-
ter identified by both approaches, there are more same cat-
egory items included by the hyperclique based approach.

Table 6 shows some of the clean hyperclique pattern
based clusters that appear at low levels of support (around
1% support). Such clusters could not be identified by the
frequent pattern approach. As the table shows, our hyper-
clique pattern approach was able to discover retail, chemi-
cal, , health-product, power, and communication clusters. A
complete list of clusters is given in Technical Report [15].

We have also applied the graph-partitioning scheme in
CLUTO 2. This algorithm takes the adjacency matrix of the
similarity graph between the n objects to be clustered as in-
put. The experiment results indicate that this approach can
produce much worse clustering results than the hyperclique-
based approach. For instance, out of the 80 clusters derived

2http://www.cs.umn.edu/ à karypis/cluto/index.html.



Table 6. Some clean clusters
No Discovered Clusters Industry

Group
1 Becton Dickinso á , Emerson Electric á , Amer Home

Product á , Johnson & Johnson á , Merck á , Pfizer á ,
Schering-Plough á , Warner-Lambert á

health prod-
uct

2 duPont (EI) deNemo â , Goodrich (B.F.) â , Nalco
Chemical â , Rohm & Haas â , Avon Products â chemical

3 Federated Dept â , Gap Inc â , Nordstrom Inc â , Pep Boys-
Man â , Sears â , TJX â , Walmart â Retail

4 Bell Atlantic Co â , BellSouth Corp â , CPC Intl â ,
GTE Corp â , Ameritech Corp â , NYNEX Corp â ,
Pacific Telesis â , SBC Communication â , US West
Communication â

Comm.

5 Baltimore Gas á , CINergy Corp á , Amer Electric Power á ,
Duke Power á , Consolidated Edi á , Entergy Corp á , Genl
Public Util á , Houston Indus á , PECO Energy á , Texas
Utilities á

Power

by CLUTO, less than 30 of them are clean clusters. This
result is not surprising since the graph-partitioning scheme
considers only information about pairs of items but not
higher order interactions.

In addition, we also applied the improved version of the
k-means clustering algorithm in CLUTO. When using co-
sine as the similarity measure, we were able to identify 36
clean clusters out of 80 clusters, which is worse than the
hyperclique pattern approach.

Finally, we observed the following effects of the
hyperclique-based clustering approach. If we set the mini-
mum support threshold to 0% and h-confidence threshold to
20%, the discovered hyperclique patterns cover 861 items.
Since there are 932 items in total, the hyperclique pattern
mining algorithm must have eliminated 71 items. We ex-
amine the distribution of these 71 items in the CLUTO k-
means clustering results. We observe that 68 of the items
are assigned to the wrong clusters by CLUTO. As a result,
we believe that the items not covered by these hyperclique
patterns are potentially noise items.

6 Conclusions

In this paper, we formalized the problem of mining hy-
perclique patterns in data sets with skewed support distri-
bution. We also introduced the concept of cross-support
property and showed how this property can be used to avoid
generating spurious patterns involving items from different
support levels. Furthermore, a new algorithm called hyper-
clique miner was developed. This algorithm utilizes cross-
support and anti-monotone properties of h-confidence for
the efficient discovery of hyperclique patterns. Finally, we
demonstrated applications of hyperclique patterns for dis-
covering strong affinity patterns among low-support items
and for hyperclique-based item clustering.

For future work, there is a potential for using the
hyperclique concept in a variety of applications such as
dimensionality reduction, copy detection, and collaborative

filtering. Also, it is valuable to exploit the $�{
&5A�A - A�B�C
Cy&�{�|
property on some other interestingness measures.
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