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Abstract—Classification across different domains studies how to adapt a learning model from one domain to another domain which

shares similar data characteristics. While there are a number of existing works along this line, many of them are only focused on

learning from a single source domain to a target domain. In particular, a remaining challenge is how to apply the knowledge learned

from multiple source domains to a target domain. Indeed, data from multiple source domains can be semantically related, but have

different data distributions. It is not clear how to exploit the distribution differences among multiple source domains to boost the learning

performance in a target domain. To that end, in this paper, we propose a consensus regularization framework for learning from multiple

source domains to a target domain. In this framework, a local classifier is trained by considering both local data available in one source

domain and the prediction consensus with the classifiers learned from other source domains. Moreover, we provide a theoretical

analysis as well as an empirical study of the proposed consensus regularization framework. The experimental results on text

categorization and image classification problems show the effectiveness of this consensus regularization learning method. Finally, to

deal with the situation that the multiple source domains are geographically distributed, we also develop the distributed version of the

proposed algorithm, which avoids the need to upload all the data to a centralized location and helps to mitigate privacy concerns.

Index Terms—Classification, multiple source domains, cross-domain learning, consensus regularization.

Ç

1 INTRODUCTION

TRADITIONAL learning techniques have the assumption
that training and test data are drawn from the same data

distribution, and thus they are not suitable for dealing with
the situation where new unlabeled data are obtained from
fast evolving, related but different information sources. This
leads to the cross-domain learning problem which targets
on adapting the knowledge learned from one or more
source domains to target domains. In this paper, we focus
on the classification task when source and target domains
have different distributions but have the same feature sets in
cross-domain learning.

Previous work is mainly focused on learning from a single
source domainDs to a target domainDt [2], [3], [4]. However, in
many real-world learning scenarios, there are training data
from multiple source domains. These training data may

follow different data distributions but are semantically
related and share some commonality. Therefore, in this
paper, we investigate the problem of cross-domain learning
from multiple source domains to a target domain.

More specifically, we have m source domains as
D1
s; . . . ;Dms and a target domain Dt (note that D1

s; . . . ;Dms ,
and Dt also represent their corresponding data sets
throughout this paper), and the labeled source domains
and the unlabeled target domain may be geographically
distributed. We assume that the class labels in D1

s; . . . ;Dms
and the labels to be predicted inDt are drawn from the same
class-label set C, and the labeled and unlabeled data share
the same feature space �F . We also assume that these source
domains and the target domain are semantically related to
each other in the sense that similar features would describe
similar categories, but they have different distributions.
Under this assumption, we study the problem of adapting
the knowledge learned from these m source domains for
classifying the unlabeled data in the target domain.

1.1 Motivating Examples

In practice, learning from multiple source domains can be a
promising direction for cross-domain learning. Here, we
provide the following two application scenarios to moti-
vate this cross-domain learning problem. The first example
is the application of Webpage categorization. Let us
consider the task of using classification techniques to find
course main pages from all the webpages in a university
Website. To do this, we may create training data by
manually labeling a collection of main course pages, while
this needs a lot of human efforts. An alternative way is to
use already-labeled main course pages from other uni-
versities as the training data. However, different univer-
sities usually use different templates for course pages, in
which the terms used can also be different. For example,
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the terms indicating the reading materials may include
“Required Reading List,” “Textbooks,” “Reference,” etc.
Therefore, the data distributions of the main course
webpages from different universities are likely to be
different. Traditional classification learning will be difficult
to use in this situation. Indeed, if we consider the labeled
data from one university as one domain, and then the
labeled data from multiple source domains could be
obtained. Now, the goal is to find new course webpages
in a target university via learning from multiple source
domains. This is the cross-domain learning problem
addressed in this paper.

To further motivate our work, let us consider the problem
of video concept detection, which aims to generalize
models built for detecting semantic concepts from multiple
source video data to other domains. Here, a domain is a TV
channel, such as CCTV, CBS, CNN, and NBC. For instance,
the TRECVID collection [5] is such a multidomain video
corpus which has news video from different TV channels.
As shown in Fig. 1, video shots of easily recognizable
anchors from four different famous TV channels exhibit
dissimilar visual features. In other words, there exists
“semantic gap” between visual features and semantic
content. The problem of mismatch among the distributions
of different domains is particularly severe in multimedia
area [6]. As a result, concept classifiers trained from only one
source domain might perform poorly on the target domain.

The common ground of the above two applications is that
training data are from multiple semantically related source
domains. One can argue that, if we merge these multiple
source domains into one source domain, this problem can be
solved by existing cross-domain learning algorithms. How-
ever, the important information, such as the distribution
differences among these source domains, will be lost during
the merging process. This information is the key to under-
stand the common nature of these source domains.

1.2 Contributions

In our preliminary work [1], we proposed a consensus
regularization framework that enables cross-domain learning
from multiple source domains and incorporates the un-
labeled data from the target domain into the learning
process. For each source domain, this consensus optimiza-
tion framework will output one classifier, which is trained by

considering both the local data and the prediction consensus
with the other classifiers on the unlabeled target domain
data. In this mutually-affected manner, the resultant
classifiers not only maintain the individuality of the
corresponding source domains, but also reveal the common
nature of all the source domains and the target domain.
Additionally, the training data from different source
domains might be geographically distributed, and it is
difficult to put them into a centralized location due to the
communication overhead, business concern, and/or privacy
concern. Under this circumstance, we also implemented the
learning algorithm in a distributed master-slave architecture,
which only share some summary statistics rather than full
contents of labeled data between the slave nodes and the
master node. Therefore, this distributed algorithm can
alleviate privacy concerns. Note that the consensus regular-
ization framework can be exploited with many classification
models, such as exponential family models. In this work, we
implement it by using the Logistic Regression model [7].

In this paper, we further theoretically prove that
maximizing the prediction consensus of local classifiers on
target domain can improve the overall learning perfor-
mance. In addition, we experimentally exploit the sources
of performance gain of the proposed method. It indicates
that leveraging distribution differences among source
domains is very promising for multisource cross-domain
learning. Finally, we provide systematic experiments on
text categorization and image classification to validate the
effectiveness of the proposed consensus regularization
framework. These new experiments provide more insights
into the consensus regularization framework, such as fast
convergence and the generalization ability.

1.3 Outline

The rest of this paper is organized as follows: Section 2
describes some basic concepts about logistic regression and
consensus measuring. In Section 3, we present the problem
formulation, introduce the consensus regularization frame-
work, and analyze why this consensus regularization frame-
work works. Section 4 proposes the distributed learning
algorithm for consensus regularization. In Section 5, we show
the experimental results and analyze the sources of perfor-
mance gain for the proposed algorithm. Finally, Section 6
gives the related work, followed by our conclusions in
Section 7.

2 PRELIMINARIES

In this section, we first introduce the notations used
throughout this paper, and then present some preliminary
concepts about logistic regression and consensus measuring.

2.1 Notations

In this paper, we use bold letters, such as p and a, to
represent vectors. Also, pðiÞ indicates the ith element of p.
Random variables are written in upper case, such as X and
Y . Therefore, bold upper case letters, such as X and Y, are
used to represent vectors of random variables. Calligraphic
letters, such as A and D, are used to represent sets. Finally,
we use IR to denote the set of real numbers and IRþ to
denote the set of nonnegative real numbers.
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Fig. 1. Image samples from the TRECVID collection including CCTV,
CBC, CNN, and NBC.



2.2 Logistic Regression

Logistic regression [7] is an approach to learn functions of
P ðY j XÞ in the case where Y is discrete-valued, and X is any
vector containing discrete or continuous random variables.
Logistic regression assumes a parametric form for the
distribution P ðY j XÞ, then directly estimates its parameters
from the training data. The parametric model assumed by
logistic regression in the case where Y is Boolean is

P ðy ¼ �1 j x; wÞ ¼ �ðywTxÞ ¼ 1

1þ expð�ywTxÞ ; ð1Þ

where w is the parameter of the model. Under the principle
of Maximum A-Posteriori (MAP), w is estimated under the
Laplacian prior. Given a data set D ¼ fðxi; yiÞgNi¼1, we want
to find the parameter w which maximizes:

XN
i¼1

log
1

1þ expð�yiwTxiÞ
� �

2
wTw: ð2Þ

This criterion is a concave function of w, so that the global
solution can be obtained by the nonlinear numerical
optimization methods. After w is estimated, (1) can be used
to compute the probabilities of an instance belonging to the
positive and negative classes.

2.3 Consensus Measuring

In this section, we first give the definition of Shannon entropy
using a probability distribution vector, and then show how to
measure the degree of consensus on the predictions that are
made by a group of classifiers for an instance.

Definition 1 (Probability Distribution Vector). p 2 IRd
þ is a

probability distribution vector if and only if
Pd

i¼1 pðiÞ ¼ 1.

Each entry pðiÞ of this vector represents the probability that

this instance belongs to class i.

Definition 2 (Shannon Entropy). Assuming p 2 IRd
þ is a

probability distribution vector, then the Shannon entropy in p

is defined as

EðpÞ ¼
Xd
i¼1

pðiÞ log
1

pðiÞ
: ð3Þ

Given a group of m classifiers H ¼ fhlgml¼1, each of which
outputs a probability distribution vector pl for an instance
x, the average probability distribution vector can be
computed as:

p ¼
Pm

l¼1 pl

m
: ð4Þ

Then, using the Shannon entropy, we can measure the
degree of consensus in these prediction results as shown in
the examples of Table 1. For three-class classification
problem, Table 1 records the probability distribution

vectors of x1, x2, and x3 predicted by the classifiers h1, h2,
and h3, respectively, and their corresponding average
probability distribution vectors. For the first instance x1,
all the classifiers reach a perfect consensus that it belongs to
class one with 100 percent probability. Therefore, the degree
of consensus on these results reaches its maximum, while
the entropy Eð1; 0; 0Þ of the average distribution vector
reaches its minimum for any three-entry distribution
vectors. On the other hand, for the third instance x3, the
three classifiers predict that it belongs to class one, two, and
three, respectively with 100 percent probability. Thus, these
prediction results totally disagree with each other, and their
degree of consensus reaches its minimum. However, the
entropy Eð13 ; 1

3 ;
1
3Þ of the average distribution vector reaches

its maximum. Therefore, the negative of the entropy in the
average probability distribution vector can be the consensus
measure for the different prediction results. Formally, the
definition of the entropy based consensus measure is:

Definition 3 (Entropy-Based Consensus Measure). Given
m probability distribution vectors p1; . . . ;pm, the consensus
measure for these vectors is defined as

Ceðp1; . . . ;pmÞ ¼ �EðpÞ; ð5Þ

where E is the Shannon entropy in Definition 2 and p is the
average of these vectors defined by (4).

Since we only consider the relative magnitude of two
consensus measures, it is acceptable that the value of this
consensus measure is negative. Thus, by this definition, the
consensus degree for the prediction results of the second
instance x2 is �Eð0:7; 0:2; 0:1Þ.

3 PROBLEM FORMULATION AND CONSENSUS

REGULARIZATION

In this section, we first formulate the problem of cross-
domain learning from multiple source domains and then
describe the principle of consensus regularization. Next, we
analyze why and when this consensus regularization works
for this problem formulation. Finally, we show how to
exploit this principle for the logistic regression model.

3.1 Problem Formulation and Principle of
Consensus Regularization

Let D1
s; . . . ;Dms be m (m > 1) source domains of labeled

data, and the labeled data set from the lth source domain is
represented by Dls ¼ fðxli; yliÞgj

nl

i¼1, where yli is the label of xli
and nl is the number of data in this domain.1 The unlabeled
target domain is denoted by Dt ¼ fðxiÞgjni¼1, where n is the
number of data objects in the target domain. Under the
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TABLE 1
Entropy and Consensus of Probability Distribution Vectors

1. Throughout this paper, the upper index of a letter denotes the index of
source domains, while the lower index of a letter, if existing, denotes the
index of the data.



assumption that the distributions of D1
s; . . . ;Dms ;Dt are

different but related, we aim to train the classification
models on these labeled source domains to better classify
the unlabeled data in the target domain.

It is worth to mention that we assume the data
distribution in the target domain is different from that of
each source domains. There is a wide range of applications
in which this assumption holds. Especially in the applica-
tion that the source and target domain data are generated
by different mechanism on different sites, this assumption
can easily be satisfied. For example, when we aim to detect
semantic concepts from the video data from different TV
channels, we know that the data distributions of the same
semantic concept from different TV channels are different.
Therefore, we argue that the proposed method will be
useful for these applications.

If we trainm classifiers h1; . . . ; hm locally, each of which is
based only on the data from one source domain data, the ideal
situation is that these m classifiers make a perfect consensus
that they predict an instance from the target domain to be its
ground truth with 100 percent confidence. However, since
the distributions of D1

s; . . . ;Dms ;Dt are different, these initial
m classifiers may disagree with each other to some degree on
the prediction results of a certain instance. Thus, there is room
to further maximize the consensus of these models on the
prediction results of the data in the target domain. Therefore,
we can incorporate this consensus measure into the standard
framework of supervised learning as follows: This adaptive
supervised learning framework with consensus regulariza-
tion will output m models h1; . . . ; hm, which maximize the
following equation:

Xm
l¼1

P ðhl j DlsÞ þ � � Consensusðh1; . . . ; hm j DtÞ; ð6Þ

where P ðhl j DlsÞ is the probability of the hypotheses hl

given the observed data set Dls, Consensusðh1; . . . ; hmjDtÞ is
the consensus measure of these m models h1; . . . ; hm on the
prediction results of the data in the target domain Dt, and �
is the trade-off parameter.

In the first term of (6), each model hl is applied to its local
source domain, while the second term in (6) is used as a
bridge to link all these models, and realizes a mutual
coupling optimization. In this way, each of these resultant
models not only keeps the individuality of the correspond-
ing local source domain, but also reveals the common
nature of the target domain. Thus, this regularization
framework maximizes not only the posteriori in each source
domain, but also the consensus degree of these models.

Given a source domain data set Dls ¼ fðxli; yliÞgj
nl

i¼1 of
independent and identically-distributed (IID) observations, the
maximization of P ðhl j DlsÞ in the first term of (6) can be
expanded further as follows:

maxP
�
hl j Dls

�
¼ max

P ðDls j hlÞP ðhlÞ
P ðDlsÞ

¼ maxP
�
Dls j hl

�
P ðhlÞ

¼ maxP ðhlÞ �
Ynl
i¼1

P
�
yli j xi;hl

�

¼ max logP ðhlÞ þ
Xnl
i¼1

logP
�
yli j xi;hl

� !
:

ð7Þ

As to Consensusðh1; . . . ; hm j DtÞ, it is defined as the sum of
the consensus measures of these m models on all the data in
Dt and is shown as follows:

Consensus
�
h1; . . . ; hm j Dt

�
¼
Xn
i¼1

Ce

�
p1
i ; . . . ;pmi

�
; ð8Þ

where Ce is the consensus measure in Definition 3, and pli is

the probability distribution vector predicted by the lth model

hl for the ith instance in the target domain Dt. Indeed, this

consensus measure has two benefits. One is to promote the

degree of agreement on all the models, and the other is to

minimize the entropy of the prediction results on the

unlabeled data. Both will be further validated in Section 5.

3.2 Why Consensus Regularization?

In this section, we will theoretically show that maximizing
agreement between any two classifiers could lead to the
performance improvement of the individual classifiers.

To simplify the discussion, we consider a two-class
classification problem with the labels 1 and �1. However,
this analysis can be generalized to any d-class classifica-
tion problems. We can train m models h1; . . . ; hm for m

source domains. Let Y be the target label, and the
disagreement of any two individual models be P ðhi 6¼ hjÞ
(i; j 2 f1; . . . ;mg; i 6¼ j). Note that the symbol P ð�Þ in this
section is defined on the target domain. We also have the
following three definitions:

Definition 4 (Nontrivial Classifier). If a classifier h satisfies

the condition

P ðh ¼ u j Y ¼ uÞ > P ðh ¼ u j Y ¼ uÞ;

where u 2 f�1; 1g and u is the complement of u. Then, we call

classifier h is a nontrivial classifier.

In other words, we can restate the nontrivial condition as

P ðh ¼ u j Y ¼ uÞ > 1=2 or P ðh 6¼ u j Y ¼ uÞ � 1=2:

Definition 5 (Nonperfect Classifier). If a classifier h gives a

prediction performance less than 100 percent in accuracy on

the target domain, we call it nonperfect classifier.

Definition 6 (Conditional Independent Classifiers). The

conditional independence of models h1; . . . ; hm is shown as

follows:

P ðhi ¼ u j hj ¼ v; Y ¼ yÞ ¼ P ðhi ¼ u j Y ¼ yÞ; ð9Þ

where u; v; y 2 f�1; 1g, i; j 2 f1; . . . ;mg, and i 6¼ j.

For conditional independent, nonperfect, and nontrivial
classifiers, we have the following theorem:

Theorem 1. If the condition that conditional independent

assumptions are satisfied, it holds that the disagreement is a

strict upper bound on the misclassification errors of nontrivial

and nonperfect classifiers.
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Proof. The classification error of hi is

P ðhi 6¼ Y Þ ¼ P ðhi ¼ 1; Y ¼ �1Þ þ P ðhi ¼ �1; Y ¼ 1Þ
¼ P ðhi ¼ 1; hj ¼ �1; Y ¼ �1Þ
þ P ðhi ¼ 1; hj ¼ 1; Y ¼ �1Þ
þ P ðhi ¼ �1; hj ¼ �1; Y ¼ 1Þ
þ P ðhi ¼ �1; hj ¼ 1; Y ¼ 1Þ;

and the disagreement between hi and hj is

P ðhi 6¼ hjÞ ¼ P ðhi ¼ 1; hj ¼ �1Þ þ P ðhi ¼ �1; hj ¼ 1Þ
¼ P ðhi ¼ 1; hj ¼ �1; Y ¼ �1Þ
þ P ðhi ¼ 1; hj ¼ �1; Y ¼ 1Þ
þ P ðhi ¼ �1; hj ¼ 1; Y ¼ �1Þ
þ P ðhi ¼ �1; hj ¼ 1; Y ¼ 1Þ;

where i; j 2 f1; . . . ;mg, i 6¼ j.
To validate that P ðhi 6¼ Y Þ < P ðhi 6¼ hjÞ, we only have

to prove the following inequation:

P ðhi ¼ 1; hj ¼ 1; Y ¼ �1Þ þ P ðhi ¼ �1; hj ¼ �1; Y ¼ 1Þ
< P ðhi ¼ 1; hj ¼ �1; Y ¼ 1Þ þ P ðhi ¼ �1; hj ¼ 1; Y ¼ �1Þ:

ð10Þ

According to (9) and the Bayes Principle, (10) can also be

written as follows:

P ðhi ¼ 1 j Y ¼ �1ÞP ðhj ¼ 1; Y ¼ �1Þ
þ P ðhi ¼ �1 j Y ¼ 1ÞP ðhj ¼ �1; Y ¼ 1Þ

< P ðhi ¼ 1 j Y ¼ 1ÞP ðhj ¼ �1; Y ¼ 1Þ
þ P ðhi ¼ �1 j Y ¼ �1ÞP ðhj ¼ 1; Y ¼ �1Þ:

ð11Þ

By Definitions 4 and 5, following (12)-(15) hold,

P ðhi ¼ 1 j Y ¼ �1Þ < P ðhi ¼ �1 j Y ¼ �1Þ; ð12Þ

P ðhi ¼ �1 j Y ¼ 1Þ < P ðhi ¼ 1 j Y ¼ 1Þ: ð13Þ

P ðhi ¼ �1; Y ¼ 1Þ > 0: ð14Þ

P ðhi ¼ 1; Y ¼ �1Þ > 0: ð15Þ

Therefore, (11) holds.
Finally, we have

P ðhi 6¼ Y Þ < P ðhi 6¼ hjÞ: ð16Þ

tu

As mentioned above, we can obtainm resultant classifiers
by maximizing the objective function (6), denoted as
f1; . . . ; fm, respectively. Thus, we also have the following
theorem:

Theorem 2. If the condition that conditional independent
assumptions are satisfied, it holds that the accuracy is the strict
upper bound of the agreement for nontrivial and nonperfect
classifiers.

Proof. According to Theorem 1, the disagreement is the

strict upper bound of the misclassification error for

nontrivial, nonperfect classifiers, then

pðfi 6¼ Y Þ < pðfi 6¼ fjÞ: ð17Þ

Then, we can have

1� pðfi ¼ Y Þ < 1� pðfi ¼ fjÞ
pðfi ¼ Y Þ > pðfi ¼ fjÞ:

ð18Þ

tu

Both Theorems 1 and 2 show that the proposed consensus

regularization framework can effectively reduce the classi-

fication errors and improve the learning performances.

3.3 Implementation of Consensus Regularization by
Logistic Regression

Here, we show how to exploit the principle of consensus

regularization for the logistic regression model.
According to the problem formulation in Section 3.1, this

consensus regularization framework outputs m logistic

models w1; . . . ;wm, which maximize:

geðw1; . . . ;wmÞ ¼
Xm
l¼1

Xnl
i¼1

logP
�
yli j xli; wl

�
� �

l

2
wlTwl

 !

� � �
Xn
i¼1

E

Pm
l¼1 P ðy ¼ �1jxi; wlÞ

m
;

�
Pm

l¼1 P ðy ¼ 1jxi; wlÞ
m

�
;

ð19Þ

where the conditional probability P is the logistic function

defined in (1), and E is the Shannon entropy. Note that this

regularization framework can work for multiclass problems

as well.
Due to the computing complexity in the entropy, for two-

entry probability distribution vectors, the consensus mea-

sure in (5) can be simplified as:

Csðp1; . . . ;pmÞ ¼
�
pð1Þ � pð2Þ

�2 ¼
�
pð1Þ �

�
1� pð1Þ

��2

¼
�
2pð1Þ � 1

�2
:

ð20Þ

It is clear that, when comparing the relative magnitude of

two degrees of consensus, Ce and Cs are equivalent for

two-entry probability distribution vectors in the sense that

they always give the same answer. Thus, substitute the

entropy-based consensus measure with the equivalent form

Cs, the new objective function is

gsðw1; . . . ;wmÞ ¼
Xm
l¼1

Xnl
i¼1

logP
�
yli j xli; wl

�
� �

l

2
wlTwl

 !

þ � �
Xn
i¼1

2

Pm
l¼1 P ðy ¼ 1 j xi; wlÞ

m
� 1

� �2

;

ð21Þ

where the conditional probability P is the logistic function

defined in (1).
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To simplify the discussion, in this paper, we only

describe this regularization framework in (21) for two-class

classification problems, but it can be extended to multiclass

problems using the framework in (19). Thus, the partial

differential of the objective gs is

rwlðgsÞ ¼
@gs
@wl
¼ rl

sn

�
wl;Dls

�
þrl

mn

�
w1; . . . ;wm;Dt

�
; ð22Þ

where the function � is defined in (1), and

rl
sn

�
wl;Dls

�
¼ @gs
@wl
¼
Xnl
i¼1

�
1� �

�
yliw

lTxi
��
ylix

l
i � �lwl; ð23Þ

rl
mn

�
w1; . . . ;wm;Dt

�
¼ 4�

m2

Xn
i¼1

2
Xm
k¼1

�
�
wkTxi

�
�m

 !
�
1� �

�
wlTxi

��
�
�
wlTxi

�
xi:

ð24Þ
Though the objective function in (21) is neither concave

nor convex, for given initial values, the local optimization

solution can also be obtained by nonlinear optimization

technique. In this study, we adopt the conjugate gradient

method [8] as the optimization technique (the reason why we

adopt conjugate gradient is described in the experimental

section), and the initial models are set to the ones trained on

each local source domain separately. The pseudocode of our

method is shown in Algorithm 1. To solve the subproblem in

Step 4 of Algorithm 1, traditional optimization techniques

can be used. In our implementation, the function fminunc

provided by Matlab is adopted for Step 4.

Algorithm 1. Centralized Version of Consensus

Regularization by Conjugate Gradient Ascent

Input: The labeled data sets D1
s; . . . ;Dms , the unlabeled data

set Dt, the element matrix Q 2 IRk�k where k ¼ jxj is the

dimension of the data in the source domain, the error

threshold " > 0, and the maximum iterating number max.

Output: m classifiers w1; . . . ;wm.
1) Each source domain calculates the initial wl

0 by

logistic regression based on its local data set Dls
2) k :¼ 0.

3) For l ¼ 1; . . . ;m, compute the gradients rwl
k
ðgsÞ by

(22), and set the searching directions as

dl0 ¼ rwl
0
ðgsÞ

dlkþ1 ¼ rwl
kþ1
ðgsÞ þ �kdlk

�k ¼ �rT
wl
kþ1

ðgsÞQdlk
�
dlk

T
Qdlk

8>><
>>: ð25Þ

If
Pm

l¼1 krwl
k
ðgsÞk < ", then turn to Step 6.

4) Compute the best searching step � � 0, which

maximizes

usð�Þ ¼ gs
�
w1
k þ �d1

k; . . . ;wm
k þ �dmk

�
: ð26Þ

Then, for l ¼ 1; . . . ;m, compute wl
kþ1 by

wl
kþ1 ¼ wl

k þ �dlk: ð27Þ
5) k :¼ kþ 1. If k � max, then turn to Step 3.

6) Output w1
k; . . . ;wm

k .

4 CONSENSUS REGULARIZATION IN A DISTRIBUTED

MANNER

In this section, we investigate how to extend this centralized
consensus regularization method into a distributed learning
algorithm, which can work in the situation where the source
domains D1

s; . . . ;Dms and the target domain Dt are all
distributed. In this distributed setting, the data nodes
containing the source domain data are used as slave nodes,
denoted by sn1; . . . ; snm, and the data node containing the
target domain data is used as the master node, denoted bymn.

Let us first revisit the partial differential of the objective
gs in (22), which consists of two parts. It is clear that the
computation of the first term rl

snðwl;DlsÞ needs only
the local model wl and the data set Dls. Thus, it can be
computed locally. The computation of the second term
rl
mnðw1; . . . ;wm;DtÞ involves all the models w1; . . . ;wm and

the target domain data set Dt. Therefore, if the slave nodes
snl (l ¼ 1; . . . ;m) sends wl and rl

sn to the master node mn,
the master node can compute rwlðgsÞ by rwlðgsÞ ¼
rl
sn þrl

mn in a straightforward manner.
As a result, if each round of the optimization process

performs this synchronous communication of the statistic
data between the slave nodes and the master node, the
gradient rwlðgsÞ can be computed accurately. However,
the maximization in the Step 4 of Algorithm 1 involves all
the data from the source domains and the target domain,
which is hard to be solved distributively. In order to
extend Algorithm 1 to a distributed version, the searching
step � in it can be set to a constant. Then, the method of
distributed consensus regularization is described in
Algorithm 2, which is an approximation of Algorithm 1.

Algorithm 2. The Distributed Version of Consensus

Regularization by Conjugate Gradient

Input: The labeled data sets D1
s; . . . ;Dms on the separated

slave nodes sn1; . . . ; snm, respectively, the unlabeled data

set Dt on the master node mn, the error threshold " > 0, the
maximum iterating number max, and the step constant �.

Output: m classifiers w1; . . . ;wm.

1) Each slave node snl (l ¼ 1; . . . ;m) calculates the initial

wl
0 by logistic regression based on its local data set Dls.

Then they send this initial model wl
0 and the value of

rl
snðwl

0;DlsÞ (l ¼ 1; . . . ;m) to the master node mn.

2) k :¼ 0.

3) The master node computes the gradients rwl
k
ðgsÞ

(l ¼ 1; . . . ;m) for each model by (22), and sets the

searching direction dlk as (25). If
Pm

l¼1 krwl
k
ðgsÞk < ",

then turn to Step 6; Otherwise, using the input

constant �, compute wl
kþ1 as (27) for l ¼ 1; . . . ;m.

4) The master node sends wl
kþ1 (l ¼ 1; . . . ; m) to each

slave node. Then each slave node computes

rl
snðwl

kþ1;DlsÞ and sends it back to the master nodes.

5) k :¼ kþ 1. If k � max, then turn to Step 3.
6) Output w1

k; . . . ;wm
k .

In each round of Algorithm 2, each slave node snl sends
a vector rl

sn to the master node (in the first round, the slave
node should also send the initial model to the master node),
and the master node sends back the updated model.
Therefore, if this process terminates after k iterations, the
total communication overhead will be ð2kþ 1Þ

Pm
l¼1 jwlj.
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Note that this distributed process communicates only
some summary statistics, such as rl

sn (l ¼ 1; . . . ;m) and the
classification models, without sending the raw source
domain data. Therefore, this can also alleviate privacy
concerns.

5 EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance of
the proposed methods. In the experiments, we focus on
the two-class classification problem. However, it is
straightforward to extend the proposed methods for
multiclass classification.

5.1 Data Preparation

The data preparation method is similar to the one in [3].
Since publicly available data are not originally designed for
cross-domain learning from multiple source domains, we
need to do some data preprocessing. It requires that the
experimental data have at least a two-level hierarchical
structure. In this paper, we assume A and B are two root
categories in a data set, andA1; . . . ;A4 and B1; . . . ;B4 are the
four sublevel categories of A and B, respectively. These
sublevel categories are used as three source domains and
one target domain. Next, we construct the training and test
data as follows: For i ¼ 1; . . . ; 4, let Aai and Bai be the
positive and negative instances in the ith domain
Dai ¼ Aai [ Bai , respectively; and Aai and Bai appear once
and only once in these domains. In this way, the positive
(negative) data from different domains are similar since they
belong to the same top category A (B), and the positive
(negative) data from different domains are still different
since they belong to different subcategories. Thus, these four
domains have different but similar data distributions. We
can then select any one of these four domains as the target
domain, and the other three domains as the source domains.

Therefore, given A1; . . . ;A4 and B1; . . . ;B4, we can construct
96 (4 � P 4

4 ) problem instances of three-source domains cross-
domain learning problems. Note that, in this study, the
number of the source domains for cross-domain learning is
set to three.

5.1.1 Text Categorization

20 Newsgroup2 is a benchmark data set for text categoriza-
tion. We selected three top categories sci, talk, and comp,
denoted by A, B, and C, respectively. The four subcategories
in sci are sci.crypt, sci.electronics, sci.med, and sci.space,
denoted by A1; . . . ;A4, respectively. The four subcategories
in talk are talk.politics.guns, talk.politics.mideast, talk.politics.-
misc, and talk.religion.misc, denoted by B1; . . . ;B4, respec-
tively. And the top category comp contains comp.graphics,
comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, and
comp.sys.mac.hardware, which are denoted by C1; . . . ; C4,
respectively. We can randomly select two top categories
to construct 96 problem instances, but in this paper, we only
list the evaluation results of two data sets sci versus talk and
comp versus talk. The threshold of Document Frequency with
the value of five is used to select the features.

5.1.2 Image Classification

Two top categories flower and traffic from the COREL
collection3 are constructed. The four subcategories in flower
are flower.sunflower, flower.rose, flower.lotus, and flower.tulip.
The four subcategories in traffic are traffic.aviation, traffic.bus,
traffic.boat, and traffic.dogsled. Eight samples from the image
data sets are shown in Fig. 2 and the detailed description is
shown in Table 2. For each image, we extract 87-dimension
features, including 36-dimension color histogram [9] and
51-dimension SILBP texture histogram [10].
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Fig. 2. Eight samples from the data sets flower and traffic.

TABLE 2
The Description of Image Data

2. http://people.csail.mit.edu/jrennie/20Newsgroups/.
3. http://wang.ist.psu.edu/docs/related.shtml.



5.2 Benchmark Methods and Evaluation Metrics

5.2.1 Benchmark Classification Methods

We evaluate the proposed multisource cross-domain learn-
ing algorithms in two scenarios: distributed and centralized.

Distributed approach. In this approach, the algorithm is
implemented in a distributed manner. The simplest dis-
tributed approach is Distributed Ensemble (DE), where a
classifier is trained based on the local data on each source
domain. The other distributed approach is Distributed
Consensus Regularization (DCR) described in Algorithm 2.
In both DE and DCR, the prediction is made by the ensemble
method through majority voting with equal weights.

Centralized approach. In this approach, all the data from
the source domains and the target domain are accumulated
and processed at a centralized node. In this case, the
simplest method is Centralized Training (CT) which trains a
global classifier on all the data. Meanwhile, if all the data
from the source domains are put together as one labeled
data set, Centralized Consensus Regularization (CCR) in
Algorithm 1 with m ¼ 1, denoted by CCR1, can be used.
The cross-domain learning method CoCC [3] and the
semisupervised techniques TSVM [11] as well as SGT [12]
can also be applied to this situation. On the other hand, in
order to explicitly consider that the centralized data are
from three different source domains, CCR with m ¼ 3,
denoted by CCR3, is also adopted.

In summary, our proposed method DCR, CCR1, and
CCR3 are compared with DE, CT, CoCC, TSVM, and SGT.
Note that when the parameter � in the objective function
(21) is set to 0, the consensus regularization is useless. Thus,
at this time the individual classifiers are trained only on
their local source domain data respectively, then DCR is
equivalent to DE, and CCR1 is equivalent to CT. Also, DCR
with a small step constant achieves the same accuracy
performance as CCR3 at the cost of some communication
overhead. Therefore, these two algorithms DCR and CCR3

are denoted by CCR3 only.
Details of implementation. Some initial experiments

show that several popular nonlinear optimization techni-
ques output similar models for the proposed optimization
problem and conjugate gradient is the fastest one. There-
fore, we use conjugate gradient in this paper. After some
preliminary test, we find that �l is not very sensitive in the
value range [10, 300], so the �l in the objective function (21)
is set to 145 (for l ¼ 1; . . . ;m).4 And the value range of � is
[0, 0.25]. In the algorithms of consensus regularization, the
maximal iterating number max is set to 200, and the error
threshold " is set to 0.1. Before conducting the optimization
for consensus regularization, Logistic Regression5 is per-
formed on each source domain to obtain the initial values of
the model for further optimization. The parameters of
CoCC, TSVM, and SGT are the same as those in [3].

5.2.2 Evaluation Metrics

The performance of the comparison methods is evaluated
by accuracy. Let c be the function which maps each instance
to its true class label, and f be the function which maps each
instance to its prediction label given by the classifier.
Accuracy is defined as

a ¼ jfdjd 2 Dt ^ cðdÞ ¼ fðdÞgjjDtj
: ð28Þ

We also measure the consensus degree of multiple
classifiers on the target domain as follows: Let h be the
function which maps each instance to the probability
distribution vector predicted by the classifier. This con-
sensus degree of m classifiers h1; . . . ; hm is defined as

c ¼
P

d2Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Csðh1ðdÞ; . . . ; hmðdÞÞ

p
jDtj

; ð29Þ

where Cs is defined in (20). It is clear that these m classifiers
reach perfect consensus when c reaches its maximal value 1.

5.3 Summary of the Problems

To highlight the significance of the experiments performed
in this section, we will outline the problems to be answered
as follows:

. In general, to validate the superiority and effective-
ness of the proposed algorithm, we compared it
with the benchmark methods in Section 5.4.1,
including: 1) Comparison of CCR3, DE, and CT
and 2) Comparison of CCR3, TSVM, SGT, and CoCC
(Section 5.4).

. Second, we analyze the reasons why our algorithm
can obtain a significant improvement by benchmark
methods for the cross-domain learning task, and
conjecture that there are three sources of the gain:
1) In the multiple source domains paradigm, exploit-
ing distribution differences among the source do-
mains is very important to boost the performance of
the proposed approach. 2) Note that the consensus
regularization not only has the effect of minimizing
entropy but also the effect of maximizing consensus.
Therefore, these are the other two sources of the gain
(Section 5.5).

. Third, it is worth mentioning that our consensus
regularization framework is actually an inductive
algorithm, so we investigate the generalization
ability of the output classifiers and how many
unlabeled samples are sufficient for the optimization
process (Section 5.6).

. Finally, we studied the convergence property of the
proposed algorithm. Fast convergence is desired for
an iterative algorithm (Section 5.7).

5.4 Performance Comparison

5.4.1 Comparison of CCR3, DE, and CT

We have three data sets described in Section 5.1, and
96 problem instances are constructed for each data set. For
each problem instance, we record the values of accuracy
and consensus for the resultant classifiers of algorithm
CCR3 on different values of �. Table 3 gives an example of
these measures for one of these problem instances on data
sci versus talk. Due to the space limitation, we cannot list all
the 96� 3 tables. However, the properties in these tables are
similar, as can be seen later in this section.

For each �, Algorithm CCR3 outputs three classifiers on
the corresponding three source domains. These classifiers
are tested on their own source domains and the target
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domain, and the results are recorded from the second to
seventh column of Table 3. Then, the eighth column records
the consensus measure of three classifiers. Finally, the
accuracy performances of CCR3 and CCR1 are shown in the
9th and 10th column of this table. As mentioned above,
when � ¼ 0 (ignoring the consensus regularizer), the
accuracy for CCR3 (73.94 at the first row and ninth column
of Table 3) is that of DE, and the accuracy for CCR1 (71.99 at
the first row and 10th column of Table 3) is that of CT.

The results in Table 3 show that: 1) When � 6¼ 0, CCR3

always outperforms DE and CT. 2) When � 6¼ 0, the
performances of the local classifiers tested on their own
source domains are stable (always near 100 percent).
Additionally, under this situation, the performances of the
local classifiers tested on the target domain increase sig-
nificantly. For example, the performance of the classifier on
D2
s increases from 55.75 percent to more than 90 percent when

it is applied to the target domain. 3) When � increases, the
consensus measure of the resultant three classifiers increases.
When this consensus measure reaches some extent, the
classifiers always output the same results for an instance. So

the performances of these classifiers tested on the target
domain are almost equal to that of CCR3 when � 6¼ 0.

To further validate this on the other 95 tables, for each
of these tables, we measure four values: 1) the perfor-
mance of DE; 2) the performance of CT; 3) the average
performance of CCR3 when � is sampled in [0.05, 0.25],
denoted by CCR3; and 4) the best performance of CCR3

when � is sampled in [0.05, 0.25], denoted by CCRmax
3 ;

For each of the four numbers, we can average its values
on all the 96 problem instances. These results are shown
in Figs. 3 and 4, and Table 4. In Fig. 3, the 96 problem
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Fig. 3. The performance comparison on three data sets. (a) CCRmax
3 versus DE and CT on sci versus talk. (b) CCRmax

3 versus DE and CT on comp
versus talk. (c) CCRmax

3 versus DE and CT on flower versus traffic.

TABLE 3
The Accuracy (Percent) and Consensus Measure in an Example Problem

Fig. 4. The relationship between DE versus CCRmax
3 on three data sets. (a) DE versus CCRmax

3 on sci versus talk. (b) DE versus CCRmax
3 on comp

versus talk. (c) DE versus CCRmax
3 on flower versus traffic.

TABLE 4
Average Values (Percent) on 96 Problem Instances



instances are sorted by the increasing order of the
performances by CT.

Fig. 3 shows that CCRmax
3 almost outperforms DE and

CT on all 96 problem instances, which prove the effective-
ness of the proposed algorithm. In Figs. 4a and 4b, the x-
axis represents the accuracy of DE while the y-axis
represents the performance difference between CCRmax

3

and DE. Figs. 4a and 4b show that this performance
improvement decreases when the performance of DE
increases. The reason is that if the accuracy of DE is high,
these original classifiers usually output the same right
results, and the consensus measure of the classifiers is big.
In this case, the room for further increasing this consensus
measure is very limited, and thus the improvement by
consensus regularization is small. Although the size of
samples in image data sets is small, Fig. 4c also reveals the
similar trend as Figs. 4a and 4b.

Table 4 lists the average values of the four accuracy
measures over the 96 problem instances on three data sets.
Note that the same performance of CCRmax

3 can be achieved
by DCR in a distributed manner. Compared with DE, the
maximal accuracy of DCR increases from 79.21 to 92.66.

5.4.2 Comparison of CCR3, TSVM, SGT , and CoCC

To compare CCR3 with CoCC, TSVM, and SGT, we select

the data sets in [3] which can be modified to fit our problem

setting. We divide the single source domain of the original

problem into multiple source domains. Four data sets,

which are described in Table 5, are selected for this

comparison. We measure the performance of CCR3 on

these problems by the two values CCR3 and CCRmax
3 . The

experimental results in Table 6 show that both CCR3 and

CCRmax
3 outperform TSVM and SGT on these four data sets.

Except that CoCC slightly outperforms CCR3 on the fourth

data set, both CCR3 and CCRmax
3 are better than CoCC on

the other three data sets.

5.5 Source of the Performance Gain

In this section, we investigate the key reasons why the
consensus regularization can lead to a better learning
performance.

5.5.1 Exploiting the Distribution Differences among the

Source Domains

For the consensus regularization framework, the distribution
differences among the source domains are very important.
However, it is very difficult to measure these differences in a
precise way. To simplify the discussion, we will focus on two
levels of distribution differences. The first level is that every
source domain has a specific distribution (as depicted in
Section 5.1), and the other situation we consider is that the
source domains have slightly different distributions. If we
merge the m source domains into one source domainDs and
then randomly divide it into m (here, m ¼ 3) source
domains, denoted as SD1

s; . . . ;SDms , the distribution differ-
ences of the source domains SD1

s; . . . ;SDms are much smaller
than that of the source domainsD1

s; . . . ;Dms . We reperformed
the experiments on the source domains SD1

s; . . . ;SDms , and
also recorded the four values of each table, denoted as SDE,
SCT, SCCRmax

3 , and SCCR3 (Note that SCT ¼ CT). Fig. 5
shows the results on both the original source domains and
the randomly generated source domains. As can be seen, the
performance improvements on the original source domains
are much better than the one on the randomly generated
source domains. The t-test with 95 percent confidence
also shows that the accuracy improvement difference
(ðCCRmax

3 �DEÞ � ðSCCRmax
3 � SDEÞ) is statistically signifi-

cant. The results validate the effectiveness of exploiting the
distribution differences among the source domains to
increase the learning performance.

5.5.2 Effects of Consensus Regularization and Entropy

Minimization

As mentioned in Section 3.1, the regularization framework
proposed in this paper has two effects—consensus regular-
ization and entropy minimization. We compare the perfor-
mance of CCRmax

3 , CCRmax
1 , and DE (CT is similar to DE).

Algorithm CCRmax
1 is regarded to only have entropy
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The Data Description for the Performance Comparison among TSVM, SGT, CoCC, and CCR3

TABLE 6
The Performance Comparison Results (Percent)
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minimization factor not the effect of consensus regulariza-
tion, because there is only one classifier in the optimization
process. All the results on three data sets are shown in Fig. 6.
In the figure, we can find that: 1) CCRmax

1 is better than DE.
This validates the effect of entropy minimization and
2) CCRmax

3 is better than CCRmax
1 . This shows that our

consensus regularization framework not only exploits the
entropy minimization but also the consensus maximization
of classifiers when being applied to multiple source
domains.

5.5.3 Relationship between Consensus and

Performance Improvement

To emphasize the theme of this work, we investigate how

the consensus influences the performance improvement.

The consensus (defined in (29)) of classifiers predicting on

the target domain, and the accuracy improvement after

optimization are recorded and shown in Fig. 7. Note that the

consensus affects the classifiers trained on the source

domains rather than the optimized output classifiers. In
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Fig. 5. Exploiting the distribution differences among the dource domains. (a) Problem Instances versus (CCRmax
3 �DEÞ � ðSCCRmax

3 � SDEÞ on sci
versus talk. (b) Problem Instances versus (CCRmax

3 �DEÞ � ðSCCRmax
3 � SDEÞ on comp versus talk.

Fig. 6. The performance comparison on three data sets. (a) CCRmax
3 versus CCRmax

1 and DE on sci versus talk. (b) CCRmax
3 versus CCRmax

1 and DE
on comp versus talk. (c) CCRmax

3 versus CCRmax
1 and DE on flower versus traffic.

Fig. 7. The relationship between consensus and accuracy improvement. (a) Consensus versus CCRmax
3 �DE on sci versus talk. (b) Consensus

versus CCRmax
3 �DE on comp versus talk.



Fig. 7, the x-axis represents consensus of classifiers while the
y-axis represents the performance improvement of CCRmax

3

compared with DE. Fig. 7 shows that the accuracy
improvement decreases when the value of consensus
increases, which indicates that the more consistent of
classifiers predicting on target domain, the smaller of
performance improvement room. To some extend, this
requirement of classifier diversity is identical to the boosting
algorithm, such as Bagging, Adaboost [13], [14], and so on.

5.6 Inductive Setting of Consensus Regularization

It is worth mentioning that our consensus regularization is an
inductive algorithm and can output classifiers for the unseen
test data. In this section, we evaluate the generalization
ability of the output classifiers on text data sets sci versus talk
and comp versus talk. Specifically, we randomly sample
(without replacement) ratio p of the data in the target domain
Dt to form a new data setD1

t , and the left data inDt to form the
other data setD2

t . Then, the unlabeled data inD1
t are used for

the classifier optimization in the training process, and the
unlabeled data inD2

t are used to test the generalization ability
of the classifiers output by the training process. We also test
the accuracy of these classifiers on D1

t . Additionally, we test
the generalization ability under different values of p, and

sample the ratio p with interval 0.1 in the bound [0:1; 0:9]. In

each data set, the first 10 problem instances are selected, and

the results are shown in Figs. 8 and 9. From the results, we can

find that: 1) The increase of the unlabeled data inD1
t used for

training improves the generalization ability of the output

classifiers. 2) When p � 0:6 the accuracy of the output

classifiers on D2
t is almost the same as the results when all

the unlabeled target domain data are used for training in

Section 5.4.1. These results show that the proposed algorithm

has a good generalization ability when more than 60 percent

of target domain data are used for optimization process.

5.7 Algorithm Convergence

We check the convergence property of CCR3 on six

randomly selected problem instances on the data set sci

versus talk. These results are shown in Fig. 10, where the x-

axis represents the number of iterations and the y-axis

represents the accuracy performance. It can be observed

that, for each problem instance, the accuracy performance

increases as the number of iterations and almost converges

after 30 iterations. This indicates that the proposed

algorithm converges very quickly.
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Fig. 8. Generalization ability affected by sampling ratio p. (a) Performance of CCRmax
3 on sci versus talk. (b) Performance of CCRmax

3 on sci versus talk.

Fig. 9. Generalization ability affected by sampling ratio p. (a) Performance of CCRmax
3 on comp versus talk. (b) Performance of CCRmax

3 on comp
versus talk.



6 RELATED WORK

In this section, we introduce some related work in the fields
of transfer learning (cross-domain learning), semisuper-
vised classification, and multiview learning.

Transfer Learning aims to solve the fundamental
problem of mismatched distributions between the training
and testing data. It is also referred to as Cross-Domain
Learning or Domain Adaptation, which adapts the knowledge
from source domains (in-domain, auxiliary-domain) to a
target domain (out-of-domain, primary-domain). In general,
previous works in this area can be grouped into two
categories. The first category is under the assumption that
there are some labeled data from the target domain with
different distribution. For instance, Liao et al. [15] estimated
the degree of mismatch of each instance in the source
domain with the whole target domain, and incorporated
this information into logistic regression. Also, Dai et al. [2]
extended boosting-based learning algorithms to transfer
learning, in which the source domain data with very
different distribution are less weighted for data sampling.
They also analyzed the theoretical effectiveness of this
algorithm using the Probability Approximately Correct (PAC)
theory. In addition, Yang et al. [6] studied the problem of
transform the existing classifier from the source domain to a
target domain in an incremental way. The principle behind
this transformation is that the difference between the
classifiers before and after adaption should be as small as
possible. This work involves the data from multiple source
domains, but it does not consider the distribution difference
among these source domains. Duan et al. [16] proposed a
Domain Adaptation Machine (DAM) that learns from
multiple sources via auxiliary classifiers. In this approach,
they induce a new target classifier which shares similar
decision value with the auxiliary classifiers (trained from
the source domains) on unlabeled target domain and
minimizes the empirical error on labeled target domain,
while we refine the existing auxiliary classifiers during the
optimization. All the above works need some labeled data
from target domain, however, labeled data are often very
difficult and expensive to obtain.

In the second category, for the problem that the data
from the target domain are totally unlabeled, Ling et al. [17]
developed a new spectral classification algorithm that

optimizes an objective function to seek for the maximal
consistency between the supervised information from the
source domain and the intrinsic structure of the target
domain. Gao et al. [18] proposed a heterogenous source
consensus learning framework that efficiently negotiates
multiple heterogenous sources/models and internal struc-
ture (unsupervised clustering) of target domain. However,
these methods need sufficient test data to represent the
intrinsic structure. In addition, Jiang [19] developed a two-
phase feature selection framework for domain adaptation.
Although this method considered multiple source domains,
it was different from our consensus regularization. In their
approach, they first selected the features called general
features among all domains, and then learned a general
classifier by emphasizing those general features. Second,
they made use of unlabeled data from target domain to pick
up features that are specifically useful for the target
domain. Finally, Gao et al. [20] proposed a multiple model
local structure mapping scheme that attaches different
weights to the models by the local manifold structure of
testing samples. Also, Xing et al. [4] proposed a transduc-
tive learning algorithm for this problem. Their method
performs a two-phase label propagation, which is based on
the adjacent matrix of the data. However, the methods in
[4], [20] cannot output the classifier for new unlabeled data.
The proposed method in this paper falls into this category
of transfer learning.

Moreover, none of the above existing works consider the
problem of transfer learning from multiple source domains to
a target domain in a distributed manner. These methods were
not developed for the situation that the training data for
transfer learning are geographically distributed. Also, we
explicitly leverage the distribution differences among the
source domains and the target domain in our model to further
improve the learning performance in the target domain.

Semisupervised Classification uses a large amount of
unlabeled data, together with the labeled data, to achieve
better prediction on unlabeled data. Different from transfer
learning, the labeled and unlabeled data in semisupervised
learning are from the same distribution. To the best of our
knowledge, the most related work in this area is semisu-
pervised learning by entropy minimization [21]. To compare
with this method in the same problem setting, we assume
that the labeled data and unlabeled data consist of a source
domain and target domain, respectively. The regularization
framework in [21] is recognized as an instance of the
objective (19) with m ¼ 1 (m is the number of source
domains). In other words, our regularization approach is
more general and includes this method as a special case.
Furthermore, our consensus regularization method is de-
signed in a distributed manner and has the effect of
consensus regularization.

Multiview Learning is a new and natural, but non-
standard learning problem, where the data are represented
by multiple independent sets of features. As an example,
Yarowsky [22] as well as Blum and Mitchell [23] noticed
that having multiple representations can improve the
performance of semisupervised classification. Sindhwani
et al. [24] proposed a coregularization approach, but this
regularization term do not have the effect of entropy
minimization, which is utilized in our work. In addition,
Dasgupta et al. [25] and Abney [26], [27] provided PAC
bounds on the error of co-Training in terms of the
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disagreement rate of hypotheses on unlabeled data in two
independent views. This inspires the principle of consensus
maximization, which says that by minimizing the disagree-
ment rate on unlabeled data, the error rate can be
minimized. Our work utilizes this principle to another
problem setting: transfer learning from multiple domains.
From the point of view of data partition, the difference
between multiview learning and multidomain learning is
that the data are vertically partitioned for multiview
learning while they are horizontally partitioned for multi-
domain learning.

7 CONCLUSIONS

In this paper, we study the problem of cross-domain
learning from multiple source domains to a target domain.
Specifically, for the case that data from multiple source
domains and the target domain are semantically related, but
have different data distributions, we propose a consensus
regularization framework to exploit the distribution differ-
ences and learn the knowledge among training data from
multiple source domains to boost the learning performance
in a target domain. In this framework, we design a
distributed learning algorithm, in which a local classifier is
trained in each source domain by considering both local data
and the prediction consensus with the classifiers from other
source domains. To combine the learning results from
multiple sources, only summary statistics, rather than the
whole data, are required to transfer among these distributed
domains. This greatly reduces the communication cost and
mitigates the privacy concerns. In addition, we provide a
theoretical analysis on the key advantages of the proposed
consensus regularization method. As demonstrated in the
experimental results, the consensus regularization learning
method can effectively improve the learning performance in
the target domain by leveraging the knowledge learned
from multiple source domains.
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