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Abstract. Given its importance, the problem of object discovery in
High-Resolution Remote-Sensing (HRRS) imagery has been given a lot
of attention by image retrieval researchers. Despite the vast amount of
expert endeavor spent on this problem, more effort has been expected
to discover and utilize hidden semantics of images for image retrieval.
To this end, in this paper, we exploit a hyperclique pattern discovery
method to find complex objects that consist of several co-existing indi-
vidual objects that usually form a unique semantic concept. We consider
the identified groups of co-existing objects as new feature sets and feed
them into the learning model for better performance of image retrieval.
Experiments with real-world datasets show that, with new semantic fea-
tures as starting points, we can improve the performance of object dis-
covery in terms of various external criteria.

1 Introduction

With the advances of remote sensing technology and the increases of the public
interest, the remote-sensing imagery has been drawing the attention of peo-
ple beyond the traditional scientific user community. Large collections of High-
Resolution Remote-Sensing (HRRS) images are becoming available to the public,
from satellite images to aerial photos. However, it remains a challenging task to
identify objects in HRRS images. While HRRS images share some common fea-
tures with traditional images, they possess some special characteristics which
make the object discovery more complex and motivate our research work.

Motivating Examples. Users are interested in different types of objects on
Earth as well as groups of objects with various spatial relationships. For ex-
ample, consider Emergency Response Officers who are trying to find shelters to
accommodate a large number of people. However, shelters are not distinguishable
in Remote Sensing (RS) images. Instead, the officers could search for baseball
fields, because most probably, a baseball field is connected to a school and the
school could be used as a temporary shelter in emergency. In addition, qualified
shelter should not be far away from water source. Therefore, the query might
be “select all the baseball fields in Newark within 1 mile from any water body”.
Another interesting application domain would be urban planning. With HRRS
image retrieval, we may have the task to find out “the disinvestment area in
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Hudson county industrial area”. This task indicates that we need to identify the
industrial areas with a lot of empty lots. While traditional Content Based Image
Retrieval (CBIR) techniques discover objects such as buildings and water bod-
ies, these two examples demonstrate that one need to discover semantic objects
such as schools and urban areas from RS or HRRS images.

Based on the above observation, we categorize the target objects that can be
recognized in RS or HRRS images into three concept levels: (1) Basic Terrain
Types; (2) Individual Objects; and (3) Composite Objects. The first concept
level is to distinguish the basic terrain type of the area covered by the images.
There are several basic ground layouts: bare land, mountain, water, residential
area, forests, etc. The second type of objects are individual objects that are
recognizable in images, such as individual buildings, road segments, road in-
tersections, cars, etc. Objects in the third concept level are composite objects.
Composite objects are objects that consist of several individual objects that form
a new semantics concept. For example, parks, airports, and baseball fields are all
composite objects. In the motivating examples, both shelter and disinvestment
area are composite objects. As one can notice, the spatial relationships among
objects play a critical role in identifying composite objects and interpreting the
semantics of HRRS images.

Despite the vast amount of expert effort, it is well known that the performance
of CBIR is limited by the gap between low-level features and high-level semantic
concepts. Recently, researchers proposed several statistical models [6,1,12,2,3,9]
for analyzing the statistical relations between visual features and keywords.
These methods can discover some hidden semantics of images. However, these
methods annotate scenery images according to the individual objects’ presence
in each image. Spatial relations among objects are not taken into considera-
tion. Those spatial relationships are critical and cannot be ignored in HRRS
images. Hence, in HRRS images, users pay more attention on composite ob-
jects than on individual objects. This suggests that we have to examine the
spatial relationships among objects when we try to identify objects in HRRS
images.

In this paper, we investigate the problem of automatically annotating images
using relevance-based statistical model on HRRS images. Specifically, we exploit
a hyperclique pattern discovery method [13] to create new semantic features
and feed them into the relevance-based statistical learning model. Hyperclique
patterns have the ability to capture a strong connection between the overall sim-
ilarity of a set of objects and can be naturally extended to identify co-existing
objects in HRRS images. Traditionally, by using a training set of annotated im-
ages, the relevance-model can learn the joint distribution of the blobs and words.
Here, the blobs are image segments acquired directly from image segmentation
procedure. Our approach extends the meaning of blobs by identifying the co-
existing objects/segments as new blobs. The proposed approach has been tested
using the USGIS high-resolution orthology aerial images. Our experimental re-
sults show that, with new semantic features as starting points, the performance
of learning model can be improved according to several external criteria.
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2 Domain Challenges

In this section, we describe some domain challenges for object discovery in HRRS
images as follows.

– First, it is nontrivial to perform feature selection for image retrieval in HRRS
images. In [12], researchers developed a mechanism to automatically assign
different weights to different features according to the relevance of a feature
to clusters in the Corel images. However, unlike Corel Image, HRRS images
are severely affected by the noise such as shadow and the surface materials of
HRRS images are limited. This makes the primitive features, such as color,
texture and shape, not good enough for identifying objects in HRRS images.
As a result, in addition to the primitive features, the derivative features, such
as geometric features and semantic features, are required for better object
discovery in HRRS images. In this research, we add semantic features that
capture the spatial relationships among objects to image annotation model.

– Also, HRRS images usually lack salient regions and carry a lot of noise [4].
This data problem has been largely ignored by existing approaches, thus not
suitable for object discovery in HRRS images. Indeed, existing methods often
use segmentation techniques which may not work well in noisy environments.
Moreover, the grid technology [3], a substitute of segmentation, often assume
that each grid only contains one salient object. To satisfy the assumption,
we have to cut the image into very small grids. However, according to our
observation, both traditional segmentation algorithms and grid technology
will generate 40-120 segments/grids for a 512×512 1-foot resolution aerial
image, which makes the performance of annotation model deteriorate dra-
matically compared to 10-20 segments/grids per image. Therefore, we pro-
pose a two-stage segmentation algorithm to accommodate the uniqueness of
HRRS images.

– Finally, another challenge faced by the HRRS image annotation is the impor-
tance of measuring spatial relationships among objects. In the HRRS images,
individual objects cannot determine the semantics of the entire scene by it-
self. Rather, the repeated occurrence of certain object in the scene or the
co-occurrence of objects reflect high-level semantic concepts. For instance,
if there is an remote sensing image about a city or urban area, instead of
roof of individual house, people maybe more interested in identifying a park,
which is the composition of grass land, pond, and curvy road. People would
not be interested in large building roof alone. Nevertheless, if we identify
that large building roofs have large parking lot and major road nearby, this
would also be interesting, as we can annotate the image as shopping mall.

3 Object Discovery with Semantic Feature Selection

In this section, we introduce a method for Object disCovery with semantiC
featUre sElection (OCCUE). Figure 1 shows an overview of the OCCUE method.
A detailed discussion of each step of OCCUE is given in the following subsections.
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Fig. 1. A Overview of the OCCUE Method

3.1 Image Segmentation

Image segmentation divides an image into separated regions. In a large-scale
HRRS image database, the images naturally belong to different semantic clus-
ters. For example, most of HRRS images can be categorized into four main
semantic clusters at the land cover level including grass, water, residence and
agriculture [10]. These land-cover level semantic clusters can also be divided into
semantic subclusters at an object level. For these subclusters, the distinguishing
primitive features are different. Moreover, the objects in each land-cover clus-
ter are very different. For example, the objects in urban areas are usually road
segments, single house roofs, or small vegetated areas. In contrast, woods and
grass are dominant in suburban areas. Likewise, different composite objects also
appear in different land-cover clusters. For instance, a park is always a large
contiguous vegetated area. This different scale distinguishes parks from gardens.
In OCCUE, we exploit a two-step approach to increase segmentation reliability.
Our two-step segmentation approach satisfies the uniqueness of RS images by
segmenting images at the land-cover level first and then dividing images further
into individual objects or components of an individual object.

Another major advantage of using two-step image segmentation approach
is that this segmentation approach can reflect the hierarchies that exist in the
structure of the real-world objects which we are detecting. By abstracting houses,
buildings, roads and other objects, people can identify residential areas and the
aggregation of several residential areas yields a town. This hierarchy is obviously
determined by scale.

In OCCUE, we apply the texture-based algorithms proposed by [4] to segment
image at the land cover level. This segmenting method consists of three major
steps: (i) hierarchical splitting that recursively splits the original image into
children blocks by comparing texture features of blocks, (ii) optimizing, which
adjusts the splitting result, if the results of the reduced resolution images have
dramatically reduced segments, (iii) merging, in which the adjacent regions with
similar texture are merged until a stopping criterion is satisfied.

After the land-cover level segmentation, images are segmented into small re-
gions using eCognition along with different input parameters according to land-
cover type [5]. Each segment is represented by the traditional features, e.g. col-
ors, textures and shapes, as well as the geometric features. eCognition utilizes
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a bottom up-region-merging technique starting with one-pixel. In subsequent
steps, smaller image segments are merged into bigger ones [5]. We believe that
this is one of the easy-to-use and reliable segmentation tools for HRRS images,
given the characteristics of the HRRS images: 1)with salt and pepper noises; 2)
affected by the atmosphere and the reflective conditions.

The following extracted features represent major visual properties of each
image segment.

– Layer Values are features concerning the pixel channel values of an im-
age segment, mainly the spectral features, including mean, brightness, max
difference, standard deviation, the ratio of layer mean value of an image
segment over the all image, minimum pixel value, maximum pixel value,
the mean difference to neighboring segment, the mean difference to brighter
neighboring segment, mean difference to darker neighboring object.

– Shape Features include area (measured by pixel), length/width ratio which
is the eigenvalues of the covariance matrix with the larger eigenvalue being
the numerator of the factor, length, width, border length, density expressed
by the area covered by the image segment divided by its radius, main direc-
tion, asymmetry, compactness (the product of the length m and the width n
of the corresponding segment and divided by the number of its inner pixels),
elliptic fit and rectangular fit.

– Texture Features evaluate the texture of an image segment based on the
gray level co-occurrence matrix (GLCM) and the grey level difference vec-
tor (GLDV) of the segments pixel [5]. The grey level co-occurrence matrix
(GLCM) is a tabulation of how often different combinations of pixel grey
level occur in an image. A different co-occurrence matrix exists for each spa-
tial relationship. Therefore, we have to consider all four directions (0 45, 90,
135) are summed before texture calculation. An angle of 0 represents the
vertical direction, an angle of 90 the horizontal direction. Every GLCM is
normalized, which guarantee the GLCM is symmetrical. The more distant
to the diagonal, the greater the difference between the pixels grey level is.
The GLCM matrices can be further broken down to measure the homogene-
ity, contrast, dissimilarity (contrast increases linearly), entropy (distributed
evenly), mean, standard deviation, and correlation. GLDV is the sum of di-
agonals of GLCM. It counts the occurrence of references to the neighbor
pixels. Similarly to GLCM matrices, GLDV can measure the angular second
moment (high if some elements are large), entropy (high if all similar), mean,
and contrast.

– Position Features refer to the positions of segments within an image.

3.2 Fuzzy Classification

After we segment the images into relatively homogeneous regions, the next step
is to group similar image segments into a reasonable number of classes, referred
as blob tokens in [12]. Segments in each class are similar even though they are not
spatially connected. In the literature [12], unsupervised classification algorithms
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is employed using the primitive features or weighted features. Using the weighted
features would successfully reduce the dimensionality compared with using all
primitive features as clustering algorithm input. However, we used supervised
classification method that is efficient in grouping image segments into semantic
meaningful blobs.

Specifically, fuzzy logic based supervised classification is applied to generate
blobs. Starting with an empty class hierarchy, we manually insert sample classes
and using the features description as definition of a certain class. While nearest
neighbor and membership functions are used to translate feature values of arbi-
trary range into a value between 0 (no membership) and 1 (full membership),
logical operators summarize these return values under an overall class evaluation
value between 0 and 1. The advantages of fuzzy classification are [5]

– Translating feature values into fuzzy values standardizes features and allows
to combine features, even of very different ranges and dimensions.

– It enables the formulation of complex feature descriptions by means of logical
operations and hierarchical class descriptions.

Finally, fuzzy classification also helps to merge the neighboring segments that
belong to the same class and get a new semantic meaningful image blob which
truly represents the feature and not just a part of it.

3.3 Hyperclique Patterns

In this paper, hyperclique patterns [13,14] are what we used for capturing co-
existence of spatial objects. The concept of hyperclique patterns is based on
frequent itemsets. In this subsection, we first briefly review the concepts on
frequent itemsets, then describe the concept of hyperclique patterns.

Let I = {i1, i2, ..., im} be a set of items. Each transaction T in database D is a
subset of I. We call X ⊆ I an itemset. The support of X supp(X) is the fraction
of transactions containing X . If supp(X) is no less than a user-specified minimum
support, X is called a frequent itemset. The confidence of association rule X1 →
X2 is defined as conf(X1 → X2) = supp(X1 ∪ X2)/supp(X1). It estimates the
likelihood that the presence of a subset X1 ⊆ X implies the presence of the other
items X2 = X − X1.

If the minimum support threshold is low, we may extract too many spuri-
ous patterns involving items with substantially different support levels, such as
(caviar, milk). If the minimum support threshold is high, we may miss many
interesting patterns occurring at low levels of support, such as (caviar, vodka).
To measure the overall affinity among items within an itemset, the h-confidence
was proposed in [13]. Formally, the h-confidence of an itemset P = {i1, i2, ...im}
is defined as hconf(P ) = mink{conf(ik → P − ik)}. Given a set of items I and
a minimum h-confidence threshold hc, an itemset P ⊆ I is a hyperclique pattern
if and only if hconf(P ) ≥ hc. A hyperclique pattern P can be interpreted as
that the presence of any item i ∈ P in a transaction implies the presence of
all other items P − {i} in the same transaction with probability at least hc.
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This suggests that h-confidence is useful for capturing patterns containing items
which are strongly related with each other. A hyperclique pattern is a maximal
hyperclique pattern if no superset of this pattern is a hyperclique pattern.

3.4 Converting Spatial Relationship into Feature Representation

Approaches for modelling spatial relationships can be grouped into three cate-
gories: graph-based approaches, rule based approaches, and mathematical logic
using 2D strings as the projections of the spatial relationships. However, none of
this can be used as input for statistical Cross Relevance Model (CRM). In addi-
tion, we concentrate on the presence of the objects in the image rather than the
complex geometric or topological spatial relationships. For example, consider
a golf course, we are interested in the appearance of the well textured grass-
land, sand, non-rectangle water-body in a relatively small region. Whether the
sand is left or right to the water-body is not important. In OCCUE, we apply
hyperclique pattern discovery algorithm [13] to detect co-existing objects.

Table 1. A sample image-blob data set

Image Blobs
in1 3,7,11,12,19,22,23,24,25
in2 3,7,6,12,13,15,18,20,23,24
in3 3,7,6,11,16,18,20,24,26
in5 7,6,10,11,12,20
in6 3,7,6,19,20,23,24,25
in7 3,7,12,19,20,23
in8 3,6,7,10,11,12,19,20,23
in9 3,6,15,11,12,20,24,26
in10 6,7,11,12,23,24
in11 3,6,7,11,12,19,22,23,24
in12 3,7,12,19,20,23,24

Example 2.1. After segmentation, images are represented by the blob ID as
shown in Table 1, let us consider a pattern X={b3, b7, b24}, which implies that
blob (#3 roof type II, #7 shade type II , #24 grass type IV) usually appears
together. We have supp(b3) = 82%, supp(b7) = 91%, supp(b24) = 73%, and
supp(b3, b7, b24) = 55%. Then, conf(b3 → b7, b24) = supp(b3, b7, b24)/supp(b3) =
67%; conf(b7 → b3, b24) = supp(b3, b7, b24)/supp(b7) = 60% ; conf(b24 →
b3, b7) = supp(b3, b7, b24)/supp(b24) = 75%. Therefore, hconf(X)=min(conf(b3
→ b7, b24), conf(b7 → b3, b24), conf(b24 → b3, b7)) = 60%. According to the defi-
nition of hyperclique pattern, pattern {b3, b7, b24} is a hyperclique pattern at
the threshold 0.6. Therefore, we treat the set of these three blobs as a new seman-
tic feature. We treated these newly discovered hyperclique pattern as new blobs in
additional to the existing blobs. Meanwhile, the original blobs #3, #7, and #24
are deleted from the original table. Table 1 will be converted to Table2. The new
blobs are represented using 3 digits number in order to distinguish from the orig-
inal blobs. We convert the spatial relationship into a measurable representation,
so that we can apply statistical model in the next step.
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Table 2. A sample image represented in new blob

Image Blobs
in1 11,12,19,22,23,25,105
in2 6,12,13,15,18,20,23,105
in3 11,16,18,20,26,105
in5 7,6,10,11,12,20
in6 6,19,20,23,25,105
in7 3,7,12,19,20,23
in8 3,6,7,10,11,12,19,20,23
in9 3,6,15,11,12,20,24,26
in10 6,7,11,12,23,24
in11 6,11,12,19,22,23 105
in12 12,19,20,23,105

3.5 A Model of Image Annotation

Suppose we are given an un-annotated image in image collection I ∈ C. We have
the object representation of that image I = {o1 . . . om}, and want to automati-
cally select a set of words {w1 . . . wn} that reflect the content of the image.

The general approach is widely accepted by statistical modelling approach.
Assume that for each image I there exists some underlying probability distri-
bution P(·|I). We refer to this distribution as the relevance model of I [8,7]. The
relevance model can be thought of as an urn that contains all possible objects
that could appear in image I as well as all words that could appear in the an-
notation of I. We assume that the observed image representation {o1 . . . om} is
the result of m random samples from P(·|I).

In order to annotate an image with the top relevance words, we need to
know the probability of observing any given word w when sampling from P(·|I).
Therefore, we need to estimate the probability P(w|I) for every word w in the
vocabulary. Given that P(·|I) itself is unknown, the probability of drawing the
word w can be approximated by training set T of annotated images.

P (w|I) ≈ P (w|o1 . . . om) (1)

P (w, o1, . . . , om) =
∑

J∈T

P (J)P (w, o1, . . . , om|J) (2)

Assuming that observing w and blobs are mutually independent for any
given image, and identically distributed according to the underlying distribu-
tion P(·|J). This assumption guarantees we can rewrite equation (2) as follows:

P (w, o1, . . . , om) =
∑

J∈T

P (J)P (w|J)
m∏

i=1

P (oi|J) (3)

We assume the prior probability P (J) follows uniform over all images in train-
ing set mathcalT . We follow [6] and use smoothed maximum likelihood estimates
for the probabilities in equation (3). The estimations of the probabilities of blob
and word given image J are obtained by:

P (w|J) = (1 − αJ )
Num(w, J)

|J | + αJ
Num(w, T )

|T | (4)
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P (o|J) = (1 − βJ)
Num(o, J)

|J | + αJ
Num(o, T )

|T | (5)

Here, Num(w, J) and Num(o, J) represents the actual number of times the word
w or blob o occurs in the annotation of image J . Num(w, T ) and Num(o, T )
is the total number of times w or o occurs in all annotation in the training set
T .|J | denotes for the aggregate count of all words and blobs appearing in image
J, and |T | denotes the total size of the training set. The smoothing parameter
αJ and βJ determine the interpolation degree between the maximum likelihood
estimates and the background probabilities. Due to the different occurrence pat-
terns between words (Zipfian distribution) and blobs (uniform distribution) in
images, we separate the two smoothing parameter as αJ and βJ .

Finally, Equation (1) - (5) provide the mechanism for approximating the prob-
ability distribution P (w|I) for an underlying image I. We annotate images by
first estimating the probability distribution P (w|I) and then select the highest
ranking n words for the image.

4 Experimental Evaluation

In this section, we present experiments on real-world data sets to evaluate the
performance of object discovery with semantic feature selection. Specifically, we
show: (1) an example set of identified semantic spatial features, (2) a performance
comparison between the OCCUE model and a state-of-the-art Cross-media Rel-
evance Model (CRM) model [6].

4.1 The Experimental Setup

Experimental Data Sets. Since our focus in this paper is on HRRS images
rather than regular scenery images, we will not adopt the popular image dataset
Corel, which is considered as a benchmark for evaluating the performance of
image retrieval algorithms. Instead, we use the high resolution orthoimagery
of the major metropolitan areas. This data set is distributed by United States
Geological Survey (USGS - http://www.usgs.gov/). The imagery is available
as Universal Transverse Mercator (UTM) projection and referenced to North
American Datum of 1983. For example, the New Jersey orthoimagery is available
as New Jersey State Plane NAD83. The file format is Georeferenced Tagged
Image File Format(GeoTIFF).

Data Preprocessing. We downloaded the images of 1-foot resolution in the
New York metro area and Springfield MA. Each raw image is about 80MB,
which is then be processed using the Remote Sensing Exploitation Platform
(ENVI - http://www.ittvis.com/envi/). Images with blurred scene or with no
major interesting objects, such as square miles of woods, are discarded. For
images that contain objects we are interested in, we grid the image into small
pieces (2048 × 2048 pixels). Finally, we have 800 images in our experimental
data set and there are 32 features: 10 color features, 10 shape features and 12
texture features.
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Keywords. The keywords used to annotate the semantics of the HRRS images
are also different from the traditional scenery images. First of all, they are not
attainable directly from the data seta as those of Corel images. Rather, it is
manually assigned by domain experts. These keywords can be divided into three
groups: keywords regard landcover, individual objects, and composite objects.

Validation. In our experiments, we divided the data set into 10 subsets with
equal number of images. We performed 10-cross validation. For each experiment,
8 randomly selected sub-dataset are used as training set, a validation set of
80 images and a test set of 80 images. The validation set is used to select the
model parameters. Every images in the data set is segmented into comparatively
uniform regions. The number of segments in each image, and the size of each
segment (measured by the number of pixels) are empirically selected using the
training and validating sets.

Blobs. A fuzzy classification algorithm is applied to generate image blobs. In
our experiment, we generated 30 image blobs. Table 3 shows some examples of
image blobs. Also, Figure 2 shows a sample image and its blob representation.

Table 3. Examples of Blobs

ID Description size color shape texture
1 house I (0,1200) (150,180) rectangle smooth
2 house II (1200, 3000) (150, 180) rectangle smooth
3 house III (0, 1200) (180, 255) rectangle smooth
4 grass I (0, 2000) (140, 160) irregular smooth
5 grass II (0, 2000) (140, 180) irregular rough
30 sand (0, 5000) (190,210) round rough

Blob ID
1, 2
3, 4

11, 12
28

Fig. 2. An Image and Its Blob Representation

Spatial Semantic Features. All images with identified image blobs are used to
identify the co-occurrence of image blobs. Specifically, we exploited a hyperclique
pattern discovery method to find complex objects that consist of co-existing
image blobs, which usually form a unique high-level semantic concept and are
treated as spatial semantic features. For instance, Table 4 shows some example
semantic features.

4.2 Results of Composite Object Annotation

To evaluate the annotation performance, we apply some external metrics includ-
ing Precision, Recall, and F-measure. Specifically, we judge the relevance of the
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Table 4. An Example of Semantic Features

blobID Comp-Object
17, 8 Golf Course
3, 20 Industrial Building

3, 4, 24 Industrial Building
1, 2, 5 Residential Building

1, 2, 9, 10 Residential Building
2, 12, 22 Baseball Field
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Fig. 3. F-measure Values at Different Parameters

retrieved images by looking at the manual annotations of the images. A Recall
measure is defined as the number of the correctly retrieved images divided by
the number of relevant images in the test data set. The Precision measure is
defined as the number of correctly retrieved images divided by the number of
retrieved images. In order to make a balance between the recall and precision
measures, we also compute the F-measure which is defined as 2∗Recall∗Precision

Recall+Precsion .

Parameter Selection. The hyperclique pattern discovery algorithm has two
parameters: support and h-confidence. We examine the impact of these two
parameters on the performance of object annotation. The minimum support
and the h-confidence thresholds would affect object discovery. For example, the
set of blobs (1, 2, 5, 9, 10) can be identified as co-existing objects with minimum
support 0.05 and h-confidence 0.4, while it could not be identified when we
change the minimum support to 0.15. Figure 3 shows the F-measure values with
the change of minimum support and h-confidence thresholds. As can be seen, the
F-measure values vary at different support and h-confidence thresholds. However,
we can observe a general trend is that the F-measure values increase with the
increase of H-confidence. Also, the maximum F-measure value is achieved when
the support threshold is relatively high. This is reasonable, since a relatively
high support threshold can guarantee statistical significance and provide a better
coverage of objects. For this reason, in our experiments, we set relatively high
support and h-confidence thresholds.
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Table 5. A Performance Comparison

measures word class Avg. Prec. Avg. Recall F-Measure
CRM land use 0.6801 0.5923 0.6332

OCCUE land use 0.7512 0.7229 0.7368
CRM object level 0.3013 0.1827 0.2274

OCCUE object level 0.4682 0.3677 0.4119

A Model Comparison. We compared the annotation performance of the two
models, the CRM model and the OCCUE model. We annotate each test image
with 1 word from the land-cover level, 3 words from the composite object level.
Table 5 shows the comparison results. In the table, we can observe that, for
both land-cover level and composite-object level, the performance of OCCUE is
much better than that of CRM in terms of Precision, Recall, and F-measure. For
instance, for the composite-object level, the F-measure value is improved from
0.2274 (CRM) to 0.4119 (OCCUE). This improvement is quite significant.

5 Conclusions and Future Work

In this paper, we proposed a semantic feature selection method for improving
the performance of object discovery in High-Resolution Remote-Sensing (HRRS)
images. Specifically, we exploited a hyperclique pattern discovery technique to
capture groups of co-existing individual objects, which usually form high-level
semantic concepts. We treated these groups of co-existing objects as new se-
mantic features and feed them into the learning model. As demonstrated by our
experimental results, with new semantic feature sets, the learning performance
can be significantly improved.

There are several potential directions for future research. First, we propose to
adapt Spatial Auto-Regression (SAR) model [11] for object discovery in HRRS
images. The SAR model has the ability in measuring spatial dependency, and
thus is expected to have a better prediction accuracy for spatial data. Second,
we plan to organize the identified semantic features as a concept hierarchy for
the better understanding of new discovered high-level objects.
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