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Abstract Existing algorithms for mining association patterns often rely on the support-
based pruning strategy to prune a combinatorial search space. However, this strategy is
not effective for discovering potentially interesting patterns at low levels of support. Also,
it tends to generate too many spurious patterns involving items which are from different
support levels and are poorly correlated. In this paper, we present a framework for mining
highly-correlated association patterns called hyperclique patterns. In this framework, an ob-
jective measure called h-confidence is applied to discover hyperclique patterns. We prove
that the items in a hyperclique pattern have a guaranteed level of global pairwise similarity
to one another as measured by the cosine similarity (uncentered Pearson’s correlation co-
efficient). Also, we show that the h-confidence measure satisfies a cross-support property
which can help efficiently eliminate spurious patterns involving items with substantially
different support levels. Indeed, this cross-support property is not limited to h-confidence
and can be generalized to some other association measures. In addition, an algorithm called
hyperclique miner is proposed to exploit both cross-support and anti-monotone properties of
the h-confidence measure for the efficient discovery of hyperclique patterns. Finally, our ex-
perimental results show that hyperclique miner can efficiently identify hyperclique patterns,
even at extremely low levels of support.
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1. Introduction

Many data sets have inherently skewed support distributions. For example, the frequency
distribution of English words appearing in text documents is highly skewed—while a few
of the words may appear many times, most of the words appear only a few times. Such a
distribution has also been observed in other application domains, including retail data, Web
click-streams, and telecommunication data.

This paper examines the problem of mining association patterns (Agrawal et al., 1993)
from data sets with skewed support distributions. Most of the algorithms developed so far rely
on the support-based pruning strategy to prune the combinatorial search space. However, this
strategy is not effective for data sets with skewed support distributions due to the following
reasons.

– If the minimum support threshold is low, we may extract too many spurious patterns
involving items with substantially different support levels. We call such patterns as weakly-
related cross-support patterns. For example, {Caviar, Milk} is a possible weakly-
related cross-support pattern since the support for an expensive item such as Caviar is
expected to be much lower than the support for an inexpensive item such as Milk. Such
patterns are spurious because they tend to be poorly correlated. Using a low minimum
support threshold also increases the computational and memory requirements of current
state-of-the-art algorithms considerably.

– If the minimum support threshold is high, we may miss many interesting patterns occurring
at low levels of support (Hastie et al., 2001). Examples of such patterns are associations
among rare but expensive items such as caviar and vodka, gold necklaces and earrings, or
TVs and DVD players.

As an illustration, consider thepumsb census data set,1 which is often used as a benchmark
data set for evaluating the computational performance of association rule mining algorithms.
Figure 1 shows the skewed nature of the support distribution. Note that 81.5% of the items
have support less than 0.01 while only 0.95% of them having support greater than 0.9.

Table 1 shows a partitioning of these items into five disjoint groups based on their support
levels. The first group, S1, has the lowest support level (less than or equal to 0.01) but contains
the most number of items (i.e., 1735 items). In order to detect patterns involving items from
S1, we need to set the minimum support threshold to be less than 0.01. However, such a
low support threshold will degrade the performance of existing algorithms considerably.
For example, our experiments showed that, when applied to the pumsb data set at support
threshold less than 0.4,2 state-of-the-art algorithms such as Apriori (Agrawal and Srikant,
1994) and Charm (Zaki and Hsiao, 2002) break down due to excessive memory requirements.
Even if a machine with unlimited memory is provided, such algorithms can still produce
a large number of weakly-related cross-support patterns when the support threshold is low.
Just to give an indication of the scale, out of the 18847 frequent pairs involving items from S1
and S5 at support level 0.0005, about 93% of them are cross-support patterns, i.e., containing
items from both S1 and S5. The pair wise correlations within these cross-support patterns
are extremely poor because the presence of the item from S5 does not necessarily imply
the presence of the item from S1. Indeed, the maximum correlation obtained from these
cross-support patterns is only 0.029377. In contrast, item pairs from S1 alone or S5 alone

1 It is available at http://www.almaden.ibm.com/ software/quest/resources.
2 This is observed on Sun Ultra 10 work station with a 440 MHz CPU and 128 Mbytes of memory.

Springer



10618_2006_43 styleAv1.cls (2006/04/29 v1.1 LaTeX Springer document class) May 19, 2006 22:19

Data Min Knowl Disc

0

20

40

60

80

100

0 500 1000 1500 2000

S
up

po
rt

 (
%

)

Items sorted by support

The Support Distribution of Pumsb DatasetFig. 1 The support distribution
of Pumsb

have correlation as high as 1.0. The above discussion suggests that it will be advantageous to
develop techniques that can automatically eliminate such patterns during the mining process.

Indeed, the motivation for this work is to strike a balance between the ability to detect
patterns at very low support levels and the ability to remove spurious associations among
items with substantially different support levels. A naive approach for doing this is to apply
a very low minimum support threshold during the association mining step, followed by
a post-processing step to eliminate spurious patterns. This approach may fail due to the
following reasons: (i) the computation cost can be very high due to the large number of
patterns that need to be generated; (ii) current algorithms may break down at very low
support thresholds due to excessive memory requirements. Although there have been recent
attempts to efficiently extract interesting patterns without using support thresholds, they do
not guarantee the completeness of the discovered patterns. These methods include sampling
(Cohen et al., 2000) and other approximation schemes (Yang et al., 2001).

A better approach will be to have a measure that can efficiently identify useful patterns even
at low levels of support and can be used to automatically remove spurious patterns during the
association mining process. Omiecinski recently introduced a measure called all-confidence
(Omiecinski, 2003) as an alternative to the support measure. The all-confidence measure is
computed by taking the minimum confidence of all association rules generated from a given
itemset. Omiecinski proved that all-confidence has the desirable anti-monotone property
and incorporated this property directly into the mining process for efficient computation of
all patterns with sufficiently high value of all-confidence. Note that we had independently
proposed a measure called h-confidence (Xiong et al., 2003a) and had named the itemsets
discovered by the h-confidence measure as hyperclique patterns. As shown in Section 2,
h-confidence and all-confidence measures are equivalent. To maintain consistent notation
and presentation, we will use the term h-confidence in the remainder of this paper.

Table 1 Groups of items for pumsb data set

Group S1 S2 S3 S4 S5

Support 0–0.01 0.01–0.05 0.05–0.4 0.4–0.9 0.9–1.0
# Items 1735 206 101 51 20
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1.1. Contributions

This paper extends our work (Xiong et al., 2003b) on hyperclique pattern discovery and
makes the following contributions. First, we formally define the concept of the cross-support
property, which helps efficiently eliminate spurious patterns involving items with substan-
tially different support levels. We show that this property is not limited to h-confidence and
can be generalized to some other association measures. Also, we provide an algebraic cost
model to analyze the computation savings obtained by the cross-support property. Second,
we prove that if a hyperclique pattern has an h-confidence value above the minimum h-
confidence threshold, hc, then every pair of objects within the hyperclique pattern must have
a cosine similarity (uncentered Pearson’s correlation coefficient3) greater than or equal to
hc. Also, we show that all derived size-2 hyperclique patterns are guaranteed to be positively
correlated, as long as the minimum h-confidence threshold is above the maximum support
of all items in the given data set. Finally, we refine our algorithm (called hyperclique miner)
that is used to discover hyperclique patterns. Our experimental results show that hyperclique
miner can efficiently identify hyperclique patterns, even at low support levels. In addition, we
demonstrate that the utilization of the cross-support property provides significant additional
pruning over that provided by the anti-monotone property of h-confidence.

1.2. Related work

Recently, there has been growing interest in developing techniques for mining association
patterns without support constraints. For example, Wang et al. (2001) proposed the use of
universal-existential upward closure property of confidence to extract association rules with-
out specifying the support threshold. However, this approach does not explicitly eliminate
cross-support patterns. Cohen et al. (2000) have proposed using the Jaccard similarity mea-
sure, sim(x, y) = P(x∩y)

P(x∪y) , to capture interesting patterns without using a minimum support
threshold. As we show in Section 3, the Jaccard measure has the cross-support property
which can be used to eliminate cross-support patterns. However, the discussion in Cohen
et al. (2000) focused on how to employ a combination of random sampling and hashing
techniques for efficiently finding highly-correlated pairs of items.

Many alternative techniques have also been developed to push various types of constraints
into the mining algorithm (Bayardo et al., 1999; Grahne et al., 2000; Liu et al., 1999). Al-
though these approaches may greatly reduce the number of patterns generated and improve
computational performance by introducing additional constraints, they do not offer any spe-
cific mechanism to eliminate weakly-related patterns involving items with different support
levels.

Besides all-confidence (Omiecinski, 2003), other measures of association have been
proposed to extract interesting patterns in large data sets. For example, Brin et al. (1997)
introduced the interest measure and χ2 test to discover patterns containing highly dependent
items. However, these measures do not possess the desired anti-monotone property.

The concept of closed itemsets (Pei et al., 2000; Zaki and Hsiao, 2002) and maximal
itemsets (Bayardo, 1998; Burdick et al., 2001) have been developed to provide a compact
presentation of frequent patterns and of the “boundary” patterns, respectively. Algorithms
for computing closed itemsets and maximal itemsets are often much more efficient than
those for computing frequent patterns, especially for dense data sets, and thus may be

3 When computing Pearson’s correlation coefficient, the data mean is not subtracted.

Springer



10618_2006_43 styleAv1.cls (2006/04/29 v1.1 LaTeX Springer document class) May 19, 2006 22:19

Data Min Knowl Disc

able to work with lower support thresholds. Hence, it may appear that one could discover
closed or maximal itemsets at low levels of support, and then perform a post-processing
step to eliminate cross-support patterns represented by these concepts. However, as shown
by our experiments, for data sets with highly skewed support distributions, the number of
spurious patterns represented by maximal or closed itemsets is still very large. This makes
the computation cost of post-processing very high.

1.3. Overview

The remainder of this paper is organized as follows. Section 2 defines the concept of
hyperclique patterns and shows the equivalence between all-confidence and h-confidence.
In Section 3, we introduce the concept of the cross-support property and prove that the
h-confidence measure has this property. We demonstrate the relationship between the h-
confidence measure and some other association measures in Section 4. Section 5 describes
the hyperclique miner algorithm. In Section 6, we present experimental results. Finally,
Section 7 gives our conclusions and suggestions for future work.

2. Hyperclique pattern

In this section, we present a formal definition of hyperclique patterns and show the equiva-
lence between all-confidence (Omiecinski, 2003) and h-confidence.

2.1. Hyperclique pattern definition

A hypergraph H = {V, E} consists of a set of vertices V and a set of hyperedges E. The
concept of a hypergraph extends the conventional definition of a graph in the sense that each
hyperedge can connect more than two vertices. It also provides an elegant representation for
association patterns, where every pattern (itemset) P can be modeled as a hypergraph with
each item i ∈ P represented as a vertex and a hyperedge connecting all the vertices of P.
A hyperedge can also be weighted in terms of the magnitude of relationships among items
in the corresponding itemset. In the following, we define a metric called h-confidence as a
measure of association for an itemset.

Definition 1. The h-confidence of an itemset P = {i1, i2, . . . , im} is defined as follows:

hcon f (P) = min{con f {i1 → i2, . . . , im}, con f {i2 → i1, i3, . . . , im},
. . . , con f {im → i1, . . . , im−1}},

where conf follows from the conventional definition of association rule confidence (Agrawal
et al., 1993).

Example 1. Consider an itemset P = {A, B, C}. Assume that supp({A}) = 0.1,

supp({B}) = 0.1, supp({C}) = 0.06, and supp({A, B, C}) = 0.06, where supp denotes the
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support (Agrawal et al., 1993) of an itemset. Since

con f {A → B, C} = supp({A, B, C})/supp({A}) = 0.6,

con f {B → A, C} = supp({A, B, C})/supp({B}) = 0.6,

con f {C → A, B} = supp({A, B, C})/supp({C}) = 1,

therefore, hcon f (P) = min{0.6, 0.6, 1} = 0.6.

Definition 2. Given a set of items I = {i1, i2, . . . , in} and a minimum h-confidence threshold
hc, an itemset P ⊆ I is a hyperclique pattern if and only if hcon f (P) ≥ hc.

A hyperclique pattern P can be interpreted as follows: the presence of any item i ∈ P
in a transaction implies the presence of all other items P − {i} in the same transaction
with probability at least hc. This suggests that h-confidence is useful for capturing patterns
containing items which are strongly related with each other, especially when the h-confidence
threshold is sufficiently large.

Nevertheless, the hyperclique pattern mining framework may miss some interesting pat-
terns too. For example, an itemset such as {A, B, C} may have very low h-confidence, and
yet it may be still interesting if one of its rules, say AB → C , has very high confidence.
Discovering such type of patterns is beyond the scope of this paper.

2.2. The equivalence between the all-confidence measure and the h-confidence measure

The following is a formal definition of the all-confidence measure as given in Omiecinski
(2003).

Definition 3. The all-confidence measure (Omiecinski, 2003) for an itemset P =
{i1, i2, . . . , im} is defined as allcon f (P) = min{{con f (A → B | ∀A, B ⊂ P, A ∪ B =
P, A ∩ B = ∅}}.

Conceptually, the all-confidence measure checks every association rule extracted from a
given itemset. This is slightly different from the h-confidence measure, which examines only
rules of the form {i} −→ P − {i}, where there is only one item on the left-hand side of the
rule. Despite their syntactic difference, both measures are mathematically identical to each
other, as shown in the lemma below.

Lemma 1. For an itemset P = {i1, i2, . . . , im}, hcon f (P) ≡ allcon f (P).

Proof: The confidence for any association rule A → B extracted from an itemset P is given
by con f {A → B} = supp(A∪B)

supp(A) = supp(P)
supp(A) . From Definition 3, we may write allcon f (P)

= min({con f {A → B}}) = supp(P)
max({supp(A)|∀A⊂P} ). From the anti-monotone property of the sup-

port measure, max({supp(A) | A ⊂ P}) = max1≤k≤m{supp({ik})}. Hence,

allcon f (P) = supp({i1, i2, . . . , im})
max1≤k≤m{supp({ik})} . (1)
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Also, we simplify h-confidence for an itemset P in the following way.

hcon f (P)
= min{con f {i1 → i2, . . . , im}, con f {i2 → i1, i3, . . . , im}, . . . , con f {im → i1, . . . , im−1}}

= min

{
supp({i1, i2, . . . , im})

supp({i1}) ,
supp({i1, i2, . . . , im})

supp({i2}) , . . . ,
supp({i1, i2, . . . , im})

supp({im})
}

= supp({i1, . . . , im}) · min

{
1

supp({i1}) ,
1

supp({i2}) , . . . ,
1

supp({im})
}

= supp({i1, i2, . . . , im})
max1≤k≤m{supp({ik})} .

The above expression is identical to Eq. (1), so Lemma 1 holds. �

2.3. Anti-monotone property of h-confidence

Omiecinski has previously shown that the all-confidence measure has the anti-monotone
property (Omiecinski, 2003). In other words, if the all-confidence of an itemset P is greater
than a user-specified threshold, so is every subset of P. Since h-confidence is mathemati-
cally identical to all-confidence, it is also monotonically non-increasing as the size of the
hyperclique pattern increases. Such a property allows us to push the h-confidence constraint
directly into the mining algorithm. Specifically, when searching for hyperclique patterns,
the algorithm eliminates every candidate pattern of size m having at least one subset of size
m − 1 that is not a hyperclique pattern.

Besides being anti-monotone, the h-confidence measure also possesses other desirable
properties. A detailed examination of these properties is presented in the following sections.

3. The cross-support property

In this section, we describe the cross-support property of h-confidence and explain how
this property can be used to efficiently eliminate cross-support patterns. Also, we show that
the cross-support property is not limited to h-confidence and can be generalized to some
other association measures. Finally, a sufficient condition is provided for verifying whether
a measure satisfies the cross-support property or not.

3.1. Illustration of the cross-support property

First, a formal definition of cross-support patterns is given as follows.

Definition 4 (Cross-support Patterns). Given a threshold t, a pattern P is a cross-support
pattern with respect to t if P contains two items x and y such that supp({x})

supp({y}) < t , where
0 < t < 1.

Let us consider the diagram shown in Fig. 2, which illustrates cross-support patterns in
a hypothetical data set. In the figure, the horizontal axis shows items sorted by support in
non-decreasing order and the vertical axis shows the corresponding support for items. For
example, in the figure, the pattern {x, y, j} is a cross-support pattern with respect to the
threshold t = 0.6, since this pattern contains two items x and y such that supp({x})

supp({y}) = 0.3
0.6 =

0.5 < t = 0.6.
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Fig. 2 An example to illustrate the cross-support pruning

Once we have the understanding of cross-support patterns, we present the cross-support
property of h-confidence in the following lemma.

Lemma 2 (Cross-support Property of the h-confidence measure). Any cross-support pattern
P with respect to a threshold t is guaranteed to have hcon f (P) < t .

Proof: Since P is a cross-support pattern with respect to the threshold t, by Definition 4, we
know P contains at least two items x and y such that supp({x})

supp({y}) < t , where 0 < t < 1. Without
loss of generality, let P = {. . . , x, . . . , y, . . .}. By Eq. (1), we have the following.

hcon f (P) = supp(P)

max{. . . , supp({x}), . . . , supp({y}), . . .}

≤ supp({x})
max{. . . , supp({x}), . . . , supp({y}), . . .} ≤ supp({x})

supp({y}) < t

Note that the anti-monotone property of support is applied to the numerator part of the
h-confidence expression in the above proof. �

Corollary 1. Given an item y, all patterns that contain y and at least one item with support
less than t · supp({y}) (for 0 < t < 1) are cross-support patterns with respect to t and are
guaranteed to have h-confidence less than t. All such patterns can be automatically eliminated
without computing their h-confidence if we are only interested in patterns with h-confidence
greater than t.

Proof: This corollary follows from Definition 4 and Lemma 2. �

For a given h-confidence threshold, the above Corollary provides a systematic way to find
and eliminate candidate itemsets that are guaranteed not to be hyperclique patterns. In the
following, we present an example to illustrate the cross-support pruning.

Example 2. Figure 2 shows the support distributions of five items and their support values.
By Corollary 1, given a minimum h-confidence threshold hc = 0.6, all patterns contain item
y and at least one item with support less than supp({y}) · hc = 0.6 × 0.6 = 0.36 are cross-
support patterns and are guaranteed to have h-confidence less than 0.6. Hence, all patterns
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containing item y and at least one of l, m, x do not need to be considered if we are only
interested in patterns with h-confidence greater than 0.6.

3.2. Generalization of the cross-support property

In this subsection, we generalize the cross-support property to other association measures.
First, we give a generalized definition of the cross-support property.

Definition 5 (Generalized Cross-support Property). Given a measure f, for any cross-support
pattern P with respect to a threshold t, if there exists a monotone increasing function g such
that f (P) < g(t), then the measure f has the cross-support property.

Given the h-confidence measure, for any cross-support pattern P with respect to a threshold
t, if we let the function g(l) = l, then we have hcon f (P) < g(t) = t by Lemma 2. Hence,
the h-confidence measure has the cross-support property. Also, if a measure f has the
cross-support property, the following theorem provides a way to automatically eliminate
cross-support patterns.

Theorem 1. Given an item y, a measure f with the cross-support property, and a threshold
θ , any pattern P that contains y and at least one item x with support less than g−1(θ ) ·
supp({y}) is a cross-support pattern with respect to the threshold g−1(θ ) and is guaranteed
to have f (P) < θ , where g is the function to make the measure f satisfy the generalized
cross-support property.

Proof: Since supp({x}) < g−1(θ ) · supp({y}), we have supp({x})
supp({y}) < g−1(θ ). By Definition 4,

the pattern P is a cross-support pattern with respect to the threshold g−1(θ ). Also, because
the measure f has the cross-support property, by Definition 5, there exists a monotone
increasing function g such that f (P) < g(g−1(θ )) = θ . Hence, for the given threshold θ , all
such patterns can be automatically eliminated if we are only interested in patterns with the
measure f greater than θ . �

Table 2 shows two measures that have the cross-support property. The corresponding
monotone increasing functions for these measures are also shown in this table. However,
some measures, such as support and odds ratio (Tan et al. 2002), do not possess such a
property.

Table 2 Examples of measures of association that have the cross-support property (assuming that
supp({x}) < supp({y}))

Measure Computation formula Upper bound Function

Cosine
supp({x, y})√

supp({x})supp({y})

√
supp({x})
supp({y}) g(l) = √

l

Jaccard
supp({x, y})

supp({x}) + supp({y}) − supp({x, y})
supp({x})
supp({y}) g(l) = l
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3.3. Discussion

In this subsection, we presents some analytical results for the amount of computational
savings obtained by the cross-support property of h-confidence. To facilitate our discussion,
we only analyze the amount of computational savings for size-2 hyperclique patterns. We
first introduce the definitions of several concepts.

Definition 6. The pruning ratio is defined as follows

γ (θ ) = S(θ )

T
, (2)

where θ is the minimum h-confidence threshold, S(θ ) is the number of item pairs which are
pruned by the cross-support property at the minimum h-confidence threshold θ , and T is the
total number of item pairs in the database. For a given database, T is a fixed number and is
equal to

(n
2

) = n(n−1)
2 , where n is the number of items.

Definition 7. For a sorted item list, the rank-support function f (k) is a function which
presents the support in terms of the rank k.

For a given database, let I = {A1, A2, . . . , An} be an item list sorted by item supports
in non-increasing order. Then item A1 has the maximum support and the rank-support
function f (k) = supp(Ak),∀ 1 ≤ k ≤ n, which is monotone decreasing with the increase
of the rank k. To quantify the computation savings for a given item A j (1 ≤ j < n) at the
threshold θ , we need to find only the first item Al ( j < l ≤ n) such that supp(Al )/supp(A j ) <

θ . Then, we know that supp(Ai )/supp(A j ) < θ , where l ≤ i ≤ n. By Corollary 1, all these
n − l + 1 pairs can be pruned by the cross-support property since,

supp(Al )/supp(A j ) = f (l)/ f ( j) < θ

Also, if the rank-support function f (k) is monotone decreasing with the increase of the
rank k, we get

l > f −1(θ f ( j))

To make the computation simple, we let l = f −1(θ f ( j)) + 1. Therefore, for a given item
A j (1 < j ≤ n), the computation cost for (n − f −1(θ f ( j))) item pairs can be saved. As a
result, the total computation savings is shown below.

S(θ ) =
n∑

j=2

{n − f −1(θ f ( j))} (3)

Finally, we conduct computation savings analysis on the case that data sets have a gener-
alized Zipf distribution (Zipf, 1949). In this case, the rank-support function has a generalized
Zipf distribution and f (k) = c

k p , where c and p are constants andp ≥ 1. When p is equal to
1, the rank-support function has a Zipf distribution.
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Lemma 3. When a database has a generalized Zipf rank-support distribution f (k)
and f (k) = c

k p , for a user-specified minimum h-confidence threshold θ , the pruning ratio
increases with the increase of p and the h-confidence threshold θ , where 0 < θ ≤ 1.

Proof: Since the rank-support function f (k) = c
k p , the inverse function f −1(y) = ( c

y )
1
p .

Accordingly,

f −1(θ f ( j)) =
(

c

θ c
j p

) 1
p

= j

(θ )
1
p

Applying Eq. (3), we get:

S(θ ) =
n∑

j=2

{n − f −1(θ f ( j))}

= n(n − 1) −
n∑

j=2

j

(θ )
1
p

= n(n − 1) − (n − 1)(n + 2)

2

1

θ
1
p

Since the pruning ratio γ (θ ) = S(θ )
T and T = n(n−1)

2 ,

⇒ γ (θ ) = 2 − n + 2

n

1

θ
1
p

Thus, we can derive two rules as follows:

rule 1 : θ ↗⇒ n + 2

n

1

θ
1
p

↘⇒ γ (θ ) ↗

rule 2 : p ↗⇒ n + 2

n

1

θ
1
p

↘⇒ γ (θ ) ↗
�

Therefore, the claim that the pruning ratio increases with the increase of p and
the h-confidence threshold θ holds. Also, with the increase of p, the generalized Zipf
distribution becomes more skewed. In other words, the pruning effect of the cross-
support property become more significant for data sets with more skewed support
distributions.

4. The h-confidence as a measure of association

In this section, we first show that the strength or magnitude of a relationship described by
h-confidence is consistent with the strength or magnitude of a relationship described by two
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traditional association measures: the Jaccard measure (Rijsbergen, 1979) and the correlation
coefficient (Reynolds, 1977).

Given a pair of items P = {i1, i2}, the affinity between both items using these measures
is defined as follows:

jaccard(P) = supp({i1, i2})
supp({i1}) + supp({i2}) − supp({i1, i2}) ,

correlation, φ(P) = supp({i1, i2}) − supp({i1})supp({i2})√
supp({i1})supp({i2})(1 − supp({i1}))(1 − supp({i2}))

.

Also, we demonstrate that h-confidence is a measure of association that can be used to
capture the strength or magnitude of a relationship among several objects.

4.1. Relationship between h-confidence and Jaccard

In the following, for a size-2 hyperclique pattern P, we provide a lemma that gives a lower
bound for jaccard(P).

Lemma 4. If an item set P = {i1, i2} is a size-2 hyperclique pattern, then jaccard(P) ≥
hc/2.

Proof: By Eq. (1), hcon f (P) = supp({i1,i2})
max{supp({i1}),supp({i2})} . Without loss of generality, let

supp({i1}) ≥ supp({i2}). Given that P is a hyperclique pattern, hcon f (P) = supp({i1,i2})
supp({i1})

≥ hc. Furthermore, since supp({i1}) ≥ supp({i2}), jaccard(P) = supp({i1,i2})
supp({i1})+supp({i2})−supp({i1,i2})

≥ supp({i1,i2})
2supp({i1}) ≥ hc/2. �

Lemma 4 suggests that if the h-confidence threshold hc is sufficiently high, then all size-2
hyperclique patterns contain items that are strongly related with each other in terms of the
Jaccard measure, since the Jaccard values of these hyperclique patterns are bounded from
below by hc/2.

4.2. Relationship between h-confidence and correlation

In this subsection, we illustrate the relationship between h-confidence and Pearson’s corre-
lation. More specifically, we show that if at least one item in a size-2 hyperclique pattern
has a support value less than the minimum h-confidence threshold, hc, then two items within
this hyperclique pattern must be positively correlated.

Lemma 5. Let S be a set of items and hc be the minimum h-confidence threshold, we
can form two item groups: S1 and S2 such that S1 = {x |supp({x}) < hc and x ∈ S} and
S2 = {y|supp({y}) ≥ hc and y ∈ S}. Then, any size-2 hyperclique pattern P = {A, B} has
a positive correlation coefficient in each of the following cases: Case 1: A ∈ S1 and B ∈ S2.
Case 2: A ∈ S1 and B ∈ S1.

Proof: For a size-2 hyperclique pattern P = {A, B}, without loss of generality, we as-
sume that supp({A}) ≤ supp({B}). Since hcon f (P) ≥ hc, we know supp({A,B})

max{supp({A}), supp({B})}
= supp({A,B})

supp({B}) ≥ hc. In other words, supp({A, B}) ≥ hc · supp({B}).
Springer
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Fig. 3 Illustration of the relationship between h-confidence and correlation

From the definition of Pearson’s correlation coefficient:

φ({A, B}) = supp({A, B}) − supp({A})supp({B})√
supp({A})supp({B})(1 − supp({A}))(1 − supp({B}))

Also,
√

supp({A})(1 − supp({A})) ≤ (supp({A}) + 1 − supp({A}))/2 = 1/2. so, φ({A,

B}) ≥ 4(supp({A, B}) − supp({A})supp({B})) ≥ 4supp({B})(hc − supp({A}))
Case 1: if A ∈ S1 and B ∈ S2

Since A ∈ S1 and B ∈ S2, we know supp({A}) < hc due to the way that we construct S1 and
S2. As a result, 4supp({B})(hc − supp({A})) > 0. Hence, φ > 0.

Case 2: if A ∈ S1 and B ∈ S1

Since A ∈ S1, we know supp({A}) < hc due to the way that we construct S1 and S2. As a
result, 4supp({B})(hc − supp({A})) > 0. Hence, φ > 0. �

Example 3. Figure 3 illustrates the relationship between h-confidence and correlation. As-
sume that the minimum h-confidence threshold is 0.45. In the figure, there are four pairs
including {a, b}, {c, d}, {c, e}, {d, e} with h-confidence greater than 0.45. Among these four
pairs, {c, d}, {c, e}, {d, e} contain at least one item with the support value less than the
h-confidence threshold, 0.45. By Lemma 5, all these three pairs have positive correlation.
Furthermore, if we increase the minimum h-confidence threshold to be greater than 0.6 that
is the maximum support of all items in the given data set, all size-2 hyperclique patterns are
guaranteed to have positive correlation.

In practice, many real-world data sets, such as the point-of-sale data collected at depart-
ment stores, contain very few items with considerably high support. For instance, the retail
data set used in our own experiment contains items with a maximum support equals to 0.024.
Following the discussion presented above, if we set the minimum h-confidence threshold
above 0.024, all size-2 hyperclique patterns are guaranteed to be positively correlated. To
make this discussion more interesting, recall the well-known coffee-tea example given in
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(Brin et al., 1997). This example illustrates the drawback of using confidence as a measure
of association. Even though the confidence for the rule tea → coffee may be high, both
items are in fact negatively-correlated with each other. Hence, the confidence measure can
be misleading. Instead, with h-confidence, we may ensure that all derived size-2 patterns are
positively correlated, as long as the minimum h-confidence threshold is above the maximum
support of all items.

4.3. H-confidence for measuring the relationship among several objects

In this subsection, we demonstrate that the h-confidence measure can be used to describe the
strength or magnitude of a relationship among several objects.

Given a pair of items P = {i1, i2}, the cosine similarity between both items is defined as
follows.

cosine(P) = supp({i1, i2})√
supp({i1})supp({i2})

,

Note that the cosine similarity is also known as uncentered Pearson’s correlation coeffi-
cient (when computing Pearson’s correlation coefficient, the data mean is not subtracted).
For a size-2 hyperclique pattern P, we first derive a lower bound for the cosine similarity of
the pattern P, cosine(P), in terms of the minimum h-confidence threshold hc.

Lemma 6. If an item set P = {i1, i2} is a size-2 hyperclique pattern, then cosine(P) ≥ hc.

Proof: By Eq. (1), hcon f (P) = supp({i1,i2})
max{supp({i1}),supp({i2})} . Without loss of generality, let

supp({i1}) ≥ supp({i2}). Given that P is a hyperclique pattern, hcon f (P) = supp({i1,i2})
supp({i1}) ≥ hc.

Since supp ({i1}) ≥ supp({i2}), cosine(P) = supp({i1,i2})√
supp({i1})supp({i2}) ≥ supp({i1,i2})

supp({i1}) ≥ hc. �

Lemma 6 suggests that if the h-confidence threshold hc is sufficiently high, then all size-2
hyperclique patterns contain items that are strongly related with each other in terms of the
cosine measure, since the cosine values of these hyperclique patterns are bounded from
below by hc.

For the case that hyperclique patterns have more than two objects, the following theorem
guarantees that if a hyperclique pattern has an h-confidence value above the minimum h-
confidence threshold, hc, then every pair of objects within the hyperclique pattern must have
a cosine similarity great than or equal to hc.

Theorem 2. Given a hyperclique pattern P = {i1, i2, . . . , ik} (k > 2) at the h-confidence
threshold hc, for any size-2 itemset Q = {il , im} such that Q ⊂ P, we have cosine (Q) ≥ hc.

Proof: By the anti-monotone property of the h-confidence measure and the condition that
Q ⊂ P , we know Q is also a hyperclique pattern. Then, by Lemma 6, we know cosine(Q) ≥
hc. �

Clique View. Indeed, a hyperclique pattern can be viewed as a clique, if we construct a graph
in the following way. Treat each object in a hyperclique pattern as a vertex and put an edge
between two vertices if the cosine similarity between two objects is above the h-confidence
threshold, hc. According to Theorem 2, there will be an edge between any two objects within
a hyperclique pattern. As a result, a hyperclique pattern is a clique.

Springer



10618_2006_43 styleAv1.cls (2006/04/29 v1.1 LaTeX Springer document class) May 19, 2006 22:19

Data Min Knowl Disc

Viewed as cliques, hyperclique patterns have applications in many different domains.
For instance, Xiong et al. (2004) show that the hyperclique pattern is the best candidate for
pattern preserving clustering—a new paradigm for pattern based clustering. Also, Xiong
et al. (2005) describe the use of hyperclique pattern discovery for identifying functional
modules in protein complexes.

5. Hyperclique miner algorithm

The Hyperclique Miner is an algorithm which can generate all hyperclique patterns with
support and h-confidence above user-specified minimum support and h-confidence thresh-
olds.
Hyperclique Miner
Input:

(1) a set F of K Boolean feature types F = { f1, f2, . . . , fK}
(2) a set T of N transactions T = {t1 . . . tN }, each ti ∈ T is a record with K attributes

{i1, i2, . . . , iK } taking values in {0, 1}, where the i p (1 ≤ p ≤ K ) is the Boolean value
for the feature type f p.

(3) A user specified minimum h-confidence threshold (hc)
(4) A user specified minimum support threshold (min supp)

Output:
hyperclique patterns with h-confidence > hc and support > min supp

Method:

(1) Get size-1 prevalent items
(2) for the size of itemsets in (2, 3, . . . , K − 1) do
(3) Generate candidate hyperclique patterns using the generalized apriori gen algorithm
(4) Generate hyperclique patterns
(5) end;

Explanation of the detailed steps of the algorithm

Step 1 scans the database and gets the support for every item. Items with support above
min supp form size-1 candidate set C1. The h-confidence values for size-1 itemsets are 1.
All items in the set C1 are sorted by the support values and relabeled in alphabetic order.

Step 2 to Step 4 loops through 2 to K – 1 to generate qualified hyperclique patterns of size 2
or more. It stops whenever an empty candidate set of some size is generated.

Step 3 uses generalized apriori gen to generate candidate hyperclique patterns of size k from
hyperclique patterns of size k – 1. The generalized apriori gen function is an adaptation of
the apriori gen function of the Apriori algorithm (Agrawal and Srikant, 1994). Let Ck−1

indicate the set of all hyperclique patterns of size k – 1. The function works as follows.
First, in the join step, we join Ck−1 with Ck−1 and get candidate set Ck . Next in the prune
step, we delete all candidate hyperclique patterns c ∈ Ck based on two major pruning
techniques:

(a) Pruning based on anti-monotone property of h-confidence and support: If any
one of the k – 1 subsets of c does not belong to Ck−1, then c is pruned. (Recall
that this prune step is also done in apriori gen by Agrawal and Srikant because
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of the anti-monotone property of support. Omiecinski (2003) also applied the
anti-monotone property of all-confidence in his algorithm.)

(b) Pruning of cross-support patterns by using the cross-support property of h-
confidence: By Corollary 1, for the given h-confidence threshold hc and an item y,
all patterns that contain y and at least one item with support less than hc ·supp({y})
are cross-support patterns and are guaranteed to have h-confidence less than t. Hence,
all such patterns can be automatically eliminated.

Note that the major pruning techniques applied in this step are illustrated by Example 4.

Step 4 computes exact support and h-confidence for all candidate patterns in Ck and prunes
this candidate set using the user specified support threshold min supp and the h-confidence
threshold hc. All remaining patterns are returned as hyperclique patterns of size k.

Example 4. Figure 4 illustrates the process of pruning the candidate generation step (Step
3) of the hyperclique miner algorithm. In this example, we assume the minimum support
threshold to be zero and the minimum h-confidence threshold to be 0.6. Consider the state
after all size-1 hyperclique patterns have been generated. Note that all these singleton items
have support greater than 0. Also, by Eq. (1), h-confidence of all size-1 itemsets is 1.0, which
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Fig. 4 A running example with a support threshold = 0 and an h-confidence threshold = 0.6. Note that
crossed nodes are pruned by the anti-monotone property and circled nodes are pruned by the cross-support
property
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is greater than the user-specified h-confidence threshold of 0.6. Hence, all these singleton
itemsets are hyperclique patterns.

There are two major pruning techniques that we can enforce in Step 3 while generating
size-2 candidate itemsets from size-1 itemsets.

(a) Pruning based on the anti-monotone property: No pruning is possible using this property
since all size-1 itemsets are hyperclique patterns.

(b) Pruning based on cross-support patterns by using the cross-support property: Given an
h-confidence threshold 0.6, for the item 2, we can find an item 3 with supp({3}) =
0.3 < supp({2}) · 0.6 = 0.36 in the sorted item list {1, 2, 3, 4, 5}. If we split this item
list into two itemsets L = {1, 2} and U = {3, 4, 5}, any pattern involving items from
both L and U is a cross-support pattern with respect to the threshold 0.6. By Lemma
2, the h-confidence values for these cross-support patterns are less than 0.6. Since the
h-confidence threshold is equal to 0.6, all cross-support patterns are pruned. In contrast,
without applying cross-support pruning, we have to generate six cross-support patterns
including {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, and {2, 5} as candidate patterns and
prune them later by computing the exact h-confidence values.
For the remaining size-2 candidate itemsets, the h-confidence of the itemset {4, 5}
is supp({4, 5})/max{supp({4}), supp({5})} = 0.1/0.2 = 0.5., which is less than the h-
confidence threshold, 0.6. Hence, the itemset{4, 5} is not a hyperclique pattern and is
pruned.
Next, we consider pruning in Step 3 while generating size-3 candidate itemsets from
size-2 hyperclique patterns.

(c) Pruning based on the anti-monotone property. From the above, we know that the itemset
{4, 5} is not a hyperclique pattern. Then, we can prune the candidate pattern {3, 4, 5}
by the anti-monotone property of the h-confidence measure, since this pattern has one
subset {4, 5}, which is not a hyperclique pattern.

6. Experimental evaluation

In this section, we present experiments to evaluate the performance of hyperclique miner
and the quality of hyperclique patterns.

6.1. The experimental setup

6.1.1. Experimental data sets

Our experiments were performed on both real and synthetic data sets. Synthetic data sets were
generated by using the IBM Quest synthetic data generator (Agrawal and Srikant, 1994),
which gives us the flexibility of controlling the size and dimensionality of the database.
A summary of the parameter settings used to create the synthetic data sets is presented in
Table 3, where |T | is the average size of a transaction, N is the number of items, and |L| is the
maximum number of potential frequent itemsets. Each data set contains 100000 transactions,
with an average frequent pattern length equal to 4.

The real data sets are obtained from several application domains. Some characteristics
of these data sets4 are shown in Table 4. In the table, the pumsb and pumsb∗ data sets

4 Note that the number of items shown in Table 4 for pumsb, pumsb∗ are somewhat different from the
numbers reported in Zaki and Hsiao (2002), because we only consider item IDs for which the count is at least
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Table 3 Parameter settings for synthetic data sets

Data set name |T | |L| N Size (MBytes)

T5.L100.N1000 5 100 1000 0.94
T5.L500.N5000 5 500 5000 2.48
T10.L1000.N10000 10 1000 10000 4.96
T20.L2000.N20000 20 2000 20000 10.73
T30.L3000.N30000 30 3000 30000 16.43
T40.L4000.N40000 40 4000 40000 22.13

Table 4 Real data set characteristics

Data set #Item #Record Avg. length Source

Pumsb 2113 49046 74 IBM Almaden
Pumsb∗ 2089 49046 50 IBM Almaden
LA1 29704 3204 145 TREC-5
Retail 14462 57671 8 Retail Store

correspond to binary versions of a census data set. The difference between them is that
pumsb∗ does not contain items with support greater than 80%. The LA1 data set is part
of the TREC-5 collection5 and contains news articles from the Los Angeles Times. Finally,
retail is a market-basket data set obtained from a large mail-order company.

6.1.2. Experimental platform

Our experiments were performed on a Sun Ultra 10 workstation with a 440 MHz CPU
and 128 Mbytes of memory running the SunOS 5.7 operating system. We implemented
hyperclique miner by modifying the publicly available Apriori implementation by Borgelt
(http://fuzzy.cs.uni-magdeburg.de/ ∼ borgelt). When the h-confidence threshold is set to zero,
the computational performance of hyperclique miner is approximately the same as the
Borgelt’s implementation of Apriori (Agrawal and Srikant, 1994).

6.2. The pruning effect of hyperclique miner

The purpose of this experiment is to demonstrate the effectiveness of the h-confidence pruning
on hyperclique pattern generation. Note that hyperclique patterns can also be derived by first
computing frequent patterns at very low levels of support, and using a post-processing step
to eliminate weakly-related cross-support patterns. Hence, we use the conventional frequent
pattern mining algorithms as the baseline to show the relative performance of hyperclique
miner.

First, we evaluate the performance of hyperclique miner on the LA1 data set. Figure 5(a)
shows the number of patterns generated from the LA1 data set at different h-confidence
thresholds. As can be seen, at any fixed support threshold, the number of generated patterns
increases quite dramatically with the decrease of the h-confidence threshold. For example,

one. For example, although the minimum item ID in pumsb is 0 and the maximum item ID is 7116, there are
only 2113 distinct item IDs that appear in the data set.
5 The data set is available at http://trec.nist.gov.
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Fig. 5 (a) Number of patterns generated by hyperclique miner on LA1 data set. (b) The execution time of
hyperclique miner on LA1 data set

when the support threshold is 0.01 and the h-confidence threshold is zero, the number of
patterns generated is greater than 107. In contrast, there are only several hundred hyperclique
patterns when the h-confidence threshold is increased to 40%. Recall that, when the h-
confidence threshold is equal to zero, the hyperclique miner essentially becomes the Apriori
algorithm, as it finds all frequent patterns above certain support thresholds. As shown in
Fig. 5(a), Apriori is not able to find frequent patterns at support level less than 0.01 due
to excessive memory requirements. This is caused by the rapid increase of the number
of patterns generated as the support threshold is decreased. On the other hand, for an h-
confidence threshold greater than or equal to 10%, the number of patterns generated increases
much less rapidly with the decrease in the support threshold.

Figure 5(b) shows the execution time of hyperclique miner on the LA1 data set. As
can be seen, the execution time reduces significantly with the increase of the h-confidence
threshold. Indeed, our algorithm identify hyperclique patterns in just a few seconds at 20% h-
confidence threshold and 0.005 support threshold. In contrast, the traditional Apriori (which
corresponds to the case that h-confidence is equal to zero in Fig. 5(b)) breaks down at 0.005
support threshold due to excessive memory and computational requirement.

The above results suggest a trade-off between execution time and the number of hy-
perclique patterns generated at different h-confidence thresholds. In practice, analysts may
start with a high h-confidence threshold first at support threshold close to zero, to rapidly
extract the strongly affiliated patterns, and then gradually reduce the h-confidence threshold
to obtain more patterns that are less tightly-coupled.

Next, we evaluate the performance of hyperclique miner on dense data sets such as
Pumsb and Pumsb∗. Recently, Zaki and Hsiao proposed the CHARM algorithm (Zaki and
Hsiao, 2002) to efficiently discover frequent closed itemsets. As shown in their paper, for the
Pumsb and Pumsb∗ data sets, CHARM can achieve relatively better performance than other
state-of-the-art pattern mining algorithms such as CLOSET (Pei et al., 2000) and MAFIA
(Burdick et al., 2001) when the support threshold is low. Hence, for the Pumsb and Pumsb∗

data sets, we chose CHARM as the base line for the case when the h-confidence threshold is
equal to zero.

Figure 6(a) shows the number of patterns generated by hyperclique miner and CHARM
on the pumsb data set. As can be seen, when the support threshold is low, CHARM can
generate a huge number of patterns, which is hard to analyze in real applications. In contrast,
the number of patterns generated by hyperclique miner is more manageable. In addition,
CHARM is unable to generate patterns when the support threshold is less than or equals
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Fig. 6 On the Pumsb data set. (a) Number of patterns generated by hyperclique miner and CHARM. (b)
The execution time of hyperclique miner and CHARM
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Fig. 7 On the Pumsb∗ data set. (a) Number of patterns generated by hyperclique miner and CHARM. (b)
The execution time of hyperclique miner and CHARM

to 0.4, as it runs out of memory. Recall from Table 1 that nearly 96.6% of the items have
support less than 0.4. With a support threshold greater than 0.4, CHARM can only identify
associations among a very small fraction of the items. However, hyperclique miner is able to
identify many patterns containing items which are strongly related with each other even at
very low levels of support. For instance, we obtained a long pattern containing 9 items with the
support 0.23 and h-confidence 94.2%. Figure 6(b) shows the execution time of hyperclique
miner and CHARM on the pumsb data set. As shown in the figure, the execution time of
hyperclique miner increases much less rapidly (especially at higher h-confidence thresholds)
than that of CHARM.

Similar results are also obtained from the pumsb∗ data set, as shown in Figure 7(a) and
(b). For the pumsb∗ data set, CHARM is able to find patterns for the support threshold as
low as 0.04. This can be explained by the fact that the pumsb∗ data set do not include those
items having support greater than 0.8, thus manually removing a large number of weakly-
related cross-support patterns between the highly frequent items and the less frequent items.
Hyperclique miner does not encounter this problem because it automatically removes the
weakly-related cross-support patterns using the cross-support property of the h-confidence
measure. Note that, in the Pumsb∗ data set, there are still more than 92% (1925 items) of the
items that have support less than 0.04. CHARM is unable to find any patterns involving those
items with support less than 0.04, since it runs out of memory when the support threshold is
less than 0.04.
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Fig. 8 (a) The effect of cross-support pruning on the LA1 data set. (b) The effect of cross-support pruning
on the Pumsb data set

6.3. The effect of cross-support pruning

Figure 8(a) illustrates the effect of cross-support pruning on the LA1 data set. There are
two curves in the figure. The lower one shows the execution time when both cross-support
and anti-monotone pruning are applied. The above one corresponds to the case that only
anti-monotone pruning is applied. As can be seen, cross-support pruning leads to significant
reduction in the execution time. Similarly, Fig. 8(b) shows the effectiveness of cross-support
pruning on the Pumsb data set. Note that the pruning effect of the cross-support property is
more dramatic on the Pumsb data set than on the LA1 data set. This is because cross-support
pruning tends to work better on dense data sets with skewed support distributions, such as
Pumsb.

6.4. Scalability with respect to number of items

We tested the scalability of hyperclique miner with respect to the number of items on the
synthetic data sets listed in Table 3. In this experiment, we set the support threshold to 0.01%
and increase the number of items from 1000 to 40000. Figure 9(a) shows the scalability of
hyperclique miner in terms of the number of patterns identified. As can be seen, without h-
confidence pruning, the number of patterns increases dramatically and the algorithm breaks
down for the data set with 40000 items. With h-confidence pruning, the number of patterns
generated is more manageable and does not grow fast. In addition, Fig. 9(b) shows the
execution time for our scale-up experiments. As can be seen, without h-confidence pruning,
the execution time grows sharply as the number of items increases. However, this growth
with respect to the number of items is much more moderate when the h-confidence threshold
is increased.

6.5. Quality of hyperclique patterns

In this experiment, we examined the quality of patterns extracted by hyperclique miner.
Table 5 shows several interesting hyperclique patterns identified at low levels of support

from the LA1 data set. It can be immediately seen that the hyperclique patterns contain
words that are closely related to each other. For example, the pattern {arafat, yasser, PLO,
Palestine} includes words that are frequently found in news articles about Palestine. These
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Fig. 9 With increasing number of items. (a) Number of patterns generated by hyperclique miner. (b) The
execution time of hyperclique miner

patterns cannot be directly discovered using standard frequent pattern mining algorithms due
to their low support values.

Table 6 shows some of the interesting hyperclique patterns extracted at low levels of
support from theretail data set. For example, we identified a hyperclique pattern involving
closely related items such as Nokia battery, Nokia adapter, and Nokia wireless phone. We also
discovered several interesting patterns containing very low support items such as {earrings,
gold ring, bracelet}. These items are rarely bought by customers, but they are interesting
because they are expensive and belong to the same product category.

We also evaluated the affinity of hyperclique patterns by the correlation measure. Specifi-
cally, for each hyperclique pattern X = {x1, x2, . . . xk}, we calculate the correlation for each
pair of items (xi , x j ) within the pattern. The overall correlation of a hyperclique pattern is
then defined as the average pair wise correlation of all the items. Note that this experiment
was conducted on the Retail data set with the h-confidence threshold 0.8 and the support
threshold 0.0005.

Table 5 Hyperclique patterns from LA1

Hyperclique patterns support h-confidence (%)

{najibullah, kabul, afghan} 0.002 54.5
{steak, dessert, salad, sauce} 0.001 40.0
{arafat, yasser, PLO, Palestine} 0.004 52.0
{shamir, yitzhak, jerusalem, gaza} 0.002 42.9
{amal, militia, hezbollah, syrian, beirut} 0.001 40.0

Table 6 Hyperclique patterns from retail

Hyperclique patterns support hconf (%)

{earrings, gold ring, bracelet} 0.00019 45.8
{nokia battery, nokia adapter, nokia wireless phone} 0.00049 52.8
{coffee maker, can opener, toaster} 0.00014 61.5
{baby bumper pad, diaper stacker, baby crib sheet} 0.00028 72.7
{skirt tub, 3pc bath set, shower curtain} 0.0026 74.4
{jar cookie, canisters 3pc, box bread, soup tureen, goblets 8pc} 0.00012 77.8
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Figure 10 compares the average correlation for hyperclique patterns versus non-
hyperclique patterns. We sorted the average correlation and displayed them in increasing
order. Notice that the hyperclique patterns have extremely high average pair wise correlation
compared to the non-hyperclique patterns. This result empirically shows that hyperclique pat-
terns contain items that are strongly related with each other, especially when the h-confidence
threshold is relatively high.

7. Conclusions

In this paper, we formalized the problem of mining hyperclique patterns. We first introduced
the concept of the cross-support property and showed how this property can be used to
avoid generating spurious patterns involving items from different support levels. Then, we
demonstrated, both theoretically and empirically, the role of h-confidence as a measure of
association. In addition, an algorithm called hyperclique miner was developed to make use of
both cross-support and anti-monotone properties of h-confidence for the efficient discovery
of hyperclique patterns even at low levels of support.

There are several directions for future work on this topic. First, the hyperclique miner
algorithm presented in this paper is based upon the Apriori algorithm. It will be useful to
explore implementations based upon other algorithms for mining hyperclique patterns, such
as TreeProjection (Agrawal et al., 2000) and FP-growth (Han et al., 2000). Second, it is
valuable to investigate the cross-support property on some other measures of association.
Third, the current hyperclique pattern mining framework is designed for dealing with binary
data. The extension of the hyperclique concept to continuous-valued domains will be a
challenging task. Finally, it is a very interesting direction to explore more efficient algorithms
based on approximate clique partitioning algorithms (Feder and Motwani, 1995).
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