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Abstract Given a set of data objects, the problem of correlation computing is concerned
with efficient identification of strongly-related ones. Existing studies have been mainly fo-
cused on static data. However, as observed in many real-world scenarios, input data are
often dynamic and analytical results have to be continually updated. Therefore, there is the
critical need to develop a dynamic solution for volatile correlation computing. To this end,
we develop a checkpoint scheme, which can help us capture dynamic correlation values
by establishing an evolving computation buffer. In this paper, we first provide a theoretical
analysis of the properties of the volatile correlation, and derive a tight upper bound. Such
tight and evolving upper bound is used to identify a small list of candidate pairs, which are
maintained as new transactions are added into the database. Once the total number of new
transactions goes beyond the buffer size, the upper bound is re-computed according to the
next checkpoint, and a new list of candidate pairs is identified. Based on such a scheme, a
new algorithm named CHECK-POINT+ has been designed. Experimental results on real-
world data sets show that CHECK-POINT+ can significantly reduce the computation cost
in dynamic data environments, and has the advantage of compacting the use of memory
space.
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1 Introduction

Recent years have witnessed increased interest in computing strongly related data objects
(e.g., strongly correlated item pairs, as measured by Pearson’s correlation coefficient). Many
important applications in science and business (e.g. Alexander 2001; Cohen et al. 2002; Kuo
et al. 2002) depend on efficient and effective correlation computing techniques to discover
relationships within large collections of data.

Despite the development of correlation computing techniques (e.g. Brin et al. 1997; Jer-
maine 2001; DuMouchel and Pregibon 2001; Jermaine 2003; Ilyas et al. 2004; Xiong et al.
2004, 2006), researchers and practitioners are still facing increasing challenges to measure
associations among data objects produced by emerging data-intensive applications, partic-
ularly when the data are dynamic and analytical results need to be continually updated.
Indeed, with such large and growing data sets, research efforts are needed to develop a dy-
namic solution for volatile correlation computing. To that end, in this paper we provide a
pilot study of dynamically finding all strongly related item pairs, whose correlation values
are above a user-specified minimum threshold, as new data are constantly being collected.

As motivating examples, let us consider the following potential application scenarios.
First, consider an e-commerce Web site that would like to promote sales by making recom-
mendations to customers. In order to automate this process, the computerized system can
recommend items most highly correlated to those being purchased, according to past trans-
actions. As new orders are being placed, the recommendations should be updated automati-
cally, and reflect recent interests in a timely manner. In this case, the underlying computation
would involve finding the strongly correlated item pairs in a real-time fashion. A second ex-
ample can be found in automatic stock picking. In order to monitor stocks with correlated
price movements, a portfolio manager might be interested in knowing highly correlated
stocks, whose prices tend to move in the same direction (either going up or going down).
Despite the large number of stocks on the market, and the number of days with price quotes,
the portfolio manager may want to maintain the up-to-date list of strong pairs as his deci-
sion support. Both the above application scenarios require efficient computation of strongly
correlated pairs in a dynamic fashion.

A straightforward solution is to recompute the correlations of all item pairs every time
when new data become available. However, for large data sets, this approach is not practical,
particularly if the application needs the results in a timely fashion. An alternative method is
to use more space to save time. Along this line, we present a SAVE-ALL algorithm, which
saves the intermediate results for all item pairs. When new transactions are added into the
database, SAVE-ALL only updates the stored values corresponding to each item pair, and
computes the correlation query results with the intermediate values. Obviously, the SAVE-
ALL method compromises space for time. If the number of items in the data set becomes
considerably large, the number of pairs grow even larger, to the extent that it is impossible to
save the intermediate computing results of all item pairs in the memory space. This motivates
our interest in volatile correlation computing.

In our preliminary work (Zhou and Xiong 2008), we proposed a CHECK-POINT algo-
rithm that makes a time-space tradeoff and can efficiently incorporate new transactions for
correlation computing as they become available. In CHECK-POINT, we set a checkpoint to
establish a computation buffer, which can help us determine a correlation upper bound. This
checkpoint bound can be exploited to identify a list of candidate pairs, whose frequencies
are maintained and correlations are computed, as new transactions are being added into the
database. However, if the total number of new transactions exceeds the buffer size, a new
upper bound is computed according to the next checkpoint and a new list of candidate pairs
is identified.
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The rationale behind CHECK-POINT is that, if the number of new transactions is much
smaller than the total number of transactions in the database, the correlation coefficients of
most item pairs will not change substantially. In other words, we only need to establish a very
short list of candidate pairs at the checkpoint and maintain this candidate list in the memory
as new transactions are added into the database. Unlike SAVE-ALL, CHECK-POINT only
maintains the intermediate computing results of a very small portion of the item pairs. This
can greatly compact the use of the memory space, using slightly more time.

In this paper, we derive a tight upper bound for the evolving correlation. The tight bound
is exploited to identify a more compact candidate list than CHECK-POINT, so that better
correlation computing performances can be achieved. Also, we identify the local monotone
property of this new upper bound. Such property can be used for searching the optimal
points effectively. In addition, based on this new upper bound, we exploit the local monotone
property and design a CHECK-POINT+ algorithm for volatile correlation computing.

As demonstrated by our experimental results on several real-world data sets, CHECK-
POINT+ has a much better computational performance than CHECK-POINT. Both
CHECK-POINT and CHECK-POINT+ can significantly reduce the computational cost
compared to existing correlation computing benchmark algorithms, e.g. TAPER, in dynamic
data environments. Also, compared to CHECK-POINT, CHECK-POINT+ is less sensitive
to the change of parameters. Moreover, we observe that there is a trade-off between the use
of time and space by setting different checkpoint values. Indeed, the size of the candidate list
decreases with the increase of the checkpoint density. In contrast, the average computational
savings is reduced with the increase of the checkpoint density. Finally, our experimental re-
sults show that CHECK-POINT+, as compared to SAVE-ALL and CHECK-POINT, can
greatly reduce the use of memory space.

The rest of this paper is organized as follows. Section 2 presents some basic concepts
and formulates the problem. In Sect. 3, we discuss the related work. Section 4 provides a
checkpoint view of dynamic correlation computing. In Sect. 5, we derive an evolving upper
bound of φ correlation coefficient. Section 6 describes the CHECK-POINT+ algorithm. In
Sect. 7, we show the experimental results on real-world data. Finally, Sect. 8 concludes the
work.

2 Volatile correlation computing

In this section, we first provide the computation formula of φ correlation coefficient between
any pair of items. Then, we formulate the problem of volatile correlation computing.

2.1 φ correlation coefficient

The φ correlation coefficient is the computation form of the Pearson’s correlation coefficient
for binary variables (Pearson 1920; Reynolds 1977). Suppose that there are N transactions
in the database, each of which consists of a list of unique items. For any two items a and b,
we can produce a 2 × 2 contingency table like Table 1.

In Table 1, Na is the number of transactions that contain item a, Nb is the number of
those containing item b, and Nab is the number of those containing both items. Then the φ

correlation coefficient between items a and b can be computed as

φab = NNab − NaNb√
Na(N − Na)Nb(N − Nb)

, (1)

as derived in Xiong et al. (2004).
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Table 1 The 2 × 2 contingency
table for items a and b b Row total

1 0

a 1 Nab Nab̄ Na

0 Nāb Nāb̄ Nā

Column total Nb Nb̄ N

2.2 Problem formulation

Here, we introduce the problem formulation. Let D be a transaction database, which has M

items and N transactions. In this data set, a common task of correlation computing is to find
all item pairs whose correlation coefficients are above a user-specified threshold θ . This is
known as the all-strong-pairs (ASP) correlation query problem (Xiong et al. 2004). In this
paper, we investigate the ASP correlation query problem in dynamic data environments.

Specifically, every time when S new transactions is added into the original database D,
we want to have the dynamically updated results from the ASP correlation query. In other
words, this ASP correlation query can be a frequent task in dynamic data environments. In
this study, our goal is to develop a dynamic, practical, and computation-efficient solution to
this ASP correlation query problem.

3 Related work

Association analysis has been a major topic in the field of data mining. Traditional
association-rule mining algorithms (Agrawal et al. 1993; Bayardo and Agrawal 1999) are
found to be yielding many spurious patterns (Brin et al. 1997; Xiong et al. 2006, 2008). As
a result, in recent years, many statistical correlation measures, such as χ2 statistics (Brin
et al. 1997; DuMouchel and Pregibon 2001; Jermaine 2001, 2003), Pearson’s correlation
coefficients (Xiong et al. 2004, 2006, 2008; Zhou and Xiong 2008), rank-based correlation
coefficients (Melucci 2007; Yilmaz et al. 2008), and mutual information (Ke et al. 2006,
2007) have been considered in the setting of large-scale association analysis.

Specifically, due to its flexibility in measuring the association among multiple items, the
χ2 statistic has been proposed to analyze market-basket data (Brin et al. 1997). However,
χ2 does not possess an upward closure property for efficient computation (DuMouchel and
Pregibon 2001). Also, Jermaine (2001) investigated the implication of incorporating χ2-
based queries into data cube computations. He showed that finding subcubes that satisfy
statistical tests such as χ2 are inherently NP-hard, but may be made more tractable using
approximation schemes. Finally, Jermaine (2003) presented an iterative procedure for cor-
relation analysis by dismissing part of the database based on human feedback.

On the other hand, the upper bound of φ, which is the binary form of Pearson’s correla-
tion coefficient (Pearson 1920; Reynolds 1977), has been found to have an anti-monotone
property (Xiong et al. 2004, 2006). Such property has helped finding all strongly related
pairs efficiently, especially for data with Zipf rank-support distributions.

Pruning techniques using upper bounds have been effectively used on both φ (Xiong
et al. 2004, 2006) and χ2 (Morishita and Sese 2000). However, previous work does not
consider dynamic data environments. In our preliminary work (Zhou and Xiong 2008), we
proposed a CHECK-POINT algorithm that makes a time-space tradeoff for dynamic corre-
lation computation. The idea was to use an upper bound of the evolving φ correlation by
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setting a checkpoint for future transactions. In this paper, we improve the CHECK-POINT
algorithm by deriving a tighter upper bound, which provides better pruning effect and can
lead to better computational performances.

4 A checkpoint view

In this section, we introduce the checkpoint principle. Along this line, we provide some
intuitive understandings of the checkpoint framework.

In general, there are two basic ways for developing incremental solutions for frequent
and dynamic ASP correlation queries. First, the most straight-forward way is to recompute
the correlation values for all the item pairs every time new data sets of transactions become
available. In this case, we can use an efficient static ASP correlation query algorithm, such
as TAPER (Xiong et al. 2004), for each run of query. However, for very large data sets,
this approach is infeasible if data updates are very frequent and the results are needed in a
timely manner. The second way is to use more space in order to save time (Bentley 2000).
Specifically, we can save the support of each item pair and update the values every time new
data are added into the database. In this way, once all the intermediate computing results are
saved, the ASP correlation queries can be done very efficiently, but the memory requirement
is very high. For instance, let us consider a database of 106 items, which may represent the

collection of books available at an e-commerce Web site. There are
(106

2

) ≈ 0.5×1012 possi-
ble item pairs, which need a huge amount of memory space to store intermediate computing
results. In practice, this memory requirement cannot be satisfied for data sets with a large
number of items.

The checkpoint-based method can be considered as an answer in between the above
two solutions. Specifically, instead of saving the intermediate computing results for all item
pairs, we propose to save them for only selected item pairs. Aiming for a tradeoff between
time and space, we use a checkpoint to establish a computation buffer, which can help us
determine an evolving correlation upper bound.

The basic process is illustrated in Fig. 1. At a checkpoint, assuming that there are n

existing transactions in the database, and we know that Δ (Δ � n) new transactions will be
added before the next checkpoint, then we can develop an upper bound for all the item pairs
on the (n + Δ) transactions. This upper bound has taken the newly added transactions into
consideration. Therefore, based on this upper bound, we can establish a list of candidate
item pairs whose upper bounds are greater than or equal to the threshold θ . This list of
candidate item pairs can be treated as a computation buffer for ASP correlation queries.
While new transactions can be added into the buffer dynamically, we only need to maintain

Fig. 1 An illustration of the
checkpoint process
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the intermediate results for item pairs in this candidate list as long as the cumulative number
of new transactions is less than Δ.

The reason that the candidate list can remain unchanged (as long as the cumulative num-
ber of new transactions is less than Δ) is as follows. With a checkpoint at (n + Δ), we
identify upper bounds for all item pairs for all n known transactions and Δ unknown transac-
tions. In other words, these upper bounds are the maximum possible values they can achieve
no matter what kind of Δ transactions have been added into the database. Then, if the cumu-
lative number of new transactions is less than Δ, the upper bounds for all the item pairs in
(n + Δ) transactions will remain unchanged. Therefore, the candidate list will also remain
unchanged. We call this the checkpoint principle.

Once the cumulative number of new transactions is greater than Δ, we need to set a new
checkpoint at (n + 2Δ). This iterative process will form an incremental solution for the
dynamic ASP query problem. The rationale behind the checkpoint principle is that a small
number of new transactions will not have significant impact on the correlation coefficients
of most item pairs in the database if the total number of transactions is very large.

5 Evolving upper bound of φ correlation coefficient

In this section, we introduce an evolving upper bound of φ correlation coefficient. This upper
bound is fundamental to the design of an efficient volatile correlation computing algorithm.
We first start with the introduction of mathematical notations, which will be used throughout
the paper. Then, we present a loose upper bound derived in our preliminary work (Zhou and
Xiong 2008). Finally, we develop a tight upper bound based on our new understanding on
the computational properties of the evolving correlation.

5.1 Mathematical notations

Here, we first present some basic mathematical notations used in this paper. Table 2 lists
the mathematical notations to be used throughout this paper. Suppose that at a certain point
of time, we have a database of n transactions, called the original database. Also, assume
that at a later time, we will have collected another Δ new transactions, which we call the
incremental data. By appending the new transactions to the original database, we will have
a combined database, which has (n + Δ) transactions in total. Please note that n is always a
known constant, and Δ is a tunable parameter.

For any item a, we denote its frequency in the original database as na , meaning that na

of the n transactions contain item a. Therefore, the range of na will be {0,1,2, . . . , n}. Also,
for any item pair {a, b}, we denote its frequency as nab, meaning that nab of the original
transactions contain both items a and b. We have 0 ≤ nab ≤ min{na,nb}. These numbers
and their relationships have counterparts in the incremental and the combined databases as

Table 2 Basic mathematical notations

Terms Original Incremental Combined

Number of transactions n Δ N = n + Δ

Frequency of item a na Δa Na = na + Δa

Frequency of item b nb Δb Nb = nb + Δb

Frequency of item pair {a, b} nab Δab Nab = nab + Δab
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well, as listed in Table 2. To simplify subsequent discussions, let N = n+Δ, Na = na +Δa ,
Nb = nb +Δb , and Nab = nab +Δab. Then the correlation of {a, b} in the combined database
follows directly from (1).

For the problem of volatile correlation computing, the frequency of any item or pair in
the original database can be counted directly, so na , nb and nab are known. However, since
the Δ new transactions are to be collected in the future, the numbers in the incremental
database, Δa , Δb and Δab, are unknown.

5.2 A loose evolving upper bound

In our preliminary work (Zhou and Xiong 2008), a loose evolving upper bound for φab has
been derived. When separating the computation formula of φab in (1) into three parts, we
have

φab = Wab

v(Na)v(Nb)
,

where Wab = NNab − NaNb and

v(x) = √
x(N − x). (2)

Then, we have

φab ≤ maxWab

minv(Na)minv(Nb)
,

and the right hand side (RHS) is a loose upper bound for φab. It has been derived in Zhou
and Xiong (2008) that

maxWab =

⎧
⎪⎨

⎪⎩

w(0), if c0 ≤ 0;
w(c0), if 0 < c0 ≤ Δ;
w(Δ), if c0 > Δ;

where

c0 = N − na − nb

2
, (3)

w(t) = N(nab + t) − (na + t)(nb + t); (4)

and that minv(Nx) = min{v(nx), v(nx + Δ)}, ∀x ∈ {a, b}.
Although maxWab, minv(Na), and minv(Nb) may be reached individually, they may

not be reached simultaneously. In other words, the upper bound on the RHS of (3) is rather
loose. Note that, when the upper bound is larger than 1, it will not be helpful, since we know
by definition that φab ≤ 1. This motivates us to look for a tight upper bound to achieve better
pruning performances.

5.3 Search space analysis

For any item pair {a, b}, after the first n transactions, na , nb and nab are known. In order to
find a tight upper bound of the evolving φab by the next checkpoint, we would like to find
the maximal possible value of φab by taking into account all possibilities within the next Δ

new transactions. In this subsection, we analyze the range of (Na,Nb), from which we will
search for the optimal point.
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Lemma 1 (Overall Search Space) The search space of (Na,Nb), on which φab is defined, is
Rab = Ra × Rb , where

Rx = [nx,nx + Δ] ∩ Z − {0,N}, ∀x ∈ {a, b}, (5)

and Z denotes the set of all integers.

Proof By definition, we have Na = na + Δa , where na is a known integer and Δa may take
any value in {0,1,2, . . . ,Δ}. So the range of Na will be {na,na + 1, na + 2, . . . , na + Δ} =
[na,na + Δ] ∩ Z. However, according to the formula of φab in (1), it is naturally required
that Na 	= 0 and Na 	= N , otherwise the denominator of φab will be zero, making φab not
meaningful. The same situation applies to Nb . Therefore, we exclude those special points
from the search space. �

A graphical representation of Rab can be shown in Fig. 2. In the coordinate system, if we
denote the x-axis as Na , y-axis as Nb , then the point (na, nb) represents the current condition
that so far we have na transactions containing item a and nb transactions containing item b,
and the shaded region represents the range of (Na,Nb) within the next Δ new transactions.
For any item pair {a, b}, the range Rab must lie within (0,N) × (0,N), the boundary of
which is shown with dashed lines, since we exclude the cases that Na = 0, Nb = 0, Na = N ,
or Nb = N .

Without loss of generality, in the following, we assume that 0 < Na < N and 0 < Nb < N

are always true, since the boundary cases seldom happen and are easy to exclude.

Lemma 2 (General Upper Bound) The upper bound of φab can be written as

upper(φab) = max

{
max(Na,Nb)∈R−

ab
f (Na,Nb;N(na − nab));

max(Na,Nb)∈R+
ab

f (Nb,Na;N(nb − nab)).
(6)

where

R−
ab = Rab ∩ {(Na,Nb) : Na − Nb ≤ na − nb}; (7)

R+
ab = Rab ∩ {(Na,Nb) : Na − Nb ≥ na − nb}; (8)

Fig. 2 The range of (Na,Nb),
Rab = Ra × Rb , as illustrated
with the shaded area
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and

f (x, y; c) = x(N − y) − c

v(x)v(y)
. (9)

with v(x) defined in (2).

Proof According to the formula of φab in (1),

φab ≤ N(nab + min{Δa,Δb}) − NaNb

v(Na)v(Nb)

=
{

Na(N−Nb)−N(na−nab)

v(Na)v(Nb)
, if Na − na ≤ Nb − nb

Nb(N−Na)−N(nb−nab)

v(Na)v(Nb)
, if Na − na ≥ Nb − nb

=
{

f (Na,Nb;N(na − nab)), if Na − Nb ≤ na − nb;
f (Nb,Na;N(nb − nab)), if Na − Nb ≥ na − nb,

where f (x, y; c) is the function given in (9).
As shown in Fig. 3, the line Nb − Na = nb − na cuts the square region of Rab into two

isosceles right triangles, R−
ab and R+

ab. For any point (Na,Nb) ∈ R−
ab, Na −Nb ≤ na −nb (7).

And for any point (Na,Nb) ∈ R+
ab, Na − Nb ≥ na − nb (8). Obviously, the maximum value

of φab on Rab will be the larger of that on R−
ab and R+

ab. So the RHS of (6) will be an upper
bound for φab. �

In the following, we look for the optimal value (i.e. maximum value) of φab on R−
ab and

R+
ab, respectively. We find that in both cases, the search space R−

ab, or R+
ab, reduces to all

integer points on the line segment

y = x − na + nb, x ∈ [na,na + Δ]; (10)

while all other points need not to be considered.

Lemma 3 (Reduced Search Space in R−
ab) For any point (x, y) ∈ R−

ab, it is always true that
f (x, y; c) ≤ f (x, x − na + nb; c), where c = N(na − nab).

Fig. 3 The range of (Na,Nb) in
two parts, Rab = R−

ab ∪ R+
ab
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Proof For any (x, y) ∈ R−
ab, we have c − Nx ≤ N(na − nab) − Nna = −Nnab ≤ 0. Taking

partial derivatives of f (x, y; c) with respect to y (see Appendix A), we have

∂f (x, y; c)
∂y

= (N − y)(c − Nx) − cy

2v(x)v3(y)
≤ 0. (11)

So fixing x, f (x, y; c) increases as y decreases. Since y ≥ x −na +nb , we have f (x, y; c) ≤
f (x, x − na + nb; c). �

According to (7), for any point (x, y) ∈ R−
ab, we have y ≥ x − na + nb . As shown in

Lemma 3, we can always find a point (x, y ′) on (10), where y ′ = x − na + nb ≤ y, such that
f (x, y ′; c) ≥ f (x, y; c). In other words, the search space in R−

ab reduces to integer points on
the line segment in (10), and there is no need to check any other point in R−

ab.

Lemma 4 (Reduced Search Space in R+
ab) For any point (x, y) ∈ R+

ab, it is always true that
f (y, x; c) ≤ f (x − na + nb, x; c), where c = N(nb − nab).

Proof For any (x, y) ∈ R+
ab, we have N(N − x) − c ≥ N(N − na − Δ) − N(nb − nab) ≥

N(n − na − nb + nab) ≥ 0. Taking partial derivatives of f (y, x; c) with respect to y (see
Appendix B), we have

∂f (y, x; c)
∂y

= [N(N − x) − c]y + c(N − y)

2v(x)v3(y)
≥ 0. (12)

So fixing x, f (y, x; c) increases as y increases. Since y ≤ x −na +nb, we have f (y, x; c) ≤
f (x − na + nb, x; c). �

According to (8), for any point (x, y) ∈ R+
ab, we have y ≤ x − na + nb . As shown in

Lemma 4, we can always find a point (x, y ′) on (10), where y ′ = x − na + nb ≥ y, such that
f (y ′, x; c) ≥ f (y, x; c). In other words, the search space in R+

ab reduces to integer points on
the line segment in (10), and there is no need to check any other point in R+

ab.

Lemma 5 (Upper Bound in Reduced Search Space) The general upper bound in Lemma 2
can be simplified into

upper(φab) = max
t∈T

w(t)

v(t + na)v(t + nb)
. (13)

where v(x) and w(t) are given in (2) and (4), respectively, and T = {0,1, . . . ,Δ}.

Proof As proved in Lemmas 3 and 4, the optimal points within Rab have to be somewhere
on the line segment in (10). That is, when Nb − nb = Na − na . Let t = Nb − nb = Na − na ,
then

f (Na,Nb;N(na − nab)) = (t + na)(N − t − nb) − N(na − nab)

v(t + na)v(t + nb)

= N(t + nab) − (t + na)(t + nb)

v(t + na)v(t + nb)
(14)
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f (Nb,Na;N(nb − nab)) = (t + nb)(N − t − na) − N(nb − nab)

v(t + na)v(t + nb)

= N(t + nab) − (t + na)(t + nb)

v(t + na)v(t + nb)
. (15)

Notice that the RHS of (14) is exactly the same with the RHS of (15). So the upper bound
in (13) is equivalent to (6). �

For the ease of writing, let

f (t) = w(t)

v(t + na)v(t + nb)
. (16)

Then, based on Lemma 5, we have upper(φab) = maxt∈T f (t). Now, all we need is to find
maxf (t) on T = {0,1, . . . ,Δ}.

5.4 Local monotonicity

In order to study the monotonicity of f (t), we take the first derivative f ′(t), as derived in
Appendix C. Note that although the range of t is a set of integers, when studying monotonic-
ity, we treat f (t) as a continuous function of t unless otherwise noted. Also, for the ease of
writing, we always assume that values where f (t) is undefined are excluded from the ranges
we consider. We have

f ′(t) = 2(c0 − t)[αs(t) + β]
v3(t + na)v3(t + nb)

, (17)

where

s(t) = t2 − 2c0t + nanb; (18)

α = N

[
nab − na + nb

2

]
≤ 0; (19)

β = N2

[
nanb − nab(na + nb)

2

]
. (20)

In the following, we analyze the monotonicity of f (t) based on the sign of f ′(t). It has
been found that depending on each pair, the monotonicity of f (t) has up to three cases, as
discussed in Lemma 6 through Lemma 8.

Lemma 6 (Monotonicity, Case I) If nab = na = nb , then f (t) will be constant on T .

Proof When na = nb = nab, from (19) and (20) we have α = 0 and β = 0. In this case, (17)
reduces to f ′(t) = 0, so f (t) is constant on T . �

Whenever na = nb = nab does not hold, we have α < 0. So (17) can be written as

f ′(t) = −2α(t − c0)(t
2 − 2c0t + γ )

v3(t + na)v3(t + nb)
, (21)
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where

γ = nanb + β

α
= nanb − N · na(nb − nab) + nb(na − nab)

(na − nab) + (nb − nab)

= nanb − N [naρ + nb(1 − ρ)], (22)

with ρ = nb−nab
(na−nab)+(nb−nab)

. Obviously, 0 ≤ ρ ≤ 1.

Lemma 7 (Monotonicity, Case II) If nab < na = nb , then f (t) is monotonically decreasing
when t < c0, and monotonically increasing when t > c0, with c0 given in (3).

Proof If na = nb , then t2 − 2c0t + γ = (t − c0)
2, and (21) becomes

f ′(t) = −2α

v3(t + na)v3(t + nb)
· (t − c0)

3.

so f ′(t) < 0, if t < c0; and f ′(t) > 0 if t > c0. �

Lemma 8 (Monotonicity, Case III) If na 	= nb , then f (t) is monotonically increasing on

[c0 −
√

c2
0 − γ , c0), and monotonically decreasing on (c0, c0 +

√
c2

0 − γ ], with c0 given in (3)
and γ given in (22).

Proof If na < nb , then γ ≤ nanb − Nna = −(N − nb)na , and

c2
0 − γ ≥

(
N − na − nb

2

)2

+ (N − nb)na

= [N2 − 2N(na + nb) + (na + nb)
2 + 4Nna − 4nanb]/4

= [N2 − 2N(nb − na) + (nb − na)
2]/4 =

(
N + na − nb

2

)2

≥ 0. (23)

Otherwise, when na > nb , we have γ ≤ nanb − Nnb = −(N − na)nb , and

c2
0 − γ ≥

(
N − na − nb

2

)2

+ (N − na)nb

= [N2 − 2N(na + nb) + (na + nb)
2 + 4Nnb − 4nanb]/4

= [N2 − 2N(na − nb) + (na − nb)
2]/4 =

(
N − na + nb

2

)2

≥ 0. (24)

From (23) and (24) we can see that in either case, c2
0 − γ ≥ 0. So there are two solutions

to t2 − 2c0t + γ = 0: t1,2 = c0 ±
√

c2
0 − γ , and (21) reduces to

f ′(t) = −2α

v3(t + na)v3(t + nb)
· (t − c0)(t − t1)(t − t2).

We can prove that [0,Δ] ⊆ [t1, t2] as follows. If na < nb , from (23) we know that√
c2

0 − γ ≥ N+na−nb

2 . So

t1 = c0 −
√

c2
0 − γ ≤ N − na − nb

2
− N + na − nb

2
= −na ≤ 0,
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Fig. 4 The sketches of f (t) when α < 0. (a) nab < na = nb (Case II as discussed in Lemma 7); (b) na 	= nb

(Case III as discussed in Lemma 8)

t2 = c0 +
√

c2
0 − γ ≥ N − na − nb

2
+ N + na − nb

2
= N − nb ≥ Δ.

On the other hand, if na > nb , from (24) we know that
√

c2
0 − γ ≥ N−na+nb

2 . So

t1 = c0 −
√

c2
0 − γ ≤ N − na − nb

2
− N − na + nb

2
= −nb ≤ 0,

t2 = c0 +
√

c2
0 − γ ≥ N − na − nb

2
+ N − na + nb

2
= N − na ≥ Δ.

Since [0,Δ] ⊆ [t1, t2], for any t ∈ [0,Δ], we have t − t1 ≥ 0 and t − t2 ≤ 0. Also note
that α < 0 and t1 < c0 < t2. So f ′(t) > 0, if t < c0; and f ′(t) < 0 if t > c0. �

The monotonicity of f (t) in Cases II and III can be illustrated in Fig. 4. Note that only
trend lines are plotted, and the actual curves of f (t) may not necessarily be straight line
segments.

5.5 The tight evolving upper bound

In this subsection, we come up with the tight upper bound of φab, based on the findings in
the previous subsection. First, we briefly prove the symmetry of f (t), which is helpful for us
to compare the values of f (0) and f (Δ), without actually computing them. Then we derive
the upper bound corresponding to each case.

Lemma 9 (Symmetry) f (t) is symmetric about t = c0.

Proof A function f (t) is symmetric about t = c0 if f (c0 − x) = f (c0 + x), forall x in its
well-defined range. First, it is easy to see from (18) that s(t) is symmetric about t = c0. Then
we can rewrite f (t) in (16) into

f (t) = N(nab + t) − (na + t)(nb + t)√
(t + na)(N − t − na)

√
(t + nb)(N − t − nb)

= Nnab − s(t)√
s(t) − Nna

√
s(t) − Nnb

.

So f (t) is also symmetric about t = c0. �
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Fig. 5 Maximum value of f (t) on [0,Δ] when nab < na = nb

Lemma 10 (Upper Bound, Case I) If nab = na = nb, then upper(φab) = 1.

Proof When nab = na = nb , we have

f (t) = N(nab + t) − (na + t)(nb + t)√
(na + t)(N − na − t)

√
(nb + t)(N − nb − t)

= N(na + t) − (na + t)2

(na + t)(N − na − t)
= 1,∀t ∈ T . �

Lemma 11 (Upper Bound, Case II) If nab < na = nb, then

upper(φab) =
{

f (0), if na + nb ≤ n;
f (Δ), otherwise.

Proof By analyzing f (t) as in Lemma 7, the maximum value of f (t) on [0,Δ] is either
f (0) or f (Δ). Figure 5(a) presents the case c0 ≥ Δ

2 . In this case, since 0 is not as close to
c0 than Δ, we have f (0) ≥ f (Δ). Here c0 ≥ Δ

2 ⇔ N − na − nb ≥ Δ ⇔ n − na − nb ≥ 0 ⇔
na +nb ≤ n. Figure 5(b) presents the case c0 > Δ

2 . In this case, since Δ is further away from
c0 than 0, we have f (0) ≤ f (Δ). �

Lemma 12 (Upper Bound, Case III) If na 	= nb, then

upper(φab) =

⎧
⎪⎨

⎪⎩

f (Δ), if c0 > Δ;
f (0), if c0 < 0;
f (�c0�), otherwise.

Proof By analyzing f (t) as in Lemma 8, the maximum value of f (t) on [0,Δ] is the largest
among f (0), f (Δ) and f (c0). Figure 6(a) presents the case c0 > Δ. In this case, since Δ

is closer to c0 than 0, we have f (0) < f (Δ). Figure 6(b) presents the case 0 ≤ c0 ≤ Δ. In
this case, obviously, f (c0) is the largest. However, c0 = N−na−nb

2 may not be an integer, so
we take �c0�, which is the nearest integer to c0. If N − na − nb is even, then �c0� = c0;
otherwise, it is equivalent to use �c0� or �c0�, since they are equally apart from c0 (see
Lemma 9). Figure 6(c) presents the case c0 < 0. In this case, since Δ is further away from
c0 than 0, we have f (0) > f (Δ). �
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Fig. 6 Maximum value of f (t) on [0,Δ] when na 	= nb

In a nutshell, in this subsection we have derived the tight upper bound for φab in the three
different cases of pair {a, b}. In each case, we find a handful of candidate optimum points,
at which upper(φab) may reach its maximum value. By comparing the values of upper(φab)

at these points only, and choosing the maximum, we can eventually come up with the actual
upper bound.

6 The CHECK-POINT+ algorithm

In our preliminary work (Zhou and Xiong 2008), we introduced a basic version of the
volatile correlation computing algorithm, named CHECK-POINT, which was based on a
loose upper bound of φ. In this paper, we design a new algorithm named CHECK-POINT+,
which is an enhanced version of the CHECK-POINT algorithm. In the following, we de-
scribe the algorithm in detail.

The basic framework of CHECKPOINT+ is described in Algorithm 1. Given a minimum
correlation threshold θ , and new transactions that are being collected, our goal is to run the
ASP query after every S new transactions. For achieving this goal effectively, a checkpoint
is set after every Δ new transactions. Typically, we have S � Δ, meaning that ASP queries
are much more frequent than checkpoints.

As time goes, we maintain CL, the list of candidate pairs, and I , the list of transactions in
which each item exists. More specially, for each candidate pair in CL, we keep record of the
item IDs (e.g., {a, b}) and its frequency in all transactions collected so far (e.g., nab). And
for each item a ∈ I , we keep record of its item ID (i.e., a), its accumulative frequency (i.e.,
na), followed by the IDs of previous transactions that contain this item. Specially, we use Ia

to represent the list of transactions which contain item a.
Algorithm 1 describes what happens when the k-th transaction has just been collected

(k = 1,2, . . .). There are up to three steps: initializations, ASP query, and candidate list
update. First, initializations are done by updating I and CL with the information contained
in the new transaction Tk (Line 1). This includes appending the transaction ID, k, to each
item in I that has been involved, and incrementing its pair-wise frequency, if any pair in
CL co-occurs in Tk . Then, whenever S new transactions are collected since the last run of
ASP query, we need to re-run the query to find the strong pairs up-to-date (Lines 2–7). For
this purpose, all we need to do is to check the correlation of each pair on the candidate list
(Line 3). All other pairs are safely ignored due to the way the candidate list was constructed
(please refer to the checkpoint principle in Sect. 4). Since the frequency of each candidate
pair is recorded, it is easy to compute the exact correlation directly (Line 4). Given the
minimum correlation threshold θ , we output the pair as a strong one only if its correlation is
no less than θ (Line 5). Note that candidate pairs is a superset of strong pairs, and a candidate
pair may not always be strong for all ASP queries between two neighboring checkpoints.
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Input: θ , minimal correlation threshold; Tk , the k-th transaction; CL, candidate list;
I , item list; S, number of transactions between ASP queries; Δ, number of
transactions between checkpoints.

Output: All strong pairs, whenever a ASP query is requested
Initializations with Tk ;1

if k mod S = 0 then2

foreach item pair {a, b} ∈ CL do3

φab ← nnab−nanb√
na(n−na)nb(n−nb)

;
4

if φab ≥ θ then output {a, b} as a strong pair5

end6

end7

if k mod Δ = 0 then8

CL ← UpdateCandidateList(CL, I, θ,Δ)9

end10

Algorithm 1: The CHECK-POINT+ Algorithm

Finally, for every Δ transactions, we update the candidate list (Lines 8–10) by calling a
sub-procedure named UpdateCandidateList (Line 9).

Procedure 2 illustrates what happens at each checkpoint. Given the up-to-date candidate
list CL, item list I , and the necessary parameters, the goal is to rebuild the list of candi-
dates, CL′, by taking into account of future transactions up to the next checkpoint. In this
procedure, we need to screen each possible pair of items to see if it remains or has become
a candidate. More specifically speaking, for any pair of items {a, b} (Line 2), if na = nb ,
then it may correspond to Cases I or II (Lines 4–6); otherwise it corresponds to Case III
(Lines 8–15). After determining the upper bound by case, as stated in Lemmas 10 through
12, we append the pair to the new candidate list CL′ if its upper bound is no less than θ

(Line 17).
In the case that na = nb (Line 3), we first find nab by either looking it up from the old

candidate list (if available), or counting it from scratch by comparing Ia and Ib (Line 4).
Further, if nab = na , then this pair corresponds to Case I (Lemma 6), and the upper bound
is 1, according to Lemma 10. Since a valid choice of θ has to be in [0,1], this upper bound is
definitely no less than θ , and so the pair is appended as a candidate immediately and we can
proceed to the next pair (Line 5). Otherwise, the pair must correspond to Case II (Lemma 7).
In this case, we can calculate the upper bound according to Lemma 11 (Line 6).

In the other case, we have na 	= nb (Line 7), and it corresponds to Case III (Lemma 8). In
this case, we first try to look up nab from the old candidate list CL (Line 8). If {a, b} is not in
CL, then we may need to count the exact nab by comparing Ia versus Ib directly (Line 12).
Since this is time consuming, we employ the upper bound to do some preliminary pruning
(Lines 10–11). The idea is to fit in nab with its maximal possible value, i.e. min{na,nb}, and
calculate the upper bound as we derived in Lemma 12 (Line 10). Since we are using a possi-
bly larger value than the actual nab, this upper bound is no less than the actual upper bound.
If this larger bound is lower than the threshold, then the pair can be safely pruned (Line 11).
Otherwise, go on to count the exact nab (Line 12) to be used for possible refinement. If
we find that nab really equals min{na,nb}, as we assumed in Line 10, then the previously
calculated maximum value is the exact bound value, and we know it is a candidate since it
is not pruned in Line 11. So we append this pair as a candidate and continue with the next
pair (Line 13). When we reach Line 15, it can be the initial calculation for a pair that is
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CL′ ← ∅;1

foreach pair of different items a, b ∈ I do2

if na = nb then3

if {a, b} ∈ CL then look up nab from CL; else nab ← #(Ia ∩ Ib);4

if nab = na then append {a, b} to CL′ and continue;5

max ← upper bound by Lemma 11;6

else7

if {a, b} ∈ CL then look up nab from CL;8

else9

nab ← min{na,nb} and max ← upper bound by Lemma 12;10

if max < θ then continue;11

nab ← #(Ia ∩ Ib);12

if nab = min{na,nb} then append {a, b} to CL′ and continue;13

end14

max ← upper bound by Lemma 12;15

end16

if max ≥ θ then append {a, b} to CL′;17

end18

return CL′19

Procedure UpdateCandidateList(CL,I ,θ ,Δ)

previously a candidate (nab found in Line 8), or the refinement of the upper bound for a pair
that is not pruned in Line 11 (and the exact nab is found in Line 12). Now we can calculate
the upper bound with the exact nab by following Lemma 12 (Line 15).

Finally, once we reach Line 17, the calculated upper bound is compared with the corre-
lation threshold θ . Item pair {a, b} is output into CL′ as a candidate if its upper bound is no
less than θ .

The major difference between CHECK-POINT+ and CHECK-POINT is that we use a
tight evolving upper bound in CHECK-POINT+ for better pruning effect. Also, we try to
avoid counting the exact pair-wise frequency by finding them directly from the previous
candidate list (to re-use more intermediate results) and using its maximal possible value (to
provide additional pruning).

7 Experimental results

In this section, we first briefly introduce three benchmark algorithms, against which we
compare the CHECK-POINT+ algorithm. Then, we present the experimental setup. Finally,
we show the evaluation results with respect to computation efficiency, space usage, and
sensitivity to various parameters.

7.1 Benchmark algorithms

In order to evaluate the performance of the CHECK-POINT+ algorithm, we compare it with
several benchmark algorithms. Specifically, there are three relevant algorithms, r-TAPER,
SAVE-ALL, and CHECK-POINT, as described in Zhou and Xiong (2008). In the following,
we briefly summarize these algorithms.
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r-TAPER A straightforward way to compute volatile correlation is to re-compute correla-
tions for each ASP query request. Along this line, a quick solution is to employ an efficient
static correlation computing algorithm, for instance, TAPER (Xiong et al. 2004), for each
round of correlation computing. We call this method r-TAPER, meaning “repeated TA-
PER.”

SAVE-ALL A computational bottleneck for ASP correlation computing is to count the fre-
quency of each item pair on the fly. This fact has motivated the SAVE-ALL algorithm,
which trades space for time. SAVE-ALL stores the frequencies of all item pairs and in-
crementally updates the stored values while new data are added into the database. In this
way, SAVE-ALL uses extra space for the sake of saving computation time. The limitation
of this method is that when the number of items becomes very large, we may not have
enough memory space for running this algorithm.

CHECK-POINT The above mentioned two algorithms represent two extreme cases of the
ASP correlation query problem in dynamic data environments. The r-TAPER algorithm,
which repeat the query every time when new data become available, disregards the previ-
ously computed results, and thus leads to high-computational cost. On the other hand, the
SAVE-ALL algorithm requires an extremely large amount of memory space for saving the
intermediate computing results. This becomes infeasible when the number of items is very
large. The CHECK-POINT algorithm, however, seeks a solution in between. As provided
in our previous work (Zhou and Xiong 2008), the CHECK-POINT algorithm relies on a
loose upper bound of evolving correlation values for selecting candidate item pairs.

7.2 The experimental setup

The CHECK-POINT algorithm, along with the above mentioned benchmark algorithms,
have been implemented for experimental evaluations. In this subsection, we describe the
experimental setup, including datasets, parameters, and the platform.

7.2.1 Datasets

We use datasets from the Frequent Itemset Mining Implementations (FIMI) Repository Web
site (http://fimi.cs.helsinki.fi/data/). These datasets are often used as benchmarks for evaluat-
ing frequent pattern mining algorithms. We have deliberatively chosen datasets with various
sizes and densities, and Table 3 summarizes the basic statistics of the datasets we have used.

Since our goal is to perform the ASP correlation queries in dynamic data environments,
we split each dataset into two parts. The first part consists of, approximately, the first two
thirds of all transactions in the original dataset, and we call it the “base dataset”. The second
part consists of the remaining transactions, and we call it the “incremental dataset”. Each run
of the experiments start with the base dataset, load new transactions from the incremental
dataset one by one, and do the queries and updates whenever applicable. Despite splitting
the data, we load transactions in their original order stored in their respective data files. This

Table 3 Experimental datasets
Dataset # Items # Pairs # Transactions

Chess 75 2,775 3,196

Mushroom 119 7,021 8,124

Connect 129 8,256 67,557

Pumsb 2,113 2,231,328 49,046

http://fimi.cs.helsinki.fi/data/
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Table 4 Experimental parameters

Name Symbol Definition Values

Correlation
threshold

θ The minimum value above which an item pair’s
correlation is called “strong”.

0.3, 0.5, 0.7, 0.9

Step size S The number of transactions between ASP
queries.

1, 2, 5, 10

Incremental
ratio

α The number of transactions between checkpoints
(Δ), divided by the number of transactions accu-
mulated (n).

0.001, 0.01, 0.05, 0.1

process is mimicking the real-world applications where new transactions are continually
collected and processed in a large database.

7.2.2 Parameters

During the experiments, we have tried various combinations of parameters. Table 4 lists the
experimental parameters we have considered.

The correlation threshold θ and the step size S are common parameters across all four
algorithms. We try θ = 0.3, θ = 0.5, θ = 0.7, and θ = 0.9, since positive correlations are
typical for ASP queries. Considering real world applications, the smaller step sizes the bet-
ter, which means that the ASP queries are updated in a timely manner. Ideally, the step size
is 1, meaning that whenever a new transaction is collected, the ASP query is updated right
away. As a result, in the experiments, we try small step sizes, such as S = 1, S = 2, S = 5,
S = 10. The incremental ratio α = Δ/n is a measure related to checkpoint density, since the
larger α is, the more sparse are the checkpoints. Obviously, the parameter α only applies
to CHECK-POINT and CHECKPOINT+, for which we need to determine where to set
the checkpoints. For the experiments, we try α = 0.001, α = 0.01, α = 0.05, and α = 0.1.
The bold values in Table 4 are the comparison baselines by default. In the experiments, we
choose θ = 0.5, S = 5, α = 0.01 unless otherwise specified.

7.2.3 Platform

All the experiments are performed on a Dell Optiplex 755 Minitower, with Intel 2 Quad
processor Q6600 and 4 GB of memory, and running the Microsoft Windows XP Professional
operation system.

7.3 Computation efficiency

In this subsection, we focus on comparing the computation efficiency of CHECK-POINT+
against benchmark algorithms, and study the sensitivity of the performance with respect to
different parameters.

Figure 7 shows the accumulative running time of different algorithms on each dataset.
In each sub-figure, the x-axis is transaction ID, and the y-axis is the accumulative running
time of the ASP queries, which has been taken natural log to shrink the deviation of larger
values. We find that in general, r-TAPER is the slowest, SAVE-ALL is the fastest, while
CHECK-POINT and CHECK-POINT+ are in between. However, CHECK-POINT+ runs
more efficiently than CHECK-POINT.
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Fig. 7 Accumulative running time

The results shown in Fig. 7 are based on default parameter values (θ = 0.5, S = 5,
α = 0.01). In the following, we study the sensitivity of the computation efficiency with
respect to different parameters. Figures 8 through 10 demonstrate comparisons of the av-
erage execution time of a query by different algorithms. Here, the average query time of a
query is defined as the accumulative running time at the end of the experiment, divided by
the number of ASP queries executed.

Figure 8 shows the sensitivity of computation efficiency for different correlation thresh-
olds. In each sub-figure, there are four groups of vertical bars, corresponding to various
correlation thresholds (θ = 0.3, θ = 0.5, θ = 0.7, and θ = 0.9). From Fig. 8, we have the
following observations.

– When the threshold decreases, the average query time of r-TAPER and CHECK-POINT+
increases, but the change of CHECK-POINT+ is much less dramatic. In other words,
CHECK-POINT+ is much less sensitive to the correlation threshold θ than r-TAPER.

– The average query time of CHECK-POINT+ is much smaller than that of CHECK-
POINT for each dataset at different thresholds. The average query time for CHECK-
POINT does not change significantly for some thresholds, since the upper bound used in
CHECK-POINT is loose and has less pruning effect, resulting in more work in building
and maintaining the candidate list.

– SAVE-ALL is almost always the fastest. However, there are minor issues related to imple-
mentation, as discussed below. First, despite the extra work for building candidate lists,
CHECK-POINT+ sometimes performs better than SAVE-ALL on the dataset pumsb
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Fig. 8 Average query time with different correlation thresholds

when using large thresholds (θ = 0.7 and θ = 0.9). The reason is that with higher corre-
lation thresholds, it is relatively faster to build the candidate list, and the list tends to be
very small, compared to the number of all pairs. As a result, it becomes easier to build
and maintain the candidate list and search for strong pairs within the small number of
candidates (CHECK-POINT+) instead of computing to determine strong ones from all
pairs (SAVE-ALL). As we can see, such scenario is especially applicable to datasets with
a large number of items and high correlation thresholds. Second, although SAVE-ALL
is expected to take constant time for different thresholds on each dataset, sometimes we
observe longer time for lower thresholds due to substantially increased size of ASP query
output. For example, when we run SAVE-ALL on mushroom using θ = 0.3, about 10%
of all pairs are strong and need to be written into the output file. However, when using
θ = 0.5, this number reduces quickly to 5%. Therefore, the time for SAVE-ALL in our
experiments may be affected by the time taken for outputs.

Figure 9 shows the sensitivity of computation efficiency for different step sizes. In each
sub-figure, there are four groups of vertical bars, corresponding to various step sizes (S = 1,
S = 2, S = 5, and S = 10). From Fig. 9, we have the following observations.

– When the step size increases, the average query time of CHECK-POINT and CHECK-
POINT+d increases accordingly. However, the change of CHECK-POINT+ is much less
dramatic than CHECK-POINT. In other words, CHECK-POINT+ is less sensitive than
CHECK-POINT to different step sizes.
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Fig. 9 Average query time with different step sizes

– r-TAPER takes longest time and SAVE-ALL remains the fastest. This is self-explanatory,
since r-TAPER does not re-use intermediate results, while SAVE-ALL re-uses the fre-
quency of all pairs.

– For CHECK-POINT and CHECK-POINT+, generally, larger step sizes correspond to
longer query time on average. The reason is that with larger step sizes, there are fewer
queries executed between two checkpoints. According to our findings in Zhou and Xiong
(2008), building the candidate list is the main source of computation cost for checkpoint-
based algorithms. In other words, the time for building candidate lists are amortized
among fewer queries, resulting in longer query time on average.

From the above comparisons, since SAVE-ALL is simple and fast, one may argue that
SAVE-ALL is still a better choice than CHECK-POINT+ in some settings (e.g., infinite
data streams). This is true, especially for datasets with a small number of items (so that
the number of all pairs will be small). However, in many applications, the number of all
pairs is so large that SAVE-ALL becomes impractical. Such situation is very common in to-
day’s data intensive applications. Moreover, as observed with the pumsb dataset, sometimes
CHECK-POINT+ may perform better than or equivalently to SAVE-ALL in practice.

Figure 10 shows the sensitivity of computation efficiency for various checkpoint den-
sities. In each sub-figure, there are four groups of vertical bars, corresponding to different
checkpoint densities (α = 0.001, α = 0.01, α = 0.05, and α = 0.1). Since this parameter
only applies to CHECK-POINT and CHECK-POINT+, in each parameter group there are
two vertical bars instead of four. We can see that when the checkpoint density increases (the
value of α decreases), the average query time of CHECK-POINT and CHECK-POINT+
increases, but the change of CHECK-POINT+ is much less dramatic. In other words,
CHECK-POINT+ is less sensitive than CHECK-POINT to the change of checkpoint den-
sity.
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Fig. 10 Average query time with different incremental ratios

7.4 Use of space

In this subsection, we investigate the space requirement of the CHECK-POINT+ algorithm.
Along this line, our goal is to check how many item pairs are selected as candidates, so that
their frequencies need to be stored and maintained. Specifically, we focus on the number of
candidate pairs by CHECK-POINT and CHECK-POINT+ only, because the space require-
ments for r-TAPER and SAVE-ALL are constant for a given dataset. Also, we include the
numbers of all possible pairs and strong pairs as baselines.

Figures 11, 12, 13 and 14 illustrate comparisons on the use of space for each dataset.
In each of them, there are two sub-figures. The one on the left shows the numbers of pairs,
and the one on the right shows the corresponding pruning ratios (PR). The pruning ratio
(PR) is the proportion of pairs that are pruned, and is calculated as one minus the ratio of the
number of candidate pairs (or strong pairs) to the number of all possible pairs. From Figs. 11
through 14 we have the following observations.

– CHECK-POINT+ has significantly better pruning effect than CHECK-POINT; that is,
CHECK-POINT+ requires much less space than CHECK-POINT.

– CHECK-POINT+ has a extremely high pruning ratio (more than 90%), except for
pumsb. This indicates that the performance of CHECK-POINT+ may be data depen-
dent, and we may need to select different parameters for different datasets. The default
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Fig. 11 Use of space by the CHECK-POINT and CHECK-POINT+ on chess

Fig. 12 Use of space by the CHECK-POINT and CHECK-POINT+ on mushroom

Fig. 13 Use of space by the CHECK-POINT and CHECK-POINT+ on connect

parameter (α = 0.01) may be good enough for chess, mushroom, and connect, but
not so good for pumsb. By examining the data characteristics more closely, we find that
the rank-support distribution of pumsb is extremely skewed.



Mach Learn (2011) 83: 103–131 127

Fig. 14 Use of space by the CHECK-POINT and CHECK-POINT+ on pumsb

With an extremely large number of low-support items, CHECK-POINT+ may become
less efficient. The reason is that given the same computation settings (same n and Δ), the
upper bound of the correlation between a pair of low-support items may be more loose than
that of a high-support one, since a small number of new transactions are able to affect their
correlation values greatly in extreme cases. For example, suppose in the first 1000 trans-
actions, na = nb = 1 and nab = 0. Then currently φab ≈ −0.01. Suppose Δ = 10. In an
extreme case, the 10 new transactions all contain both items a and b. Then the correlation
will become ≈0.908. In other words, since the upper bound becomes so high, that such
low-support pairs are hard to prune. To tackle this problem, we can take two approaches
in practice. The first approach is to simply ignore low-support items. This method may not
guarantee completeness all the time, but if sharp changes do occur, the missing items may
still be picked up at the next checkpoint. Removal of low support items is very common in
frequent pattern mining (Agrawal et al. 1993). The second approach is to treat low-support
items separately from other items. For instance, we make a special list of low-support items.
Since they happened less frequently previously, each of them has a very short list of trans-
action IDs. This is similar to the idea of mixed data structure for frequent itemset counting
(Uno et al. 2005).

8 Conclusions

In this paper, we studied the problem of correlation computing in large and dynamically
growing data sets. Specifically, we designed a CHECK-POINT+ algorithm for dynamically
searching all the item pairs with correlations above a user-specified threshold. The key idea
is to establish a computation buffer by setting a checkpoint for dynamic input data. This
checkpoint can be exploited to identify a list of candidate pairs, which are maintained and
whose correlations are computed, as new transactions are added into the database. However,
if the total number of new transactions is beyond the checkpoint, a new candidate list is gen-
erated by the new checkpoint. All the checkpoints have been established by a tight evolving
correlation upper bound, which shows a local monotonicity property.

Moreover, we carried out a number of experiments to evaluate the performance of
the CHECK-POINT+ algorithm. Experimental results on real-world data sets show that
CHECK-POINT+ can compact the use of memory space by maintaining a reduced candi-
date pair list, which is only a very small portion of all the item pairs. Also, CHECK-POINT+
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can significantly reduce the correlation computing cost in dynamic data sets with a large
number of transactions and has a much better computational performance than state-of-the-
art benchmark methods. Finally, the experimental results also show that CHECK-POINT+
is less sensitive to the change of parameters compared to benchmark algorithms.
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Appendix A: Deriving ∂f (x,y;c)
∂y

in (11)

In the following and subsequent proofs, note that given v(x) in (2), we have v′(x) = N/2−x

v(x)
.

From (9) we have f (x, y; c) = x(N−y)−c

v(x)v(y)
= 1

v(x)
· (Nx−c)−xy

v(y)
, so

∂f (x, y; c)
∂y

= 1

v(x)
· (−x) · v(y) − [(Nx − c) − xy] · v′(y)

v2(y)

= (−x) · v(y) − [(Nx − c) − xy] · N/2−y

v(y)

v(x)v2(y)

= (−x) · v2(y) − [(Nx − c) − xy] · (N/2 − y)

v(x)v3(y)

= −2xy(N − y) − [x(N − y) − c](N − 2y)

2v(x)v3(y)

= −2xy(N − y) − x(N − y)(N − 2y) + c(N − 2y)

2v(x)v3(y)

= −Nx(N − y) + c(N − y − y)

2v(x)v3(y)
= (c − Nx)(N − y) − cy

2v(x)v3(y)
. (25)

Appendix B: Deriving ∂f (y,x;c)
∂y

in (12)

From (9) we have f (y, x; c) = y(N−x)−c

v(x)v(y)
= 1

v(x)
· (N−x)y−c

v(y)
, so

∂f (y, x; c)
∂y

= 1

v(x)
· (N − x) · v(y) − [(N − x)y − c] · v′(y)

v2(y)

= (N − x) · v(y) − [(N − x)y − c] · N/2−y

v(y)

v(x)v2(y)

= (N − x) · v2(y) − [(N − x)y − c] · (N/2 − y)

v(x)v3(y)

= 2(N − x) · y(N − y) − [(N − x)y − c] · (N − 2y)

2v(x)v3(y)

= (N − x)y(2N − 2y) − (N − x)y(N − 2y) + c(N − 2y)

2v(x)v3(y)

= N(N − x)y + c(N − 2y)

2v(x)v3(y)
= [N(N − x) − c]y + c(N − y)

2v(x)v3(y)
. (26)
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Appendix C: Deriving f ′(t) in (17)

First, we have w(t) = N(nab + t) − (na + t)(nb + t) = −t2 + 2c0t + c1, where c0 is given
in (3) and c1 = Nnab −nanb . So w′(t) = 2(c0 − t). Let m(t) = v−1(t +na)v

−1(t +nb), then

m′(t) = − v′(t + na)

v2(t + na)
· 1

v(t + nb)
− 1

v(t + na)
· v′(t + nb)

v2(t + nb)

= −
N
2 − (t + na)

v3(t + na)
· 1

v(t + nb)
− 1

v(t + na)
·

N
2 − (t + nb)

v3(t + nb)

= (t + na − N
2 )v2(t + nb) + (t + nb − N

2 )v2(t + na)

v3(t + na)v3(t + nb)
, (27)

where the numerator reduces to

(t + na − N

2
)(t + nb)(N − t − nb) +

(
t + nb − N

2

)
(t + na)(N − t − na)

= (t + na)(t + nb)(N − t − nb) − N

2
(t + nb)(N − t − nb)

+ (t + nb)(t + na)(N − t − na) − N

2
(t + na)(N − t − na)

= (t + na)(t + nb)(2N − 2t − na − nb) − N

2

[
N(2t + na + nb) − (t + nb)

2 − (t + na)
2
]

= N(t + na)(t + nb) + (t + na)(t + nb)(N − 2t − na − nb)

− N2

(
t + na + nb

2

)
+ N

2
[(t + na)

2 + (t + nb)
2]

= (t + na)(t + nb)(N − 2t − na − nb) − N2

(
t + na + nb

2

)
+ 2N

(
t + na + nb

2

)2

= (t + na)(t + nb)(N − 2t − na − nb) + N

(
t + na + nb

2

)
(2t + na + nb − N)

= (2t − N + na + nb)

[
N

(
t + na + nb

2

)
− (t + na)(t + nb)

]

= 2

(
t − N − na − nb

2

)
·
[
−t2 + (N − na − nb)t + N(na + nb)

2
− nanb

]

= 2(t − c0)(−t2 + 2c0t + c2), (28)

with c2 = N(na+nb)

2 − nanb . Since f (t) = w(t)m(t), the first derivative of f (t) will be

f ′(t) = w′(t)m(t) + w(t)m′(t)

= 2(c0 − t)· 1

v(t + na)v(t + nb)
+ (−t2 + 2c0t + c1)·2(t − c0)(−t2 + 2c0t + c2)

v3(t + na)v3(t + nb)

= 2(c0 − t)[v2(t + na)v
2(t + nb) − (−t2 + 2c0t + c1)(−t2 + 2c0t + c2)]

v3(t + na)v3(t + nb)
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= 2(c0 − t)[k1(t) − k2(t)]
v3(t + na)v3(t + nb)

, (29)

where

k1(t) = v2(t + na)v
2(t + nb) = (t + na)(N − t − na)(t + nb)(N − t − nb)

= [(t + na)(t − N + nb)] · [(t − N + na)(t + nb)]
= (t2 − 2c0t + nanb − Nna)(t

2 − 2c0t + nanb − Nnb)

= [s(t) − Nna][s(t) − Nnb] = s2(t) − N(na + nb) · s(t) + N2nanb, (30)

k2(t) = (−t2 + 2c0t + c1)(−t2 + 2c0t + c2) = (t2 − 2c0t − c1)(t
2 − 2c0t − c2)

= [s(t) − Nnab][s(t) − N(na + nb)/2]

= s2(t) − N

(
nab + na + nb

2

)
· s(t) + N2nab · na+nb

2 , (31)

with s(t) = t2 − 2c0t + nanb . From (30) and (31), it is easy to see that

k1(t) − k2(t) = N

(
nab − na + nb

2

)
· s(t) + N2

(
nanb − nab

na + nb

2

)
. (32)

Substituting (32) into (29), we have the right hand side in (17).
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