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Abstract

K-means is a well-known and widely used partitional clustering method. While there are considerable research

efforts to characterize the key features of the K-means clustering algorithm, further investigation is needed to

understand how data distributions can have impact on the performance of K-means clustering. To that end, in this

paper, we provide a formal and organized study of the effect of skewed data distributions on K-means clustering.

Along this line, we first formally illustrate that K-means tends to produce clusters of relatively uniform size, even

if input data have varied “true” cluster sizes. Also, we show that some clustering validation measures, such as

the entropy measure, may not capture this uniform effect and provide misleading information on the clustering

performance. Viewed in this light, we provide the Coefficient of Variation (CV) as a necessary criterion to validate

the clustering results. Our findings reveal that K-means tends to produce clusters in which the variations of cluster

sizes, as measured by CV, are in a range of about 0.3 to 1.0. Specifically, for data sets with large variation in “true”

cluster sizes (e.g. CV > 1.0), K-means reduces variation in resultant cluster sizes to less than 1.0. In contrast,

for data sets with small variation in “true” cluster sizes (e.g. CV < 0.3), K-means increases variation in resultant

cluster sizes to greater than 0.3. In other words, for the above two cases, K-means produces the clustering results

which are away from the “true” cluster distributions.
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I. INTRODUCTION

Cluster analysis [17] provides insight into the data by dividing the objects into groups (clusters) of

objects, such that objects in a cluster are more similar to each other than to objects in other clusters. As

a well-known and widely used partitional clustering method, K-means [30] has attracted great interest

in the literature. There are considerable research efforts to characterize the key features of the K-means

clustering algorithms. Indeed, people have identified some data characteristics that may strongly affect

the K-means clustering analysis including high dimensionality, the size of the data, the sparseness of

the data, noise and outliers in the data, types of attributes and data sets, and scales of attributes [38].

However, further investigation is needed to understand how data distributions can have the impact on

the performance of K-means clustering. Along this line, we provide a formal and organized study of

the effect of skewed data distributions on K-means clustering. The understanding from this organized

study can guide us for the better use of K-means. This is noteworthy since, for document data, K-means

has been shown to perform as well as or better than a variety of other clustering techniques and has an

appealing computational efficiency [24], [37], [45].

In this paper, we first formally illustrate that K-means tends to produce clusters of relatively uniform

sizes, even if input data have varied “true” cluster sizes. Also, we show that some clustering validation

measures, such as the entropy measure, may not capture this uniform effect and provide misleading

information on the clustering performance. Viewed in this light, we provide the Coefficient of Variation

(CV) [9] as a necessary criterion to validate the clustering results. In other words, if the CV values of

cluster sizes have a significant change after the clustering process, we know that the clustering performance

is poor. However, it does not necessarily indicate a good clustering performance if the CV values of cluster

sizes have a minor change after the clustering process. Note that the CV, described in more detail later

(Section III A), is a measure of dispersion of a data distribution and is a dimensionless number that allows

comparison of the variation of populations that have significantly different mean values. In general, the

larger the CV value is, the greater the variability is in the data.
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In addition, we have conducted extensive experiments on a number of real-world data sets from different

application domains including text document data sets, gene expression data sets, and UCI data sets.

Indeed, our experimental results also show that, for data sets with large variation in “true” cluster sizes

(e.g. CV > 1.0), K-means reduces variation in resultant cluster sizes to less than 1.0. In contrast, for

data sets with small variation in“true” cluster sizes (e.g. CV < 0.3), K-means increases variation slightly

in resultant cluster sizes to greater than 0.3. In other words, for these two cases, K-means produces the

clustering results which are away from the “true” cluster distributions.

Outline: The remainder of this paper is organized as follows. Section II illustrates the effect of skewed

data distributions on K-means clustering. In Section III, we introduce three external clustering validation

measures. Section IV shows experimental results. The related work is described in Section V. Finally, we

draw conclusions and suggest future work in Section VI.

II. THE EFFECT OF K-MEANS CLUSTERING ON THE DISTRIBUTION OF THE CLUSTER SIZES

K-means [30] is a prototype-based, simple partitional clustering technique which attempts to find k

non-overlapping clusters. These clusters are represented by their centroids (a cluster centroid is typically

the mean of the points in the cluster). The clustering process of K-means is as follows. First, k initial

centroids are selected, where k is specified by the user and indicates the desired number of clusters.

Every point in the data is then assigned to the closest centroid, and each collection of points assigned to

a centroid forms a cluster. The centroid of each cluster is then updated based on the points assigned to

the cluster. This process is repeated until no point changes clusters.

A. CASE I: The Number of Clusters is Two

Typically, K-means is expressed by an objective function that depends on the proximities of the data

points to one another or to the cluster centroids. In the following, we illustrate the effect of K-means

clustering on the distribution of the cluster sizes when the number of clusters is two.
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Objective Function: Sum of Squared Errors (SSE)

Let X = {x1, . . . , xn} be the data, ml =
∑

x∈Cl

x
nl

be the centroid of cluster Cl, nl be the number of

data objects in the cluster Cl, and k be the number of clusters (1 ≤ l ≤ k). Then, an objective function

of K-means clustering is the sum of squared error as follows.

Fk =
k

∑

l=1

∑

x∈Cl

‖ x − ml ‖
2

(1)

Let d(Cp, Cq) =
∑

xi∈Cp

∑

xj∈Cq
‖ xi − xj ‖

2
, we have the sum of all pair-wise distances of data objects

within k clusters as follows.

Dk =
n

∑

i=1

n
∑

j=1

‖ xi − xj ‖
2 =

k
∑

l=1

d(Cl, Cl) + 2
∑

1≤i<j≤k

d(Ci, Cj) (2)

We know that Dk is a constant for a given data set regardless of k. We use the subscript k for the

convenience of mathematical inductions. Also, n =
∑k

l=1 nl is the total number of objects in the data.

To simplify the discussion, we first consider the case that k = 2, then

D2 =
n

∑

i=1

n
∑

j=1

‖ xi − xj ‖
2 = d(C1, C1) + d(C2, C2) + 2d(C1, C2)

In this case, D2 is also a constant and n = n1 + n2 is the total number of objects in the data. If we

substitute the definition of ml to Equation (1), we have

F2 =
1

2n1

∑

xi,xj∈C1

‖ xi − xj ‖
2 +

1

2n2

∑

xi,xj∈C2

‖ xi − xj ‖
2

=
1

2

2
∑

l=1

d(Cl, Cl)

nl

(3)

Let

F
(2)
D = −n1n2[

d(C1, C1)

n2
1

+
d(C2, C2)

n2
2

− 2
d(C1, C2)

n1n2

]
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we have

F2 = −
F

(2)
D

2n
+

D2

2n

Furthermore, we can show that

2d(C1, C2)

n1n2

=
d(C1, C1)

n2
1

+
d(C2, C2)

n2
2

+ 2‖ m1 − m2 ‖
2

Therefore,

F
(2)
D = 2n1n2‖ m1 − m2 ‖

2 > 0

In other words, the minimization of the K-means objective function F2 is equivalent to the maximization

of the distance function F
(2)
D . Since F

(2)
D > 0, if we isolate the effect of ‖ m1 − m2 ‖

2
, the maximization

of F
(2)
D implies the maximization of n1n2, which leads to n1 = n2 = n/2.
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Fig. 1. An Illustrative Example of Potential Violations of the Uniform Effect.

Discussions. In the above analysis, we have isolated the effect of two components: ‖ m1 − m2 ‖
2

and

n1n2. For real-world data sets, the values of these two components are related to each other. Indeed,

under certain circumstances, the goal of maximizing n1n2 can be contradicted by the goal of maximizing

‖ m1 − m2 ‖
2
. For instance, Figure 1 illustrates a scenario such that n1n2 is dominated by ‖ m1 − m2 ‖

2
.

In this example, we simulated two “true” clusters, i.e., one stick cluster and one circle cluster, each

of which contains 500 objects. If we apply K-means on these two data sets, we can have the clustering

results in which the 106 objects in the stick cluster are assigned to the circle cluster, as indicated by

the dots in the stick cluster. In this way, while n1n2 is decreased a little bit, the value of ‖ m1 − m2 ‖
2
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increases more significantly. As a result, the overall objective function value is decreased. Thus, in this

scenario, K-means will increase the variation of “true” cluster sizes slightly. However, it is hard to have a

further theoretical analysis to clarify the relationship between these two components, since this relationship

is affected by many factors, such as cluster shapes and the density in the data. Instead, we present an

extensive empirical study in Section IV to provide a better understanding on this.

B. CASE II: The Number of Clusters > 2

Here, we consider the case that the number of clusters is greater than two. In this case, we also use

sum of squared errors (SSE) as the objective function. To make the discussion consistent with the case

that the number of clusters is two, we still use the same notations as Section II-A for ml, Fk, Dk, and

d(Cp, Cq). First, if we substitute ml, the centroid of cluster Cl, to Equation (1), we have

Fk =
k

∑

l=1

(
1

2nl

∑

xi,xj∈Cl

‖ xi − xj ‖
2) =

1

2

k
∑

l=1

d(Cl, Cl)

nl

(4)

Proposition 1: For Dk in Equation (2), we have

Dk =
k

∑

l=1

[
n

nl

d(Cl, Cl)] + 2
∑

1≤i<j≤k

[ninj‖ mi − mj ‖
2] (5)

Proof: We prove this by mathematical induction.

For k = 1, by Equation (2), the left hand side of Equation (5) is d(C1, C1). Also, the right hand side of

Equation (5) is equal to d(C1, C1), since there is no cross-cluster item. As a result, Proposition 1 holds

when k = 1.

For k = 2, by Equation (2), to prove Equation (5) is equivalent to prove the following Equation.

2d(C1, C2) =
n2

n1

d(C1, C1) +
n1

n2

d(C2, C2) + 2n1n2‖ m1 − m2 ‖
2

(6)

If we substitute m1 =
∑n1

i=1 xi/n1, m2 =
∑n2

i=1 yi/n2 and
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d(C1, C1) = 2
∑

1≤i<j≤n1

‖ xi − xj ‖
2

= 2[(n1 − 1)

n1
∑

i=1

‖ xi ‖
2
− 2

∑

1≤i<j≤n1

xixj ]

d(C2, C2) = 2
∑

1≤i<j≤n2

‖ yi − yj ‖
2

= 2[(n2 − 1)

n2
∑

i=1

‖ yi ‖
2
− 2

∑

1≤i<j≤n2

yiyj ]

d(C1, C2) =
∑

1≤i≤n1

∑

1≤j≤n2

‖ xi − yj ‖
2

= 2n2

n1
∑

i=1

‖ xi ‖
2

+ 2n1

n2
∑

i=1

‖ yi ‖
2
− 4

∑

1≤i≤n1

∑

1≤j≤n2

xiyj

into Equation (6), we can show that the left hand side will be equal to the right hand side. Therefore,

Proposition 1 also holds for k = 2.

Now we assume that Proposition 1 also holds for the case that the cluster number is k − 1. Then for

the case that the cluster number is k, we first define D
(i)
k−1 as the sum of squared pair-wise distances

between data objects within k− 1 clusters selected from total k clusters without cluster i. In other words,

if we disregard the data objects in cluster i (i = 1, 2, · · · , k), then the sum of squared pair-wise distances

between the rest data objects in the rest k − 1 clusters is exactly the value of D
(i)
k−1. It is trivial to know

that D
(i)
k−1 < Dk, and they have the relationship as follows.

Dk = D
(p)
k−1 + d(Cp, Cp) + 2

∑

1≤j≤k,j 6=p

d(Cp, Cj) (7)

Note that Equation (7) holds for any p = 1, 2, · · · , k, so actually we have k equations. We sum up

these k equations and get

kDk =
k

∑

p=1

D
(p)
k−1 +

k
∑

p=1

d(Cp, Cp) + 4
∑

1≤i<j≤k

d(Ci, Cj) (8)

According to the assumption for the case that the cluster number is k − 1, we have

D
(p)
k−1 =

∑

1≤l≤k,l 6=p

[
n − np

nl

d(Cl, Cl)] + 2

i,j 6=p
∑

1≤i<j≤k

[ninj‖ mi − mj ‖
2]



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART B, VOL. X, NO. X, XXX 200X 8

So the first part of the right hand side of Equation (8) is

k
∑

p=1

D
(p)
k−1 = (k − 2)





k
∑

l=1

[
n

nl

d(Cl, Cl)] + 2
∑

1≤i<j≤k

[ninj‖ mi − mj ‖
2
]



 +

k
∑

l=1

d(Cl, Cl) (9)

So we can further transform Equation (8) into

kDk = (k − 2)





k
∑

l=1

[
n

nl

d(Cl, Cl)] + 2
∑

1≤i<j≤k

[ninj‖ mi − mj ‖
2
]



 + 2





k
∑

l=1

d(Cl, Cl) + 2
∑

1≤i<j≤k

d(Ci, Cj)



 (10)

According to Equation (2), we know that the second part of the right hand side of Equation (10) is

exactly 2Dk. So we can finally get

Dk =
k

∑

l=1

[
n

nl

d(Cl, Cl)] + 2
∑

1≤i<j≤k

[ninj‖ mi − mj ‖
2]

In conclusion, for the case that the cluster number is k, Proposition 1 also holds.

Proposition 2: Let

F
(k)
D = Dk − 2nFk (11)

we have

F
(k)
D = 2

∑

1≤i<j≤k

[ninj‖ mi − mj ‖
2] (12)

Proof: If we substitute Fk in Equation (4) and Dk in Equation (5) into Equation (11), we can know

that Proposition 2 is true.
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Discussions. By Equation (11), we know that the minimization of the K-means objective function Fk

is equivalent to the maximization of the distance function F
(k)
D , where Dk and n are constants for a given

data set. For Equation (12), if we assume for all 1 ≤ i < j ≤ k, ‖ mi − mj ‖
2

are the same, i.e., all the

pair-wise distances between two centroids are the same, then it is easy to show that the maximization of

F
(k)
D is equivalent to the uniform distribution of ni, i.e., n1 = n2 = · · · = nk = n/k. Again, to simplify the

discussion, we have isolated the effect of two components: ‖ mi − mj ‖
2

and ninj in the above analysis.

However, for real-world data sets, these two components can have the impact on each other.

III. THE RELATIONSHIP BETWEEN K-MEANS CLUSTERING AND VALIDATION MEASURES

In this section, we illustrate the relationship between K-means clustering and validation measures.

Generally speaking, there are two types of clustering validation techniques [1], [2], [8], [20], [21], [27],

[29], [14], [17], which are based on external criteria and internal criteria respectively. The focus of this

paper is on the evaluation of external clustering validation measures including Entropy, Purity, and F-

measure, which are three commonly used external clustering validation measures for K-means clustering

[37], [45]. As external criteria, these measures use external information — class labels in this case.

Entropy measures the purity of the clusters with respect to the given class labels. Thus, if all clusters

consist of objects with only a single class label, the entropy is 0. However, as the class labels of objects

in a cluster become more varied, the entropy increases.

To compute the entropy of a set of clusters, we first calculate the class distribution of the objects in

each cluster, i.e., for each cluster j we compute pij , the probability that a member of cluster j belongs

to class i. Given this class distribution, the entropy of cluster j is calculated as

Ej = −
∑

i

pijlog(pij)

where the sum is taken over all classes. The total entropy for a set of clusters is computed as the weighted
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sum of the entropies of all clusters, as shown in the equation

E =
m

∑

j=1

nj

n
Ej

where nj is the size of cluster j, m is the number of clusters, and n is the total number of data points.

Purity. In a similar fashion, we can compute the purity of a set of clusters. First, we calculate the

purity in each cluster. For each cluster j, we have the purity Pj = 1
nj

maxi(n
i
j), where ni

j is the number

of objects in cluster j with class label i. In other words, Pj is the fraction of the overall cluster size that

the largest class of objects assigned to that cluster represents. The overall purity of the clustering solution

is obtained as a weighted sum of the individual cluster purities and is given as Purity =
∑m

j=1
nj

n
Pj ,

where nj is the size of cluster j, m is the number of clusters, and n is the total number of data points.

In general, we believe that the larger the values of purity, the better the clustering solution is.

F-measure combines the precision and recall concepts from information retrieval [36]. We treat each

cluster as if it were the result of a query and each class as if it were the desired set of documents for a

query. We then calculate the recall and precision of that cluster for each given class as

Recall(i, j) =
nij

ni

and Precision(i, j) =
nij

nj

where nij is the number of objects of class i that are in cluster j, nj is the number of objects in cluster

j, and ni is the number of objects in class i. The F-measure of cluster j and class i is then given by the

following equation

F (i, j) =
2Recall(i, j)Precision(i, j)

Precision(i, j) + Recall(i, j)

For an entire hierarchical clustering, the F-measure of any class is the maximum value it attains at any

node (cluster) in the tree, and an overall value for the F-measure is computed by taking the weighted
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average F-measures for each class, as given by the equation

F =
∑

i

ni

n
max{F (i, j)}

where the max is taken over all clusters at all levels, and n is the number of documents. The F-measure

values are in the interval [0,1] and larger F-measure value indicates higher clustering quality.

A. The Dispersion in A Data Distribution

Before we describe the relationship between clustering validation measures and K-means clustering, we

first introduce the Coefficient of Variation (CV) [9], which is a measure of the data dispersion. The CV is

defined as the ratio of the standard deviation to the mean. Given a set of data objects X = {x1, x2, . . . , xn},

we have CV = s
x̄
, where x̄ =

Pn
i=1

xi

n
and s =

√

Pn
i=1

(xi−x̄)2

n−1
.

Note that there are some other statistics, such as standard deviation and skewness [9], which can also

be used to characterize the dispersion of a data distribution. However, the standard deviation has no

scalability; that is, the dispersion degrees of the original data and the proportionally stratified sample data

are not equal if the standard deviation is used. Indeed, this does not agree with our intuition. Meanwhile,

skewness cannot catch the dispersion in the situation that the data is symmetric but has high variance. In

contrast, the CV is a dimensionless number that allows comparison of the variation of populations that

have significantly different mean values. In general, the larger the CV value is, the greater the variability

is in the data.

As shown in the previous subsection, K-means tends to produce clusters with relatively uniform sizes.

Therefore, in this paper, we establish a necessary but not sufficient criterion for selecting the right cluster

validation measures for K-means as follows.

Necessary Criterion 1: If an external cluster validation measure cannot capture the uniform effect by

K-means clustering on data sets with large variation in “true” cluster sizes, this measure is not suitable

for validating the results of K-means clustering.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS — PART B, VOL. X, NO. X, XXX 200X 12

This necessary criterion indicates that, if the CV values of cluster sizes have a significant change after

the clustering process, we know that the clustering performance is poor. However, it does not necessarily

indicate a good clustering performance if the CV values of cluster sizes only have a minor change after

the clustering process.

TABLE I

A SAMPLE DOCUMENT DATA SET.

A Sample Document Data Set

Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports, Sports, Sports

Entertainment, Entertainment

Foreign, Foreign, Foreign, Foreign, Foreign

Metro, Metro, Metro, Metro, Metro, Metro, Metro, Metro, Metro,
Metro

Politics

CV=1.1187

TABLE II

TWO CLUSTERING RESULTS.

Document Clustering

Clustering I 1: Sports Sports Sports Sports Sports Sports Sports Sports
2: Sports Sports Sports Sports Sports Sports Sports Sports CV=0.4213
3: Sports Sports Sports Sports Sports Sports Sports Sports Purity=0.929
4: Metro Metro Metro Metro Metro Metro Metro Metro Metro Metro Entropy=0.247
5: Entertainment Entertainment Foreign Foreign Foreign Foreign Foreign Politics F-measure=0.64

Clustering II 1: Sports Sports Sports Sports Sports Sports Sports Sports Sports Sports Sports Sports
Sports Sports Sports Sports Sports Sports Sports Sports Sports Sports Sports Sports
Foreign
2: Entertainment Entertainment CV=1.2011
3: Foreign Foreign Foreign Purity=0.952
4: Metro Metro Metro Metro Metro Metro Metro Metro Metro Metro Foreign Entropy=0.259
5: Politics F-measure = 0.947

B. The Limitations of the Entropy Measure for Clustering Validation

In our practice, we have observed that entropy tends to favor clustering algorithms, such as K-means,

which produce clusters with relatively uniform sizes. We call this the “biased effect” of the entropy

measure. To illustrate this, we created the sample data set as shown in Table I. This data set consists of

42 documents with five class labels. In other words, there are five “true” clusters in this sample data set.

The CV value of the cluster sizes of these five “true” clusters is 1.1187.

For this sample document data set, we assume that we have two clustering results by different clustering

algorithms as shown in Table II. In the table, we can observe that the first clustering result has five clusters
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with relatively uniform sizes. This is also indicated by the CV value, which is 0.4213. In contrast, for

the second clustering result, the CV value of the cluster sizes is 1.2011. This indicates that the five

clusters have widely different cluster sizes for the second clustering scheme. Certainly, according to the

entropy measure, clustering result I is better than clustering result II (this result is due to the fact that

the entropy measure more heavily penalizes a large impure cluster). However, if we look at five “true”

clusters carefully, we find that the second clustering result is much closer to the “true” cluster distribution

and the first clustering result is actually away from the “true” cluster distribution. This is also reflected

by the CV values. The CV value (1.2011) of five cluster sizes in the second clustering result is closer to

the CV value (1.1187) of five “true” cluster sizes.

Finally, in Table II, we can also observe that the purity of the second clustering result is better than that

of the first clustering result. Indeed, this contradicts to the result from the entropy measure. In summary,

this example illustrates that the entropy measure has the favorite on the algorithms, such as K-means,

which produce clusters with relatively uniform sizes. This effect is more significant in the situation that

the data has highly dispersed “true” cluster sizes. In other words, if the entropy measure is used for

validating K-means clustering, the validation result can be misleading.

C. F-measure for K-means Clustering

F-measure was originally designed for validating the results of hierarchical clustering algorithms [25].

Since then it has been widely used in the clustering literature, most cases for hierarchical clustering [45],

[37], yet some for partitional clustering [33] along with the entropy measure. However, further investigation

is needed to clarify whether the F-measure is suitable for validating flat clusters. To this end, we provide

some analysis of F-measure for K-means clustering.

For the sample data set in Table I, the F-measure values for the results of the clustering schemes I

and II are 0.640 and 0.947, respectively. According to F-measure, the clustering result II is much better

than the cluster result I. This result contradicts to the validation result from the entropy measure, but is

consistent with the result from the CV measure. The reason is that K-means has the tendency to divide
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a large and pure cluster into several smaller clusters and the entropy measure does not penalize such a

division but F-measure does. For instance, for the sample data set in Table I, K-means may divide the

large cluster–“Sports” into three smaller clusters as shown in the cluster result I in Table II. According

to the entropy measure, the resulting three smaller clusters are perfect; that is, the entropy value is zero.

However, in terms of F-measure, the recall of the cluster “Sports” is small. This has negative impact on

the F-measure value of the heavily weighted class, and eventually decreases the overall F-measure value

for the entire data set. In other words, F-measure can detect and penalize the uniform effect produced by

K-means on data sets with highly dispersed cluster sizes. Therefore, from a data distribution perspective,

F-measure is more suitable for K-means clustering than the entropy measure.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results to show the impact of data distributions on the perfor-

mance of K-means clustering. Specifically, we first present (1) a brief introduction to the experimental

setup, then demonstrate: (2) the effect of the true cluster sizes on the performance of K-means clustering;

(3) the effect of K-means clustering on the distributions of the clustering results; (4) the validation

performance of the entropy measure on the results of K-means clustering; (5) the problem with K-means

clustering and the entropy measure; and (6) the validation performance of the F-measure on the results

of K-means clustering.

TABLE III

SOME NOTATIONS.

CV0: the CV value on the cluster sizes of the “true” clusters

CV1: the CV value on the cluster sizes of the clustering results

DCV: the difference of CV values before and after K-means clustering

A. The Experimental Setup

The Experimental Tool. In our experiments, we used the CLUTO implementation of K-means [22]. Also,

since the Euclidean notion of proximity is not very effective for K-means clustering on real-world high-

dimensional data sets, such as gene expression data sets and document data sets, for all the experiments
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TABLE IV

SOME CHARACTERISTICS OF EXPERIMENTAL DATA SETS.

Data set Source # of objects # of features # of classes Min class size Max class size CV0

Document Data Sets
fbis TREC 2463 2000 17 38 506 0.961

hitech TREC 2301 126373 6 116 603 0.495
sports TREC 8580 126373 7 122 3412 1.022
tr23 TREC 204 5832 6 6 91 0.935
tr45 TREC 690 8261 10 14 160 0.669
la2 TREC 3075 31472 6 248 905 0.516

ohscal OHSUMED-233445 11162 11465 10 709 1621 0.266
re0 Reuters-21578 1504 2886 13 11 608 1.502
re1 Reuters-21578 1657 3758 25 10 371 1.385
k1a WebACE 2340 21839 20 9 494 1.004
k1b WebACE 2340 21839 6 60 1389 1.316
wap WebACE 1560 8460 20 5 341 1.040

Biomedical Data Sets
LungCancer KRBDSR 203 12600 5 6 139 1.363
Leukemia KRBDSR 325 12558 7 15 79 0.584

UCI Data Sets
ecoli UCI 336 7 8 2 143 1.160

page-blocks UCI 5473 10 5 28 4913 1.953
pendigits UCI 10992 16 10 1055 1144 0.042

letter UCI 20000 16 26 734 813 0.030

in this paper, the cosine similarity is used in the objective function for K-means. Finally, please note that

some notations used in our experiments are shown in Table III.

The Experimental Data Sets. We used a number of real-world data sets that were obtained from different

application domains. Some characteristics of these data sets are shown in Table IV. In the table, CV0

shows the CV values of “true” cluster sizes and “# of classes” indicates the number of “true” clusters.

Document Data Sets. The fbis data set was from the Foreign Broadcast Information Service data of

the TREC-5 collection [40]. The hitech and sports data sets were derived from the San Jose Mercury

newspaper articles that were distributed as part of the TREC collection (TIPSTER Vol. 3). The hitech

data set contains documents about computers, electronics, health, medical, research, and technology; and

the sports data set contains documents about baseball, basket-ball, bicycling, boxing, football, golfing,

and hockey. Data sets tr23 and tr45 were derived from the TREC-5[40], TREC-6 [40], and TREC-7

[40] collections. The la2 data set is part of the TREC-5 collection [40] and contains news articles from

the Los Angeles Times. The ohscal data set was obtained from the OHSUMED collection [16], which

contains documents from the antibodies, carcinoma, DNA, in-vitro, molecular sequence data, pregnancy,

prognosis, receptors, risk factors, and tomography categories. The data sets re0 and re1 were from

Reuters-21578 text categorization test collection Distribution 1.0 [26]. The data sets k1a and k1b contain
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exactly the same set of documents but they differ in how the documents were assigned to different classes.

In particular, k1a contains a finer-grain categorization than that contained in k1b. The data set wap was

from the WebACE project (WAP) [15]; each document corresponds to a web page listed in the subject

hierarchy of Yahoo!. For all document clustering data sets, we used a stop-list to remove common words,

and the words were stemmed using Porter’s suffix-stripping algorithm [34].

Biological Data Sets. LungCancer [4] and Leukemia [42] data sets were from Kent Ridge Biomed-

ical Data Set Repository (KRBDSR) which is an online repository of high-dimensional features [28]. The

LungCancer data set consists of samples of lung adenocarcinomas, squamous cell lung carcinomas, pul-

monary carcinoid, small-cell lung carcinomas and normal lung described by 12600 genes. The Leukemia

data set contains 6 subtypes of pediatric acute lymphoblastic leukemia samples and 1 group samples that

do not fit in any of the above 6 subtypes, and each is described by 12558 genes.

UCI Data Sets. In addition to the above high-dimensional data sets, we also used some UCI data sets

with small dimension sizes [32]. The ecoli data set is about the information of cellular localization sites

of proteins. The page-blocks data set contains the information of five type blocks of the page layout

of a document that has been detected by a segmentation process. The pendigits and letter data

sets contain the information of handwritings. The pendigits data set includes the number information

of 0 − 9, and the letter data set includes the letter information of A − Z.

Note that for each data set in Table IV, to void the randomness, all experiments were conducted 10

times and the averaged values are presented in the paper.

B. The Effect of the “True” Cluster Sizes on K-means

Here, we illustrate the effect of the “true” cluster sizes on the results of K-means clustering. In our

experiment, we first used K-means to cluster the input data sets, and then computed the CV values for

the “true” cluster distribution of the original data and the cluster distribution of the clustering results. The

number of clusters k was set as the “true” cluster number for the purpose of comparison.
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TABLE V

EXPERIMENTAL RESULTS ON REAL-WORLD DATA SETS.

Standard Deviation of Sizes Coefficient of Variation of Sizes
Data set Average of Sizes STD0 STD1 CV0 CV1 DCV=CV0-CV1 Entropy F-measure

fbis 145 139 80 0.96 0.55 0.41 0.345 0.565
hitech 384 190 140 0.50 0.37 0.13 0.630 0.546

k1a 117 117 57 1.00 0.49 0.51 0.342 0.559
k1b 390 513 254 1.32 0.65 0.66 0.153 0.705
la2 513 264 193 0.52 0.38 0.14 0.401 0.689

ohscal 1116 297 489 0.27 0.44 -0.17 0.558 0.562
re0 116 174 45 1.50 0.39 1.11 0.374 0.388
re1 66 92 22 1.39 0.32 1.06 0.302 0.454

sports 1226 1253 516 1.02 0.42 0.60 0.190 0.742
tr23 34 32 14 0.93 0.42 0.51 0.418 0.545
tr45 69 46 30 0.67 0.44 0.23 0.329 0.663
wap 78 81 39 1.04 0.49 0.55 0.313 0.541

LungCancer 41 55 26 1.36 0.63 0.73 0.332 0.621
Leukemia 46 27 17 0.58 0.37 0.21 0.511 0.565

ecoli 42 49 21 1.16 0.50 0.66 0.326 0.581
page-blocks 1095 2138 1029 1.95 0.94 1.01 0.146 0.685

letter 769 23 440 0.03 0.57 -0.54 0.683 0.282
pendigits 1099 46 628 0.04 0.57 -0.53 0.394 0.668

Min 34 23 14 0.03 0.33 -0.54 0.146 0.282
Max 1226 2138 1029 1.95 0.94 1.11 0.683 0.742

Parameters used in CLUTO: -clmethod=rb -sim=cos -crfun=i2 -niter=30

Table V shows the experimental results on various real-world data sets. As can be seen, for the data

sets with large CV0, K-means tends to reduce the variation on the cluster sizes of the clustering results

as indicated by CV1. This result indicates that, for data sets with high variation on the cluster sizes of

“true” clusters, the “uniform effect” is dominant in the objective function. In other words, K-means tends

to reduce the variation on the cluster sizes in the clustering results. Indeed, if we look at Equation (12)

in Section II, this result shows that the factor ‖ mi − mj ‖
2

is dominated by the factor ninj for this case.

Also, for data sets with low CV0 values, K-means increases the variation on the cluster sizes of the

clustering results slightly as indicated by the corresponding CV1 values. This result indicates that, for data

sets with very low variation on the cluster sizes of “true” clusters, the “uniform effect” is not significant.

Indeed, for Equation (12) in Section II, this result indicates that the factor ninj is dominated by the factor

‖ mi − mj ‖
2
.

C. The Effect of K-means Clustering on the Distribution of the Clustering Results

In the previous subsection, we showed that K-means tends to reduce the variation on the cluster sizes if

the CV0 is high and increase the variation on the cluster sizes if the CV0 is very low. In this experiment,

we want to get a better understanding about the effect of K-means clustering on the distribution of the
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clustering results.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CVo

D
C

V

 

 

Y=0.89X-0.40

Fig. 2. An Illustration of the Change of CV Values after K-means Clustering.

Figure 2 shows the relationship between DCV and CV0. In the figure, there is a linear regression fitting

line (y = 0.89x − 0.40) for all the points (CV0, DCV). As can be seen, as the increase of CV0 values,

DCV values increase accordingly. For the linear regression fitting line, if x = 0.45, then y = 0. This

indicates that if CV0 is higher than 0.45, K-means clustering tends to reduce the CV1 values. Otherwise,

if CV0 is less than 0.45, K-means clustering tends to increase the CV1 values. In other words, 0.45 is the

statistical, empirical threshold of CV0 value which determines the dispersion degree of clustering results

is higher or lower than the original one.

Indeed, Figure 3 shows the relationship between CV0 and CV1 for all the experimental data sets listed

in Table IV and there is a link between CV0 and CV1 for every data set. An interesting observation is

that, while the range of CV0 is between 0.03 and 1.95, the range of CV1 is restricted into a much smaller

range from 0.33 to 0.94. We empirically have the value interval of CV1: [0.3, 1].

D. The Effect of the Entropy Measure on the Results of K-means Clustering

In this subsection, we present the effect of the entropy measure on the K-means clustering results.

Figure 4 shows the plot of entropy values for all the experimental data sets in Table IV. A general trend

can be observed is that while the differences in CV values before and after clustering increase as the
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Fig. 4. An Illustration of the ”Biased Effect” of the Entropy Measure.

increase of CV0 values, the entropy values tend to decrease. In other words, there is a disagreement

between DCV and the entropy measure on evaluating the clustering quality. Entropy indicates better

quality, but DCV shows that the distributions of clustering results are away from the distributions of

“true” clusters. This indicates worse clustering quality. The above observation agrees with our analysis in

Section III that entropy has a biased effect on K-means.

To strengthen the above observation, we also generated two groups of synthetic data sets from two

real-world data sets: pendigits and letter. These synthetic data sets have wide dispersion degree

on their “true” cluster sizes. The first group of synthetic data sets was derived from the pendigits data
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TABLE VI

EXPERIMENTAL RESULTS ON SAMPLE DATA SETS FROM THE “PENDIGITS” DATA SET.

Data set S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

CV0 0.00 0.11 0.21 0.30 0.41 0.59 0.82 1.05 1.30 1.50 1.69 1.93 2.15 2.42
DCV -0.46 -0.27 -0.12 -0.12 -0.09 0.06 0.24 0.48 0.63 0.69 0.78 0.97 1.16 1.47

Entropy 0.373 0.380 0.385 0.391 0.393 0.387 0.375 0.361 0.332 0.309 0.287 0.272 0.239 0.192

TABLE VII

EXPERIMENTAL RESULTS ON SAMPLE DATA SETS FROM THE “LETTER” DATA SET.

Data set S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

CV0 0.09 0.32 0.54 0.75 1.01 1.30 1.60 1.81 2.02 2.18 2.35
DCV -0.43 -0.22 0.03 0.30 0.59 0.83 1.10 1.28 1.47 1.60 1.77

Entropy 0.667 0.661 0.647 0.619 0.590 0.551 0.515 0.489 0.463 0.446 0.425

set as shown in Table IV. We applied the following sampling strategy: 1) We first sampled the original data

set to get a sample with 10 classes, and the number of objects for each class is {1000, 100, 100, 100, 100,

100, 100, 100, 100, 100}, respectively. Then based on this sample, 2) we did random sampling on the class

with 1000 objects and merged the sampling objects with all the other objects in the rest 9 classes to form

an experimental data set. We gradually reduced the sample size of the first cluster to 100, thus obtained

various data sets with decreasing dispersion degree. On the other hand, to get data sets whose “true” class

distributions with higher dispersion degrees, 3) we did random stratified sampling to the 9 classes with

100 objects each, and merged the sampling objects with the rest 1000 objects to form an experimental

data set. We gradually reduced the sample size for each 9 classes to 30, and thus got a series of data

sets with increasing dispersion degree. A similar sampling strategy was also applied to the letter data

set for generating the second group of synthetic data sets. Note that for each dispersion degree we did

sampling 10 times, i.e., there are 10 data sets for each dispersion degree, and output the average values

as the clustering results.

Table VI and Table VII show the entropy values of the results of K-means clustering on these two

groups of synthetic data sets respectively. Also, Figure 5 and Figure 6 show the corresponding plots

of the entropy values for these two groups of synthetic data sets respectively. A similar trend has been

observed; that is, the entropy values decrease as the increase of CV0 values.
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Fig. 5. An Illustration of the “Biased Effect” of Entropy Using Sample Data Sets from the Pendigits data set.
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Fig. 6. An Illustration of the “Biased Effect” of Entropy Using Sample Data Sets from the Letter data set.

E. The Problem with K-means Clustering and the Entropy Measure

In our experiments, we found one major problem with K-means for the data sets which have high

variation on the cluster sizes of “true” clusters. To illustrate this, we selected five data sets with high CV0

values including the re0, re1, wap, ecoli, and k1a data sets. We did K-means clustering on these five

data sets using the number of “true” clusters as the k for K-means. In the clustering results, we labelled

each cluster by the label of the majority objects in the cluster. We found that many “true” clusters were

disappeared in the clustering results. Figure 7 shows the percentage of the disappeared “true” clusters in

the K-means clustering results for these five data sets. As can be seen, every data set has a significant
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Fig. 7. The Percentage of the Disappeared “True” Clusters in Data Sets with Varied Cluster Sizes.
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number of “true” clusters disappeared. For instance, for the re0 data set (CV0 = 1.502), more than 60%

true clusters have disappeared after K-means clustering.

In addition, in Table V and Figure 7, we can observe that very low entropy values were achieved for

these data sets with high CV0 values. In other words, if the entropy measure is used as the clustering

validation measure, the K-means clustering results on these five data sets should be excellent. However,

as demonstrated above, the clustering results on these five data sets are actually far away from the ‘true”

cluster distributions. In summary, this result indicates that (1) K-means may not perform well for data sets

with high variation on the cluster sizes of “true” clusters; (2) the entropy measure is not an algorithm-

independent clustering validation measure and favorites the K-means clustering.
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Finally, for the purpose of comparison, we conducted a similar experiment on five data sets with low

CV0 values. Figure 8 shows the percentage of the disappeared “true” clusters. An interesting observation is

that, compared to the results on data sets with high CV0 values, the percentages of the disappeared “true”

clusters became much smaller and the entropy values increased. In other words, the entropy measure on

the data sets with relatively uniform “true” cluster sizes is more reliable.
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Fig. 9. The F-measure Values for the Clustering Results on All the Experimental Data Sets.
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F. The Validation Performances of the F-measure on the Results of K-means Clustering

Figure 9 shows the F-measure values for the clustering results by K-means on all the experimental data

sets. In the figure, we can see that the F-measure values do not show a strong correlation with the CV0

values. Another observation is that the entropy value for the re1 data set is 0.310 which ranks 4th (the

smaller the better) among the data sets listed in Table IV. However, the corresponding F-measure value

for this data set is 0.454 with the rank of 14th (the larger the better). To have a better understanding

on this inconsistent validation result, we have carefully looked at the results of k-means clustering on

the re1 data set. Indeed, we noticed that some large “true” clusters were divided into several smaller

pieces by K-means. As an example, Figure 10 shows that two largest “true” clusters “grai” and “crud” of

re1 have been divided into 15 and 13 pieces, respectively. 7 out of 15 pieces of “grai” are the dominant

classes in their corresponding clusters. Also, 6 out of 13 pieces of “crud” are the dominant classes in

their corresponding clusters. This is why the percentage of the disappeared “true” clusters of re1 is 0.56

(there are 25 “true” clusters in the re1 data set). As we discussed above, the entropy measure cannot

capture this scenario and provides misleading information on the clustering performance. In contrast, the

F-measure penalizes the small recalls of “grai” and “crud”, and thus shows a small value which indicates

a poor clustering performance.
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Finally, Figure 11 shows the F-measure values as well as the percentage of the disappeared “true”

clusters in the clustering results of K-means on five data sets including re0, re1, wap, ecoli, and

k1a. As can be seen, if there is a significant number of clusters disappeared, the F-measure value is

low. In other words, the F-measure can provide a somewhat consistent indication about the loss of “true”

clusters caused by K-means clustering.

V. RELATED WORK

People have investigated K-means clustering from various perspectives. Many data factors, which may

strongly affect the performance of K-means clustering, have been identified and addressed. In the following,

we highlight some research results which are most related to the main theme of this paper.

First, people have studied the impact of high dimensionality on the performance of K-means clustering

and found that the traditional Euclidean notion of proximity is not very effective for K-means clustering

on real-world high-dimensional data sets, such as gene expression data sets and document data sets. To

meet this challenge, one research direction is to make use of dimensionality reduction techniques, such

as Multidimensional Scaling (MDS) [5], Principal Components Analysis (PCA) [19], and Singular Value

Decomposition (SVD) [10]. Also, several feature transformation techniques have been proposed for high-

dimensional document data sets, such as Latent Semantic Indexing (LSI), Random Projection (RP) and

Independent Component Analysis (ICA). In addition, feature selection techniques have been widely used

and a detailed discussion and comparison of these techniques has been provided by Tang et al. [39].

Another direction for this problem is to redefine the notions of proximity, e.g., by the Shared Nearest

Neighbors (SNN) similarity introduced by Jarvis and Patrick [18]. Finally, some other similarity measures,

e.g., the cosine measure, have also shown appealing effects on clustering document data sets [45].

Second, it has been recognized that K-means has difficulty in detecting the “natural” clusters with

non-spherical shapes [38], [17]. To address this issue, one research direction is to modify the K-means

clustering algorithm. For instance, Guha et al. [13] proposed the CURE method which makes use of

multiple representative points to get the shape information of the “natural” clusters. Another research
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direction is to use some non-prototype-based clustering methods which usually perform better on data

sets with various shapes than the K-means clustering method [38].

Third, outliers and noise in the data can also degrade the performance of clustering algorithms [23], [43],

[46], especially for prototype-based algorithms such as K-means. To deal with this problem, one research

direction is to incorporate some outlier removal techniques before conducting K-means clustering. For

instance, a simple method [23] of detecting outliers is based on the distance measure. Breunig et al. [7]

proposed a density based method using the Local Outlier Factor (LOF) for the purpose of identifying

outliers in data sets with varying densities. There are also some other clustering based methods to detect

outliers as small and remote clusters [35], or objects that are farthest from their corresponding cluster

centroids [25]. Another research direction is to handle outliers during the clustering process. There has

been serval techniques designed for such purpose. For example, DBSCAN automatically classifies low-

density points as noise points and removes them from the clustering process [12]. Also, SNN density-based

clustering [11] and CURE [13] explicitly deal with noise and outliers during the clustering process.

Fourth, many clustering algorithms that work well for small or medium-size data sets are unable to

handle large data sets. Along this line, a discussion of scaling K-means clustering to large data sets was

provided by Bradley et al. [6]. A broader discussion of specific clustering techniques can be found in [31].

For instance, some representative techniques include CURE [13] and BIRCH [44], etc.

Finally, some researchers have identified some other factors, such as the types of attributes, the types

of data sets, and scales of attributes, which may have impact on the performance of K-means clustering.

However, in this paper, we focused on understanding the impact of the distributions of “true” cluster sizes

on the performance of K-means clustering. Also, we investigate the relationship between K-means and

some cluster validation measures [3], [2], [20], [27], [29], [14], [17].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an organized study of K-means and cluster validation measures from a data

distribution perspective. Specifically, our major focus is to characterize the relationships between data
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distributions and K-means clustering as well as the entropy measure and F-measure. Along this line, we

first theoretically illustrated the relationship between the objective function of K-means and cluster sizes.

We also conducted various experiments on a number of real-world data sets. Our experimental results

show that K-means tends to reduce variation in cluster sizes if the variation of the “true” cluster sizes is

high and increase variation in cluster sizes if the variation of the “true” cluster sizes is very low.

Also, we observed that, no matter what the CV values of “true” cluster sizes are, the CV values of

resultant cluster sizes are typically located in a much narrow range of about 0.3 to 1.0. In addition,

we found that many “true” clusters were disappeared in the clustering results if K-means was applied

for data sets with large variation in “true” cluster sizes; that is, K-means produces the clustering results

which are far away from the “true” cluster distributions. However, when the entropy measure was used

for cluster validation, it could not capture this uniform effect and provided misleading information about

the clustering performance. This motivates the need for using the CV measure as a necessary criterion to

validate the clustering results.

There are several potential directions for future research. First, we would like to investigate what

measures best reflect the performance of K-means clustering. Second, we plan to improve K-means

clustering for better handling data sets with large variation in “true” cluster sizes.
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