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Abstract. Data mining is an area of data analysis that has arisen in response

to new data analysis challenges, such as those posed by massive data sets or
non-traditional types of data. Association analysis, which seeks to find pat-

terns that describe the relationships of attributes (variables) in a binary data
set, is an area of data mining that has created a unique set of data analysis tools
and concepts that have been widely employed in business and science. The

objective measures used to evaluate the interestingness of association patterns
are a key aspect of association analysis. Indeed, different objective measures

define different association patterns with different properties and applications.
This paper first provides a general discussion of objective measures for assess-
ing the interestingness of association patterns. It then focuses on one of these

measures, h-confidence, which is appropriate for binary data sets with skewed
distributions. The usefulness of h-confidence and the association pattern that
it defines—a hyperclique—is illustrated by an application that involves finding

functional modules from protein complex data.

1. Introduction to Association Analysis

Many different types of data analysis techniques have been developed in a
wide variety of fields, including mathematics, statistics, machine learning, pattern
recognition, and signal processing. Data mining is an area of data analysis that
has arisen in response to new data analysis challenges, such as those posed by
massive data sets or non-traditional types of data. In some cases, data mining solves
current data analysis problems by combining existing data analysis techniques with
innovative algorithms. In other cases, new data analysis techniques have been
developed. For example, association analysis, which seeks to find patterns that
describe the relationships of attributes (variables) in a binary data set, is an area
of data mining that has created a unique set of data analysis tools and concepts
that have been widely employed in both business and science.
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Association analysis [AIS93, AS94] analyzes transaction data, such as the
data generated when customers purchase items in a store. (The items purchased by
a customer are a transaction.) A key task of this analysis is finding frequent itemsets,
which are sets of items that frequently occur together in a transaction. For example,
baby formula and diapers are items that may often be purchased together. The
strength of a frequent itemset is measured by its support, which is the number (or
fraction) of transactions in which all items of the itemset appear together. Another
important task of association analysis is the generation of association rules [AS94],
where an association rule is of the form A → B (A and B itemsets) and represents
the statement that the items of B occur in a transaction that contains the items
of A. For instance, the purchase of a toy that does not include batteries often
implies the purchase of batteries. The strength of an association rule is measured
by the confidence of the rule, conf(A → B), which is the fraction of transactions
containing all the items of A that also contain all the items of B.

Although the framework for association analysis just described has proved quite
useful, support and confidence are only two of several possible objective measures
for evaluating association patterns and have well known limitations. Hence, re-
searchers have investigated the utility of a number of other measures for analyzing
association patterns [AY01, BMS97, DP01, HH99, KS96, PS91, RJBA99,

TKS04, GH06]. This paper discusses the importance of objective measures of the
interestingness of association patterns and provides an extended discussion of one
measure—h-confidence—that has proven particularly useful for finding association
patterns in data sets with skewed distributions.

Outline of the Paper Section 2 provides the necessary background by pro-
viding a more detailed introduction to the basic concepts of traditional association
analysis. Section 3 then introduces the general topic of objective measures, consid-
ers the limitations of support and confidence, and discusses alternative objective
measures and their properties. One of these measures, h-confidence, and its associ-
ated pattern, hypercliques, are then considered in detail in Section 4. This section
also presents an application of h-confidence that uses hypercliques to find functional
modules from protein interaction data. Section 5 concludes with a summary and a
discussion of future work.

2. Background

2.1. Basics. As mentioned earlier, association analysis [TSK05] focuses on
binary transaction data, such as the data that results when customers purchase
items in, for example, a grocery store. Such market basket data can be represented
as a collection of transactions, where each transaction corresponds to the items
purchased by a specific customer. Table 1 shows an example of a transaction data
set.

Alternatively, as is more convenient for the discussion later in this paper, this
data can be represented as a binary matrix, where there is one row for each transac-
tion, one column for each item, and the ijth entry is 1 if the ith customer purchased
the jth item, and 0 otherwise. Table 2 shows how this data can be represented as
a binary matrix. Nonetheless, transaction data is, strictly speaking, a special type
of binary data (see [TSK05, Chapter 2]). More specifically, traditional association
analysis is interested only in the presence, not the absence of an item (the 1’s not
the 0’s). The patterns sought and the data analysis performed also reflects that
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Table 1. Market basket data.

Transaction ID Items

1 {Bread, Butter}
2 {Bread, Butter, Diapers, Milk}
3 {Coffee}
4 {Bread, Butter, Coffee, Diapers, Milk}
5 {Bread, Butter}
6 {Diapers, Milk}
7 {Bread, Tea}
8 {Coffee}
9 {Bread, Diapers, Milk}
10 {Tea, Diapers, Milk}

Table 2. Binary data matrix for market basket data.

ID Bread Butter Coffee Diapers Milk Tea

1 1 1 0 0 0 0
2 1 1 0 1 1 0
3 0 0 1 0 0 0
4 1 1 1 1 1 0
5 1 1 0 0 0 0
6 0 0 0 1 1 0
7 1 0 0 0 0 1
8 0 0 1 0 0 0
9 1 0 0 1 1 0
10 0 0 0 1 1 1

fact. For other kinds of binary data, such as the results of a true-false test taken
by a number of students, 1’s and 0’s are equally important.

A key task of association analysis is finding frequent itemsets, which are sets
of items that frequently occur together in a transaction. For example, milk and
diapers are items that may often be purchased together. The strength of a frequent
itemset is measured by its support [ZO98], which is the number (or fraction) of
transactions in which all items of the itemset appear together. Thus, using either
Table 1 or Table 2, the support of the set, {milk, diapers} can be found to be 5
(or 0.5 as a fraction). Typically, the most interesting itemsets are those that have
relatively high support, although the support threshold that is interesting varies
with the data set and application.

Although frequent itemsets are interesting in their own right, the end goal of
association analysis is often the efficient generation of association rules [AIS93,

AS94], where an association rule is of the form A → B (A and B itemsets) and
represents the statement that the items of B occur in a transaction that contains
the items of A. The strength of an association rule is measured by the confidence

of the rule, conf(A → B), which is the fraction of transactions containing all the
items of A that also contain all the items of B. This definition of confidence is
an estimate of the conditional probability of A given B. Using either Table 1
or Table 2, conf(butter → bread) = (number of times butter and bread occur
together)/(number of times butter occurs) = 4/4 = 1, since bread occurs in every
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transaction in which butter occurs. However, conf(bread → butter) = 4/6 = 0.67,
because sometimes bread is not purchased with butter.

The rules that have high confidence are typically most interesting because they
have high predictive power. Another quantity of interest is the number of trans-
actions for which the rule holds, which is known as the support of the association
rule. A rule that holds for many transactions is more likely to be useful than one
that holds for just a few transactions, even if the confidence of the rule is 1. As with
the support threshold for frequent itemsets, the appropriate values for the support
and confidence thresholds of association rules depend on the application and the
data.

Another important factor in choosing the thresholds for confidence and support
is computational efficiency. Specifically, if n is the number of binary attributes in
a transaction data set, there are potentially 2n − 1 possible non-empty itemsets.
Because transaction data is typically sparse, i.e., mostly 0’s, the number of frequent
itemsets is far less than 2n − 1. However, the actual number depends greatly on
the support threshold that is chosen. Likewise, the potential number of association
rules is large and is quite sensitive to the thresholds that are chosen for support
and confidence. Nonetheless, with judicious choices for support and confidence
thresholds, the number of patterns in a data set can be made manageable, and a
variety of efficient algorithms have been developed to find frequent itemsets and
association rules [GZ03].

As a result, association analysis has been very successful. For retail sales data,
association analysis has been used for planning product layout, designing market-
ing campaigns, or managing inventory. Association analysis has also been applied
to areas of science, e.g., to analyze Earth science and genomics data [TSK+01,

XHD+05b]. Furthermore, association analysis has been extended to handle se-
quential data [JKK00, TSK05] and graph data [KK04, TSK05]. Algorithms
for association analysis are readily available, either in commercial data mining tools
[Int05, Ent05, Cle05, Ins05] or public domain software packages [GZ03, R05].
Thus, association analysis has become a standard technique for data analysis both
inside and outside the data mining field.

2.2. A Broader View of Association Patterns and Their Measures.

More generally, an itemset pattern or association rule is defined by the measure
that is selected to evaluate the strength of the association. Traditionally, support
is used to measure the strength of an itemset, while support and confidence are
used to measure the strength of an association rule. However, by defining different
association measures, it is possible to find different types of association patterns
or rules that are appropriate for different types of data and applications. This
situation is analogous to that of using different objective functions for measuring
the goodness of a set of clusters in order to obtain different types of clusterings for
different types of data and applications (see [TSK05, Chapter 8]).

Thus, association analysis is fundamentally concerned with defining new associ-
ation measures. These measures, together with a threshold, select itemsets or rules
that are of interest. What might motivate the creation of a new association mea-
sure? Most often, the development of new measures is motivated by the limitations
of support and/or confidence or the desirable properties of some new measure.

However, besides providing new capabilities, these new association measures
must be cognizant of the practical realties addressed by the current association
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measures of support and confidence. In particular, two important goals are compu-
tational efficiency and distinguishing interesting patterns from spurious ones. As
the size and dimensionality of real world databases can be very large, one could
easily end up with thousands or even millions of patterns, many of which might
not be interesting. It is therefore important to establish the appropriate criteria
for evaluating the quality of the derived patterns. There are two criteria often used
to prune uninteresting patterns. First, patterns that involve a set of mutually in-
dependent items or cover very few transactions are often considered uninteresting.
Second, redundant patterns are considered uninteresting because they correspond
to sub-patterns of other interesting patterns. In both cases, various objective in-

terestingness measures [TKS04, GH06] have been proposed to help evaluate the
patterns.

The next section presents an overview of such measures. While the focus of
that section is on interestingness measures, there are several aspects of pattern eval-
uation that are not considered. First, patterns can be evaluated through subjective
arguments. A pattern is considered subjectively uninteresting unless it reveals un-
expected information about the data or provides useful knowledge that can lead
to profitable actions. Incorporating subjective knowledge into pattern evaluation
requires extensive amount of prior information from domain experts [GH06] and
thus goes beyond the scope of this paper. Second, pattern evaluation can be com-
plicated by the presence of partial associations among items within the pattern. For
example, some relationships may appear or disappear when conditioned upon the
value of certain items. This problem is known as Simpson’s paradox [FF99] and
goes beyond the scope of this paper. Third, the problem of multiple comparison
due to the exploratory nature of the task is not considered in this paper. Interested
readers may refer to the references such as [Web06] and [BHA02].

3. Objective Measures of Interestingness

For simplicity, the discussion in this section focuses primarily on objective mea-
sures of interestingness that are for rules or, more generally, pairs of itemsets. Fur-
thermore, only pairs of binary variables are considered. Nonetheless, most of this
discussion is relevant to the more general situation.

3.1. Definition of an Objective Measures of Interestingness. An ob-
jective measure is a data-driven approach for evaluating the quality of association
patterns. It is domain-independent and requires minimal input from the users,
other than to specify a threshold for filtering low-quality patterns. An objective
measure is usually computed based on the frequency counts tabulated in a con-

tingency table. Table 3 shows an example of a contingency table for a pair of
binary variables, A and B. We use the notation A (B) to indicate that A (B) is
absent from a transaction. Each entry fij in this 2 × 2 table denotes a frequency
count. For example, f11 is the number of times A and B appear together in the
same transaction, while f01 is the number of transactions that contain B but not
A. The row sum f1+ represents the support count for A, while the column sum
f+1 represents the support count for B.

3.2. Limitations of the Support-Confidence Framework. Existing as-
sociation rule mining formulation relies on the support and confidence measures to
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Table 3. A 2-way contingency table for variables A and B.

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

eliminate uninteresting patterns. The drawback of support was that many poten-
tially interesting patterns involving low support items might be eliminated by the
support threshold. The drawback of confidence is more subtle and is best demon-
strated with the following example from Brin, Motwani, and Silverstein [BMS97].

Example 3.1. Suppose we are interested in analyzing the relationship between
people who drink tea and coffee. We may gather information about the beverage
preferences among a group of people and summarize their responses into a table
such as the one shown in Table 4.

Table 4. Beverage preferences among a group of 1000 people.

Coffee Coffee

Tea 150 50 200

Tea 650 150 800

800 200 1000

The information given in this table can be used to evaluate the association rule
{Tea} −→ {Coffee}. At first glance, it may appear that people who drink tea also
tend to drink coffee because the rule’s support (15%) and confidence (75%) values
are reasonably high. This argument would have been acceptable except that the
fraction of people who drink coffee, regardless of whether they drink tea, is 80%,
while the fraction of tea drinkers who drink coffee is only 75%. Thus knowing that
a person is a tea drinker actually decreases her probability of being a coffee drinker
from 80% to 75%! The rule {Tea} −→ {Coffee} is therefore misleading despite
its high confidence value.

The pitfall of confidence can be traced to the fact that the measure ignores
the support of the itemset in the rule consequent. Indeed, if the support of coffee
drinkers is taken into account, we would not be surprised to find that many of the
people who drink tea also drink coffee. What is more surprising is that the fraction
of tea drinkers who drink coffee is actually less than the overall fraction of people
who drink coffee, which points to an inverse relationship between tea drinkers and
coffee drinkers.

3.3. Alternative Objective Interestingness Measures. Because of the
limitations in the support-confidence framework, various alternative measures have
been used to evaluate the quality of association patterns. Table 5 provides the
definitions for some of these measures in terms of the frequency counts of a 2 × 2
contingency table.



OBJECTIVE MEASURES FOR ASSOCIATION PATTERN ANALYSIS 7

Given the wide variety of measures available, it is reasonable to question
whether the measures can produce similar ordering results when applied to a set of
association patterns. If the measures are consistent, then we can choose any one of
them as our evaluation metric. Otherwise, it is important to understand what their
differences are in order to determine which measure is more suitable for analyzing
certain types of patterns.

Suppose we apply the measures to rank the ten contingency tables shown in
Table 6. These contingency tables are chosen to illustrate the differences among the
existing measures. The orderings produced by these measures are shown in Table
7 (with 1 as the most interesting and 10 as the least interesting table). Although

Table 5. Objective measures for association patterns.

Measure (Symbol) Definition

Correlation (φ)
Nf11−f1+f+1√
f1+f+1f0+f+0

Odds ratio (α)
(

f11f00

)/(

f10f01

)

Kappa (κ)
Nf11+Nf00−f1+f+1−f0+f+0

N2−f1+f+1−f0+f+0

Interest (I)
(

Nf11

)/(

f1+f+1

)

Cosine (IS)
(

f11

)/(√
f1+f+1

)

Piatetsky-Shapiro (PS) f11

N
− f1+f+1

N2

Collective strength (S) f11+f00

f1+f+1+f0+f+0
× N−f1+f+1−f0+f+0

N−f11−f00

Jaccard (ζ) f11

/(

f1+ + f+1 − f11

)

All-confidence (h) min
[

f11

f1+
, f11

f+1

]

Goodman-Kruskal (λ)

[

∑

j maxk fjk+
∑

k maxj fjk−maxj fj+−maxkf+k

2N−maxj fj+−maxk f+k

]

Mutual Information (M)

∑

i

∑

j

fij
N

log
Nfij

fi+f+j

min

[

−
∑

i

fi+
N

log
fi+
N

,−
∑

j

f+j
N

log
f+j
N

]

J-Measure (J) f11

N
log Nf11

f1+f+1
+ max

[

f10

N
log Nf10

f1+f+0
, f01

N
log Nf01

f0+f+1

]

Gini index (G) max

[

f1+

N
× [( f11

f1+
)2 + ( f10

f1+
)2] +

f0+

N
× [( f01

f0+
)2 + ( f00

f0+
)2]

−(
f+1

N
)2 − (

f+0

N
)2,

f+1

N
× [( f11

f+1
)2 + ( f01

f+1
)2] +

f+0

N
× [( f10

f+0
)2 + ( f00

f+0
)2]

−(
f1+

N
)2 − (

f0+

N
)2

]

Laplace (L) max

[

f11+1

f1++2
, f11+1

f+1+2

]

Conviction (V ) max

[

f1+f+0

Nf10
,

f0+f+1

Nf01

]

Certainty factor (F ) max

[ f11
f1+

−
f+1

N

1−
f+1

N

,

f11
f+1

−
f1+

N

1−
f1+

N

]

Added Value (AV ) max

[

f11

f1+
− f+1

N
, f11

f+1
− f1+

N

]
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Table 6. Example of contingency tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370
E2 8330 2 622 1046
E3 3954 3080 5 2961
E4 2886 1363 1320 4431
E5 1500 2000 500 6000
E6 4000 2000 1000 3000
E7 9481 298 127 94
E8 4000 2000 2000 2000
E9 7450 2483 4 63
E10 61 2483 4 7452

Table 7. Rankings of contingency tables using the measures given
in Table 5.

φ α κ I IS PS S ζ h λ M J G L V F AV

E1 1 3 1 6 2 2 1 2 2 1 1 1 1 4 2 2 5
E2 2 1 2 7 3 5 2 3 3 2 2 2 3 5 1 1 6
E3 3 2 4 4 5 1 3 6 8 5 3 5 2 2 6 6 4
E4 4 8 3 3 7 3 4 7 5 4 6 3 4 9 3 3 1
E5 5 7 6 2 9 6 6 9 9 9 7 4 6 8 5 5 2
E6 6 9 5 5 6 4 5 5 7 3 8 6 5 7 4 4 3
E7 7 6 7 9 1 8 7 1 1 7 5 9 8 3 7 7 9
E8 8 10 8 8 8 7 8 8 7 8 9 7 7 10 8 8 7
E9 9 4 9 10 4 9 9 4 4 6 4 10 9 1 9 9 10
E10 10 5 10 1 10 10 10 10 10 10 10 8 10 6 10 10 8

some of the measures appear to be consistent with each other, there are certain
measures that produce quite different ordering results. For example, the rankings
given by the φ-coefficient tend to agree with those provided by κ and collective
strength, but are quite different than the rankings produced by interest factor and
odds ratio. Furthermore, a contingency table such as E10 is ranked lowest according
to the φ-coefficient, but highest according to interest factor.

In general, measures that were developed for different applications and types
of data often give quite different results (ranking) and the choice of the proper
association measure depends on the nature of the application and the data type.

3.4. Properties of Objective Measures. The results shown in Table 7 sug-
gest that a significant number of the measures provide conflicting information about
the quality of a pattern. To understand their differences, we need to examine
the properties of these measures. The following is a summary three important
properties. For a more comprehensive list of properties, readers should refer to
[TKS02, TKS04, HH99, GH06].

3.4.1. Inversion Property. Consider the bit vectors shown in Figure 1. The
0/1 bit in each column vector indicates whether a transaction (row) contains a
particular item (column). For example, the vector A indicates that item a belongs
to the first and last transactions, whereas the vector B indicates that item b is



OBJECTIVE MEASURES FOR ASSOCIATION PATTERN ANALYSIS 9

A

1
0
0
0
0
0
0
0
0
1

B

0
0
0
0
1
0
0
0
0
0

F

0
0
0
0
1
0
0
0
0
0

E

0
1
1
1
1
1
1
1
1
0

D

1
1
1
1
0
1
1
1
1
1

C

0
1
1
1
1
1
1
1
1
0

(a) (b) (c)

Figure 1. Effect of the inversion operation. The vectors C and
E are inversions of vector A, while the vector D is an inversion of
vectors B and F .

contained only in the fifth transaction. The vectors C and E are in fact related to
the vector A—their bits have been inverted from 0’s (absence) to 1’s (presence),
and vice versa. Similarly, D is related to vectors B and F by inverting their bits.
The process of flipping a bit vector is called inversion. If a measure is invariant
under the inversion operation, then its value for the vector pair (C,D) should be
identical to its value for (A,B). The inversion property of a measure can be stated
as follows.

Definition 3.2 (Inversion Property). An objective measure M is invariant
under the inversion operation if its value remains the same when exchanging the
frequency counts f11 with f00 and f10 with f01.

Among the measures that remain invariant under this operation include the
φ-coefficient, odds ratio, κ, and collective strength. These measures may not be
suitable for analyzing asymmetric binary data. For example, the φ-coefficient be-
tween C and D is identical to the φ-coefficient between A and B, even though
items c and d appear together more frequently than a and b. Furthermore, the
φ-coefficient between C and D is less than that between E and F even though
items e and f appear together only once! For asymmetric binary data, measures
that do not remain invariant under the inversion operation are preferred [HSM01].
Some of the non-invariant measures include interest factor, IS, PS, and the Jaccard
coefficient.

3.4.2. Null Addition Property. Suppose we are interested in analyzing the rela-
tionship between a pair of words, such as data and mining, in a set of documents.
If a collection of articles about ice fishing is added to the data set, then one would
expect that the association between data and mining to remain unchanged. This
process of adding unrelated data (in this case, documents) to a given data set is
known as the null addition operation.

Definition 3.3 (Null Addition Property). An objective measure M is invariant
under the null addition operation if its value does not change when f00 is increased,
while all other frequencies in the contingency table stay the same.
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For applications such as document analysis or market basket analysis, the mea-
sure is expected to remain invariant under the null addition operation. Otherwise,
the relationship between words may disappear simply by adding enough documents
that do not contain both words! Examples of measures that satisfy this property
include cosine (IS) and Jaccard (ξ) measures, while those that violate this property
include interest factor, PS, odds ratio, and the φ-coefficient.

3.4.3. Scaling Property. Table 8 shows the contingency tables for gender and
the grades achieved by students enrolled in a particular course in 1993 and 2004.
This example is inspired by Mosteller [Mos68]. The data in these tables showed
that the number of male students has doubled since 1993, while the number of
female students has increased by a factor of 3. The correlation between grade
and gender in both tables are different. However, the male students in 2004 are
not performing any better than those in 1993 because the ratio of male students
who achieve a high grade to those who achieve a low grade is still the same, i.e.,
3:4. Similarly, the female students in 2004 are performing no better than those in
1993. According to Mosteller’s analysis method, both tables are equivalent because
the underlying association between gender and grade should be independent of the
relative number of male and female students in the samples.

Table 8. The grade-gender example.

Male Female Male Female
High 30 20 50 High 60 60 120
Low 40 10 50 Low 80 30 110

70 30 100 140 90 230

(a) Sample data from 1993. (b) Sample data from 2004.

Definition 3.4 (Scaling Invariance Property). An objective measure M is in-
variant under the row/column scaling operation if M(T ) = M(T ′), where T is a
contingency table with frequency counts [f11; f10; f01; f00], T ′ is a contingency
table with scaled frequency counts [k1k3f11; k2k3f10; k1k4f01; k2k4f00], and k1, k2,
k3, k4 are positive constants.

From Table 9, notice that only the odds ratio (α) is invariant under the row
and column scaling operations. All other measures such as the φ-coefficient, κ, IS,
interest factor, and collective strength (S) change their values when the rows and
columns of the contingency table are rescaled.

4. An Objective Measure for Skewed Support Distributions

The performances of many association analysis algorithms are influenced by
properties of their input data. For example, the computational complexity of the
Apriori algorithm depends on properties such as the number of items in the data
and average transaction width. This section examines another important property
that has significant influence on the performance of association analysis algorithms
as well as the quality of extracted patterns. More specifically, we focus on data
sets with skewed support distributions, where most of the items have relatively low
to moderate frequencies, but a small number of them have very high frequencies.
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Table 9. Properties of association measures.

Symbol Measure Inversion Null Addition Scaling

φ φ-coefficient Yes No No
α odds ratio Yes No Yes
κ Cohen’s Yes No No
I Interest No No No

IS Cosine No Yes No
PS Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
ζ Jaccard No Yes No
h All-confidence No Yes No
s Support No No No
λ Goodman-Kruskal Yes No No
M Mutual Information Yes No No
J J-Measure No No No
G Gini index Yes No No
L Laplace No No No
V Conviction Yes No No
F Certainty factor Yes No No

AV Added value No No No
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Figure 2. Support distribution of items in the census data set.

A measure, h-confidence, which performs well in the presence of skewed support is
introduced and its properties are described. An example of its usefulness on real
biological data is also presented.

4.1. The Effect of a Skewed Support Distribution. An example of a
real data set that exhibits a skewed support distribution is shown in Figure 2. The
data, taken from the PUMS (Public Use Microdata Sample) census data, contains
49,046 records and 2113 asymmetric binary variables. While more than 80% of the
items have support less than 1%, a handful of them have support greater than 90%.
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Table 10. Grouping the items in the census data set based on
their support values.

Group G1 G2 G3

Support < 1% 1% − 90% > 90%

Number of Items 1735 358 20

To illustrate the effect of skewed support distribution on frequent itemset mining,
we divide the items into three groups, G1, G2, and G3, according to their support
levels. The number of items that belong to each group is shown in Table 10.

Choosing the right support threshold for mining this data set can be quite
tricky. If we set the threshold too high (e.g., 20%), then we may miss many inter-
esting patterns involving the low support items from G1. In market basket analysis,
such low support items may correspond to expensive products (such as jewelry) that
are seldom bought by customers, but whose patterns are still interesting to retail-
ers. Conversely, when the threshold is set too low, it becomes difficult to find the
association patterns due to the following reasons. First, the computational and
memory requirements of existing association analysis algorithms increase consider-
ably with low support thresholds. Second, the number of extracted patterns also
increases substantially, many of which relate a high-frequency item such as milk to a
low-frequency item such as caviar. Such patterns, which are called cross-support

patterns, are likely to be spurious. For example, at a support threshold equal to
0.05%, there are 18,847 frequent pairs involving items from G1 or G3, or both. Out
of these, 93% of them are cross-support patterns; i.e., the patterns contain items
from both G1 and G3. The maximum correlation obtained from the cross-support
patterns is 0.029, which is much lower than the maximum correlation obtained from
frequent patterns involving items from the same group (which is as high as 1.0).
Similar statement can be made about many other interestingness measures dis-
cussed in the previous section. This example shows that a large number of weakly
correlated cross-support patterns can be generated when the support threshold is
sufficiently low. Before defining an association measure that can eliminate such
patterns, we formally define the concept of cross-support patterns.

Definition 4.1 (Cross-Support Pattern). A cross-support pattern is an item-
set X = {i1, i2, . . . , ik} whose support ratio

(1) r(X) =
min

[

s(i1), s(i2), . . . , s(ik)
]

max
[

s(i1), s(i2), . . . , s(ik)
] ,

is less than a user-specified threshold hc.

Example 4.2. Suppose the support for milk is 70%, while the support for sugar
is 10% and caviar is 0.04%. Given hc = 0.01, the frequent itemset {milk, sugar,
caviar} is a cross-support pattern because its support ratio is

r =
min

[

0.7, 0.1, 0.0004
]

max
[

0.7, 0.1, 0.0004
] =

0.0004

0.7
= 0.00058 < 0.01.

Existing measures such as support and confidence are not sufficient to eliminate
cross-support patterns, as illustrated by the data set shown in Figure 3. Assuming
that hc = 0.3, the itemsets {p, q}, {p, r}, and {p, q, r} are cross-support patterns
because their support ratios, which are equal to 0.2, are less than the threshold
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Figure 3. A transaction data set containing three items, p, q, and
r, where p is a high support item and q and r are low support
items.

hc. Although we can apply a high support threshold, say, 20%, to eliminate the
cross-support patterns, this may come at the expense of discarding other interesting
patterns such as the strongly correlated itemset, {q, r} that has support equal to
16.7%.

Confidence pruning also does not help because the confidence of the rules ex-
tracted from cross-support patterns can be very high. For example, the confidence
for {q} −→ {p} is 80% even though {p, q} is a cross-support pattern. The fact that
the cross-support pattern can produce a high-confidence rule should not come as a
surprise because one of its items (p) appears very frequently in the data. Therefore,
p is expected to appear in many of the transactions that contain q. Meanwhile, the
rule {q} −→ {r} also has high confidence even though {q, r} is not a cross-support
pattern. This example demonstrates the difficulty of using the confidence measure
to distinguish between rules extracted from cross-support and non-cross-support
patterns.

4.2. Definition of H-confidence and Hypercliques. Returning to the pre-
vious example, notice that the rule {p} −→ {q} has very low confidence because
most of the transactions that contain p do not contain q. In contrast, the rule
{r} −→ {q}, which is derived from the pattern {q, r}, has very high confidence.
This observation suggests that cross-support patterns can be detected by exam-
ining the lowest confidence rule that can be extracted from a given itemset. The
proof of this statement can be understood as follows.
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(1) Note the following anti-monotone property of confidence:

conf({i1i2} −→ {i3, i4, . . . , ik}) ≤ conf({i1i2i3} −→ {i4, i5, . . . , ik}).

This property suggests that confidence never increases as we shift more
items from the left- to the right-hand side of an association rule. Because
of this property, the lowest confidence rule extracted from a frequent item-
set contains only one item on its left-hand side. We denote the set of all
rules with only one item on its left-hand side as R1.

(2) Given a frequent itemset {i1, i2, . . . , ik}, the rule

{ij} −→ {i1, i2, . . . , ij−1, ij+1, . . . , ik}

has the lowest confidence in R1 if s(ij) = max
[

s(i1), s(i2), . . . , s(ik)
]

. This
follows directly from the definition of confidence as the ratio between the
rule’s support and the support of the rule antecedent.

Thus, for a set of items {i1, i2, . . . , ik}, we can define a new measure known as
the h-confidence [XTK06], which is the lowest confidence attainable from that
itemset.

Definition 4.3. The h-confidence of an itemset X = {i1, i2, · · · , im}, de-
noted as hconf(X), is a measure that reflects the overall affinity among items within
the itemset. This measure is defined as

min{conf{i1 → i2, . . . , im}, conf{i2 → i1, i3, . . . , im}, . . . , conf{im → i1, . . . , im−1}},

where conf is the conventional definition of association rule confidence.

Note that h-confidence can also be expressed as

s({i1, i2, . . . , ik})

max
[

s(i1), s(i2), . . . , s(ik)
] .

Furthermore, h-confidence is equivalent to the all-confidence measure defined
by Omiecinski [Omi03].

min{conf(X1 → X2)} for every X1,X2 such that X1 ∪ X2 = X,X1 ∩ X2 = φ.

4.3. Illustration of H-Confidence. Consider an itemset X = {i1, i2, i3}.
Assume that supp({i1}) = 0.1, supp({i2}) = 0.1, supp({i3}) = 0.06, and supp({i1, i2, i3}) =
0.06, where supp is the support of an itemset. Then

conf{i1 → i2, i3} = supp({i1, i2, i3})/supp({i1}) = 0.6

conf{i2 → i1, i3} = supp({i1, i2, i3})/supp({i2}) = 0.6

conf{i3 → i1, i2} = supp({i1, i2, i3})/supp({i3}) = 1

Hence, hconf(X) = min{conf{i2 → i1, i3}, conf{i1 → i2, i3}, conf {i3 → i1, i2}}
= 0.6.

4.4. Properties of the H-confidence measure. The h-confidence measure
has three important properties, namely the anti-monotone property, the cross-
support property, and the strong affinity property. Detailed descriptions of these
three properties were provided in our earlier paper [XTK06]. Here, we provide
only the following brief summaries.
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The anti-monotone property. The h-confidence measure is anti-monotone,
i.e.,

h-confidence({i1, i2, . . . , ik}) ≥ h-confidence({i1, i2, . . . , ik+1}).

This property is analogous to the anti-monotone property of the support measure
used in association-rule mining [AIS93] and allows us to use h-confidence-based
pruning to speed the search for hyperclique patterns in the same way that support-
based pruning is used to speed the search for frequent itemsets.

The cross-support property. Because of the anti-monotone property of sup-
port, the numerator of the h-confidence measure is bounded by the minimum
support of any item that appears in the frequent itemset. In other words, the
h-confidence of an itemset X = {i1, i2, . . . , ik} must not exceed the following ex-
pression:

h-confidence(X) ≤
min

[

s(i1), s(i2), . . . , s(ik)
]

max
[

s(i1), s(i2), . . . , s(ik)
] .

Note the equivalence between the upper bound of h-confidence and the support ratio
(r) given in Equation 1. Because the support ratio for a cross-support pattern is
always less than hc, the h-confidence of the pattern is also guaranteed to be less
than hc. Therefore, cross-support patterns can be eliminated by ensuring that the
h-confidence values for the patterns exceed hc. The computation of this upper
bound is much cheaper than the computation of the exact h-confidence value, since
the it only relies on the support values of individual items in the itemset. Thus,
using the cross-support property, we can design a partition-based approach that
allows us to efficiently eliminate patterns involving items with different support
levels.

The strong affinity property. H-confidence ensures that the items contained
in an itemset are strongly associated with each other. For example, suppose the
h-confidence of an itemset X is 80%. If one of the items in X is present in a
transaction, there is at least an 80% chance that the rest of the items in X also
belong to the same transaction. This property can also be stated in terms of simi-
larity. For instance, the strong affinity property guarantees that if an itemset has
an h-confidence value of hc, then every pair of items within the hyperclique pattern
must have a cosine similarity greater than or equal to hc. A similar result can be
proved for the Jaccard coefficient. The overall affinity of hyperclique patterns can
be controlled by setting an h-confidence threshold.

As demonstrated in our previous paper [XTK06], the anti-monotone and cross-
support properties form the basis of an efficient hyperclique mining algorithm that
has much better performance than frequent itemset mining algorithms, particularly
at low levels of support. Also, the number of hyperclique patterns is significantly
less than the number of frequent itemsets.

4.5. Applications of H-ypercliques. The hyperclique pattern has been shown
to be useful for various applications, including clustering [XSTK04], semi-supervised
classification [XSK05], data cleaning [XPSK06], and finding functionally coherent
sets of proteins [XHD+05a]. We describe this last application in more detail.

The fact that hypercliques can find relatively pure patterns that have low sup-
port in the presence of noise has been used to analyze protein interaction networks
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[XHD+05a]. For this particular analysis, the data consisted of 252 protein com-
plexes, where each protein complex was a collection of proteins. Functional modules
are groups of proteins that occur in more than one protein complex and represent
groups of proteins that, informally, share a similar function or belong to the same
cellular process. Thus, if the protein complexes are taken as transactions and the
proteins as items, this problem becomes one of finding itemsets. In this domain,
we want to avoid cross support patterns that could result when a frequently oc-
curring protein is included in an itemset (functional module) simply because of its
frequency and not because it works with other proteins to perform some biologically
meaningful task. Since hypercliques do not contain such cross support patterns un-
less the h-confidence threshold is low, hypercliques were considered as candidates
for groups of proteins (itemsets) that could be functional modules.1

The results were evaluated using the Gene Ontology (GO) [GO 06], which is a
set of three separate hierarchies that impose a hierarchical set of terms on biological
functions, processes, and components. For example, the function of a protein is a
set of terms that start at the root of the function hierarchy and proceeds down
the tree to the most specific function (or functions) known for the protein. Since
a protein can have multiple functions or participate in multiple processes or be a
part of multiple components, the function, process, or component characteristics
of a protein is often expressed as a subtree of the function, process, or component
hierarchies. Indeed, the description of a set of proteins is often visualized as a
subtree of one of these hierarchies. If the proteins are concentrated at only a single
leaf of the tree, then the group of proteins are strongly related. We will consider
only the process hierarchy in this discussion.

The analysis of the hyperclique results using GO, was quite encouraging. For
most patterns, many of the proteins in a hyperclique (candidate functional module)
were concentrated mostly at one leaf of the function or process tree. We have only
included a couple of results here, but many of the results can be viewed online at
[Xio05]. Additional details are available in [XHD+05b].

Figure 4 is for the hyperclique pattern containing eight proteins—Pre2 Pre4
Pre5 Pre8 Pup3 Pre6 Pre9 Scl1. As is shown in Figure 4, all of these proteins share
the same leaf node in the process tree, ubiquitin dependent protein catabolic process,
and thus, form a coherent group from a biological perspective. Figure 5 is for the
hyperclique pattern containing seven proteins—Clf1 Lea1 Rse1 YLR424W Prp46
Smd2 Snu114. Although this figure is more complicated, all the proteins share
the function, nuclear mRNA splicing, via spliceosome. The additional complexity
of the figure comes from the fact that some proteins in the group have additional
functions. Note that these figures were produced using the Saccharomyces Genome
Database (SGD) GO Gene Finder [SGD07].

1Actually, closed hypercliques were used. Closed hypercliques are sets of items for which

there exists no larger set of hypercliques that contains the original set of items and has the same
h-confidence.



OBJECTIVE MEASURES FOR ASSOCIATION PATTERN ANALYSIS 17

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

Figure 4. The process hierarchy tree for the hyperclique contain-
ing {Pre2 Pre4 Pre5 Pre8 Pup3 Pre6 Pre9 Scl1}
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Figure 5. The process hierarchy tree for the hyperclique contain-
ing {Clf1 Lea1 Rse1 YLR424W Prp46 Smd2 Snu114}
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5. Conclusion and Future Work

In this paper we discussed objective measures for assessing the interestingness
of association patterns—itemsets and rules—for binary transaction data. Tradition-
ally, the measures of support and confidence have been used to evaluate itemsets
and association rules, but, as was described, these measures are not appropriate
in all situations. More generally, it is most appropriate measure for association
analysis depends on the application and the type of data. To illustrate this, we de-
scribed one such measure, h-confidence. This measure and its associated pattern,
hypercliques, are more appropriate when the data has a skewed distribution. A
concrete example of the usefulness of hypercliques was illustrated by application to
finding functional modules from protein interaction data.

There is considerable room for future work in this area, both in terms of defining
new measures and in exploring which measures (and associated patterns) are most
suited to various applications and types of data. Although it may seem that there
are already a large number of measures, only most of these measures are defined
in terms of pairs of items, and only some have been extended to sets of items. For
those that have been extended, the method of extension has been specific to the
given measure, and thus, a more systematic approach could be useful. There is also
a need for measures that will lend themselves to the association analysis of non-
binary data [STXK04, SK05], including data with mixed attributes. Additionally,
there has not been much work in exploring the statistical aspects of many of these
measures [DP01, BHA02, Web06]. In particular, h-confidence has shown itself
to be useful, but its statistical properties and distribution in various types of data
sets has not been investigated. Finally, although there are efficient algorithms for
finding association patterns using support and confidence, those algorithms often
cannot be applied for finding patterns defined using other measures.
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