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Abstract

Recently, there has been considerable interest in com-
puting strongly correlated pairs in large databases. Most
previous studies require the specification of a minimum cor-
relation threshold to perform the computation. However, it
may be difficult for users to provide an appropriate thresh-
old in practice, since different data sets typically have dif-
ferent characteristics. To this end, we propose an alterna-
tive task: mining the top-k strongly correlated pairs. In this
paper, we identify a 2-D monotone property of an upper
bound of Pearson’s correlation coefficient and develop an
efficient algorithm, called TOP-COP to exploit this prop-
erty to effectively prune many pairs even without comput-
ing their correlation coefficients. Our experimental results
show that the TOP-COP algorithm can be orders of magni-
tude faster than brute-force alternatives for mining the top-k
strongly correlated pairs.

1 Introduction

Given a large set of items and observation data about co-
occurring items, association analysis is concerned with the
identification of strongly related subsets of items. Associa-
tion analysis is a core problem in data mining and databases.
It plays an important role in many application domains such
as market-basket analysis [2], climate studies [14], public
health [5], and bioinformatics [17].

The focus of this paper is on computing a top-k
correlated-pairs query that returns the top k pairs of pos-
itively correlated items. As a motivating example, the top-k
correlated-pairs query can reveal information about how the
sales of a product are related to the sales of other products.
This type of information can be useful for sales promotions,
catalog design, and store layout. However, as the number of
items and transactions in the data set increases, the com-
putational cost of the top-k correlated-pairs query becomes
prohibitively expensive. For example, if a database con-
tains 106 items, which may represent the collection of books
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available at an e-commerce Web site, a brute-force approach
to answering the top-k correlated-pairs query requires com-
puting the correlations of

(
106

2

)
≈ 0.5 × 1012 possible item

pairs. Thus, it may not be computationally feasible to apply
a brute-force approach.

The top-k correlated-pairs query problem can be de-
scribed as follows: Given a user-specified k and a database
with N items and T transactions, a top-k correlated-pairs
query finds the top k item pairs with the highest positive
correlations. The scope of the top-k correlated-pairs query
problem proposed in this paper is restricted to market basket
databases with binary variables, and the form of correlation
is Pearson’s correlation coefficient [13] for binary variables,
also called the φ correlation coefficient.

The main contribution of this work is the development of
the TOP-k COrrelated-Pairs (TOP-COP) query algorithm.
We show that TOP-COP finds the top-k correlated pairs in a
computation time which can be orders of magnitude faster
than the brute-force alternative. The algorithm exploits a 2-
D monotone property of the upper bound of Pearson’s cor-
relation coefficient. By interpreting this property geometri-
cally, we obtain an algorithm that uses a diagonal traversal
method, combined with a refine-and-filter strategy, to effi-
ciently find the top-k pairs.

Related Work. The top-k correlated-pairs query prob-
lem is different from the standard association-rule mining
problem [1, 3, 12, 15, 16]. Given a set of transactions, the
objective of association rule mining is to extract all subsets
of items that satisfy a minimum support threshold. Support
measures the fraction of transactions that contain a particu-
lar subset of items.

The notions of support and correlation may not neces-
sarily agree with each other. This is because item pairs
with high support may be poorly correlated while those that
are highly correlated may have low support. For instance,
suppose we have an item pair {A, B}, where supp(A) =
supp(B) = 0.8 and supp(A,B) = 0.64. Both items are
uncorrelated, since supp(A,B) = supp(A)supp(B). In
contrast, an item pair {A, B} with supp(A) = supp(B)
= supp(A,B) = 0.001 is perfectly correlated despite its
low support. Patterns with low support but high correlation
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are useful for capturing interesting associations among rare
anomalous events or rare but expensive items such as gold
necklaces and earrings.

Recently, Xiong et al. [18] proposed the TAPER algo-
rithm to efficiently compute the all-strong-pairs correlation
query. Given a user-specified minimum correlation thresh-
old θ and a database with N items and T transactions, the
all-strong-pairs correlation query finds all item pairs with
correlation coefficients above the threshold θ. However, it
is difficult for users to provide an appropriate correlation
threshold for the all-strong-pairs correlation query, since
different data sets typically have different characteristics.

Along the same line of the all-strong-pairs correlation
query, Ilyas et al. [7] also proposed a method for efficiently
identifying correlated pairs. In this method, sampling tech-
niques are applied to exploit efficient computation. As a
result, this method cannot avoid false-positive and false-
negative correlations. Furthermore, this method also re-
quires users to specify a correlation threshold.

Additionally, Jermaine [8] investigated the implication
of incorporating chi-square (χ2) [13] based queries to data
cube computations. He showed that finding the subcubes
that satisfy statistical tests such as χ2 are inherently NP-
hard, but can be made more tractable using approximation
schemes. Jermaine [9] also presented an iterative proce-
dure for high-dimensional correlation analysis by shaving
off part of the database via feedback from human experts.
Finally, Brin [4] proposed a χ2-based correlation mining
strategy; however χ2 does not possess an upward closure
property for exploiting efficient computation [6].

2 Basic Concepts

In statistics, a measure of association is a numerical in-
dex which describes the strength or magnitude of a relation-
ship among variables. Although literally dozens of mea-
sures exist, they can be categorized into two broad groups:
ordinal and nominal. Relationships among ordinal variables
can be analyzed with ordinal measures of association such
as Kendall’s Tau [10] and Spearman’s Rank Correlation Co-
efficient [11]. In contrast, relationships among nominal
variables can be analyzed with measures of association such
as Pearson’s Correlation Coefficient and measures based on
Chi Square [13].

The φ correlation coefficient [13] is the computational
form of Pearson’s Correlation Coefficient for binary vari-
ables. In this section, we describe some basic concepts re-
lated to the φ correlation coefficient.

In a 2 × 2 two-way table shown in Table 1, the calcula-
tion of the φ correlation coefficient reduces to

φ{A,B} =
P(00)P(11) − P(01)P(10)√

P(0+)P(1+)P(+0)P(+1)

(1)

P
0
1

Column Total

1
P (01)

0
P

P
P (+0)

(10)

(00)

Row

(11)

P (+1)

Total

P (0+)

P (1+)

N

A

B

Table 1. A two-way table of item A and item B.

where P(ij), for i = 0, 1 and j = 0, 1, denote the number of
samples which are classified in the ith row and jth column
of the table. Furthermore, we let P(i+) denote the total num-
ber of samples classified in the ith row and P(+j) denote the
total number of samples classified in the jth column. Thus
P(i+) =

∑1
j=0 P(ij) and P(+j) =

∑1
i=0 P(ij).

When adopting the support measure of association rule
mining [1], for two items A and B in a market basket
database, we have supp(A) = P(1+)/N , supp(B) =
P(+1)/N , and supp(A,B) = P(11)/N , where N is the to-
tal number of samples in the two-way table. With support
notations, as illustrated in [18], we have the support form of
Equation 1 shown below as Equation 2.

φ{A,B} =
supp(A, B) − supp(A)supp(B)

p

supp(A)supp(B)(1 − supp(A))(1 − supp(B))
(2)

0.25

0.167

−0.218

0

0.333

0.764

0.509

0.667

0.667

0.333

0.218

0.167

0.111

0.5

0.327

0.25

0.167

0.333

0.764

0.509

0.667

0.5

10

9

8

7

6

5

4

3

2

1

TID Items

a, b, c

a, b, c

a, c

a, b

a, b

a, b

a, b, c, d, e, f

a, b, d, e

a, b, d

c

{a, b}

Pair

{a, c}

{a, d}

{a, e}

{a, f}

{b, c}

{b, d}

{b, e}

{b, f}

{c, d}

{c, e}

{c, f}

{d, e}

{d, f}

{e, f}

Correlation

0.667

−0.333

0.218

0.167

0.111

−0.5

0.327

Upper Bound

      Correlation Coefficients
(b) Item Pairs with Upper Bounds and 
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Figure 1. An Example Data Set.

For example, consider the example data set shown in Fig-
ure 1 (a). To compute φ{a,b}, we note that supp(a) = 9/10,
supp(b) = 8/10, and supp(a, b) = 8/10. Direct calcula-
tion shows that φ{a,b} = 0.08/0.12 = 2/3, confirming that
a and b are strongly correlated.

Given an item pair {A, B}, the support supp(A) for
item A, and the support supp(B) for item B, we can sup-
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pose without loss of generality that supp(A) ≥ supp(B).
Xiong et al. [18] derived an upper bound upper(φ{A,B}) of
the φ correlation coefficient for {A, B} as follows:

φ{A,B} ≤ upper(φ{A,B}) =

s

supp(B)

supp(A)

s

1 − supp(A)

1 − supp (B)

(3)

3 A 2-D Monotone Property of the Upper
Bound of φ Correlation Coefficient

In this section, we present a 2-D monotone property of
the upper bound of the φ correlation coefficient. This mono-
tone property can be exploited to develop a diagonal traver-
sal method for efficiently mining the top-k correlated pairs.

Using Equation 3 above, Xiong et al. [18] also derived a
1-D monotone property of the upper bound of the φ corre-
lation coefficient:

Lemma 1 For an item pair {A, B}, let supp(A) >
supp(B) and fix item A. The upper bound, upper(φ{A,B}),
is monotone decreasing with decreasing support of item B.

supp(k)1 supp(A) 0

Pruning Window

Figure 2. A Geometric Interpretation of the
Computational Exploration of the 1-D Mono-
tone Property

Figure 2 shows a geometric interpretation of the com-
putational exploration of the 1-D monotone property of
the upper bound. In the figure, all items are sorted ac-
cording to support values in non-increasing order. Let us
consider the all-strong-pairs correlation query with a user-
specified correlation threshold θ. If we identify an item k
such that the upper bound upper(φ{A,k}) is less than the
threshold θ, then any pair {A, f} with supp(f) < supp(k)
can be safely pruned, since the upper bound upper(φ{A,f})
is guaranteed to be less than upper(φ{A,k}) according to
Lemma 1. In other words, for any item A, we can generate
a one-dimensional pruning window for efficiently eliminat-
ing pairs which do not satisfy the correlation threshold θ.

Lemma 2 For a pair of items {A, B}, let supp(A) >
supp(B) and fix item B. The upper bound upper(φ{A,B})
is monotone increasing with decreasing support of item A.

Proof: Given two items A1 and A2 with
supp(A1)>supp(A2) > supp(B), we only need
to prove that upper(φ{A2,B}) > upper(φ{A1,B}).
According to Equation 3, upper(φ{A,B}) =

√
supp(B)
supp(A)

√
1−supp(A)
1−supp(B) , with A = A1 and A = A2, we

see that upper(φ{A2,B})

upper(φ{A1,B}) =
√

supp(A1)
supp(A2)

√
1−supp(A2)
1−supp(A1)

> 1
because supp(A1) > supp(A2) and (1 − supp(A1))
< (1 − supp(A2)).

Lemma 1 and Lemma 2 form the basis of the 2-D mono-
tone property of the upper bound, illustrated in Figure 3.
An item list {a, b, c, d, e, f}, is sorted by item support val-
ues in non-increasing order. The upper bound of item pairs
decreases following the direction of the arrow. For instance,
the upper bound of item pair {d, f} is greater than that of
item pair {c, f} but smaller than that of item pair {d, e}.

b

����������������������������������������������

c

d

e

f

a

a

b c d e f

Figure 3. A Geometric Interpretation of the
Computational Exploration of the 2-D Mono-
tone Property

In contrast to Figure 2, the 2-D monotone property can
help prune item pairs from two dimensions instead of one
dimension. For instance, if the upper bound of item pair
{b, d} indicates that this pair is not strongly correlated, we
can generate a rectangle pruning space for efficiently elimi-
nating item pairs: {b, e, }, {b, f}, {a, d}, {a, e}, and {a, f}.
Since the upper bounds of all these five item pairs cannot be
greater than the upper bound of item pair {b, d}, these pairs
are also not strongly correlated.

4 TOP-COP: TOP-K COrrelated Pairs Query

Here, we introduce the TOP-k COrrelated Pairs (TOP-
COP) query algorithm. The key idea of TOP-COP is a di-
agonal traversal method which exploits the 2-D monotone
property of the upper bound of the φ correlation coefficient
for effciently computing the top-k correlated pairs.

Indeed, a brute-force approach to computing the top-k
correlated pairs is to first compute the correlation coeffi-
cients for all item pairs, then sort all item pairs based on
their correlation coefficients, and finally report the top-k
strongly correlated pairs as the final result. In contrast to
this brute-force approach, we propose a diagonal-traversal
method to efficiently computing top-k correlation pairs.
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Figure 4. Illustration of Diagonal Traversal.

Figure 4 illustrates the diagonal traversal method. In the
figure, an item list {a, b, c, d, e, f} is sorted by item support
values in non-increasing order. The upper bound of item
pairs decreases following the arrow direction according to
Lemma 1 and Lemma 2. The diagonal traversal method
conducts a diagonal traverse to search for the top-k corre-
lated pairs. The search starts from the principal diagonal
which is traversed in the “southeast” direction, then goes to
the diagonal above the main diagonal, and so on. During the
iterative search process, this method maintains a top-k list
and an item pair is sorted-inserted into this list if the correla-
tion coefficient of this item pair is greater than the minimum
correlation coefficient in the top-k list. The search stops if
the maximal upper bound of all item pairs in a diagonal is
less than the current minimum correlation coefficient in the
top-k list.

f
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Figure 5. An Example of Diagonal Traversal.

Example 1 To illustrate the diagonal traversal method,
consider the data set shown in Figure 1 (a). To simplify
the discussion, we use an item list {a, b, c, d, e, f} which is
sorted by item support values in non-increasing order. Fig-
ure 1 (b) shows the upper bound and correlation coefficients
for every item pair. We can arrange all item pairs in the up-
per triangle of a matrix as shown in Figure 5. Suppose that

we are interested in finding the top-3 strongly correlated
item pairs from the data set. After traversing the main diag-
onal, we have a top-3 list containing three item pairs {e, f},
{d, e}, and {a, b}. The minimum correlation coefficient in
this top-3 list is 0.667. Next, we search the super-diagonal.
We find that the maximal upper bound of all item pairs in the
super-diagonal is 0.509 and is less than 0.667. Therefore,
the search stops.

5 Experimental Results

Our experiments were performed on two real-life data
sets, described further below. All experiments were per-
formed using code in C++ on a Sun Ultra 10 workstation
with a 440 MHz CPU and 128 Mbytes of memory running
the SunOS 5.7 operating system.

Data set #Item #Transaction Source
Pumsb 2113 49046 IBM Almaden
LA1 29704 3204 TREC-5

Table 2. Real-life Data Set Characteristics.

Real-life Data Sets. The real-life data sets were ob-
tained from several different application domains. Table 5
shows some characteristics of these data sets. Pumsb is of-
ten used as the benchmark for evaluating the performance of
association rule algorithms on dense data sets. The pumsb
data set correspond to binarized versions of a census data
set from IBM1. In addition, the LA1 data set is part of the
TREC-5 collection (http://trec.nist.gov) and contains news
articles from the Los Angeles Times.

A Performance Comparison We present a performance
comparison between the TOP-COP algorithm and a brute-
force approach using several benchmark data sets from IBM
and TREC. The implementation of the brute-force approach
is similar to that of the TOP-COP algorithm except that
the filtering mechanism implemented in the TOP-COP al-
gorithm is not included in the brute-force approach. Please
note that we do not use TAPER [18] as the benchmark, since
TAPER is an algorithm for finding all item pairs with corre-
lation above a given correlation threshold and the purpose in
this work is to find the top-k correlated item pairs. Also, it
is nontrivial to modify the TAPER algorithm for finding the
top-k correlated item pairs, because it is difficult to specify
the appropriate correlation thresholds.

Figure 6 shows the relative computation performance of
the TOP-COP algorithm and the brute-force approach on
the Pumsb and LA1 data sets. As can be seen, the perfor-
mance of the brute-force approach does not change much

1These data sets were obtained from IBM Almaden at
http://www.almaden.ibm.com/cs/quest/demos.html
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Figure 6. A Performance Comparison.

for any of the two data sets at different top-k values. How-
ever, the execution time of the TOP-COP algorithm can be
an order of magnitude faster than the brute-force approach
at if k is small. For instance, as shown in Figure 6 (a), the
execution time of the TOP-COP algorithm on the Pumsb
data set is one order of magnitude less than that of the brute-
force approach when the K values are less than 950. Also,
as the value of k increases, the execution time of the TOP-
COP algorithm increases accordingly. Similar computation
effects can also be observed on the LA1 data set, although
the computation savings on this data set is not as significant
as on the Pumsb data set.

6 Conclusions

In this paper, we identify a 2-D monotone property of the
upper bound of Pearson’s correlation coefficient and pro-
vide a geometric interpretation of the computational explo-
ration of the 2-D monotone property for efficiently com-
puting the top-k correlated pairs. With this 2-D mono-
tone property, we designed a TOP-k COrrelated Pairs
(TOP-COP) query algorithm that uses a diagonal traver-
sal method, combined with a refine-and-filter strategy, to
efficiently find the top-k correlated pairs. In addition, as
demonstrated by our experiments, the TOP-COP algorithm
can be orders of magnitude faster than the brute-force alter-
native for mining the top-k correlated pairs.
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