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ABSTRACT

Clustering validation is a long standing challenge in the clus-
tering literature. While many validation measures have been
developed for evaluating the performance of clustering algo-
rithms, these measures often provide inconsistent informa-
tion about the clustering performance and the best suitable
measures to use in practice remain unknown. This paper
thus fills this crucial void by giving an organized study of 16
external validation measures for K-means clustering. Specif-
ically, we first introduce the importance of measure normal-
ization in the evaluation of the clustering performance on
data with imbalanced class distributions. We also provide
normalization solutions for several measures. In addition, we
summarize the major properties of these external measures.
These properties can serve as the guidance for the selection
of validation measures in different application scenarios. Fi-
nally, we reveal the interrelationships among these external
measures. By mathematical transformation, we show that
some validation measures are equivalent. Also, some mea-
sures have consistent validation performances. Most impor-
tantly, we provide a guide line to select the most suitable
validation measures for K-means clustering.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining ; I.5.3 [Pattern Recognition]: Clustering

General Terms

Measurement, Experimentation

Keywords

Cluster Validation, External Criteria, K-means

1. INTRODUCTION
Clustering validation has long been recognized as one of

the vital issues essential to the success of clustering appli-
cations [10]. Despite the vast amount of expert endeavor
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spent on this problem [7], there is no consistent and conclu-
sive solution to cluster validation. The best suitable mea-
sures to use in practice remain unknown. Indeed, there are
many challenging validation issues which have not been fully
addressed in the clustering literature. For instance, the im-
portance of normalizing validation measures has not been
fully established. Also, the relationship between different
validation measures is not clear. Moreover, there are impor-
tant properties associated with validation measures which
are important to the selection of the use of these measures
but have not been well characterized. Finally, given the
fact that different validation measures may be appropriate
for different clustering algorithms, it is necessary to have a
focused study of cluster validation measures on a specified
clustering algorithm at one time.

To that end, in this paper, we limit our scope to provide an
organized study of external validation measures for K-means
clustering [14]. The rationale of this pilot study is as follows.
K-means is a well-known, widely used, and successful clus-
tering method. Also, external validation measures evaluate
the extent to which the clustering structure discovered by a
clustering algorithm matches some external structure, e.g.,
the one specified by the given class labels. From a practi-
cal point view, external clustering validation measures are
suitable for many application scenarios. For instance, if ex-
ternal validation measures show that a document clustering
algorithm can lead to the clustering results which can match
the categorization performance by human experts, we have
a good reason to believe this clustering algorithm has a prac-
tical impact on document clustering.

Along the line of adapting validation measures for K-
means, we present a detailed analysis of 16 external vali-
dation measures, as shown in Table 1. Specifically, we first
establish the importance of measure normalization by high-
lighting some unnormalized measures which have issues in
the evaluation of the clustering performance on data with
imbalanced class distributions. In addition, to show the im-
portance of measure normalization, we also provide normal-
ization solutions for several measures. The key challenge
here is to identify the lower and upper bounds of validation
measures. Furthermore, we reveal some major properties
of these external measures, such as consistency, sensitivity,
and symmetry properties. These properties can serve as the
guidance for the selection of validation measures in different
application scenarios. Finally, we also show the interrela-
tionships among these external measures. We show that
some validation measures are equivalent and some measures
have consistent validation performances.
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Table 1: External Cluster Validation Measures.
Measure Notation Definition Range
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Note: pij = nij/n, pi = ni·/n, pj = n·j/n.

Most importantly, we provide a guide line to select the
most suitable validation measures for K-means clustering.
After carefully profiling these validation measures, we be-
lieve it is most suitable to use the normalized van Dongen
criterion (V Dn) which has a simple computation form, satis-
fies mathematically sound properties, and can measure well
on the data with imbalanced class distributions. However,
for the case that the clustering performance is hard to dis-
tinguish, we may want to use the normalized Variation of
Information (V In) instead, since the measure V In has high
sensitivity on detecting the clustering changes.

2. EXTERNAL VALIDATION MEASURES
In this section, we introduce a suite of 16 widely used ex-

ternal clustering validation measures. To the best of our
knowledge, these measures represent a good coverage of the
validation measures available in different fields, such as data
mining, information retrieval, machine learning, and statis-
tics. A common ground of these measures is that they can
be computed by the contingency matrix as follows.

Table 2: The Contingency Matrix.
Partition C

C1 C2 · · · CK′

P

P1 n11 n12 · · · n1K′ n1·

Partition P P2 n21 n22 · · · n2K′ n2·

· · · · · · · ·
PK nK1 nK2 · · · nKK′ nK·
P

n·1 n·2 · · · n
·K′ n

The Contingency Matrix. Given a data set D with n
objects, assume that we have a partition P = {P1, · · · , PK}

of D, where
SK

i=1 Pi = D and Pi

T

Pj = φ for 1 ≤ i 6= j ≤
K, and K is the number of clusters. If we have “true” class
labels for the data, we can have another partition on D:

C = {C1, · · · , CK′}, where
SK′

i=1 Ci = D and Ci

T

Cj = φ
for 1 ≤ i 6= j ≤ K′, where K′ is the number of classes.
Let nij denote the number of objects in cluster Pi from
class Cj , then the information on the overlap between the
two partitions can be written in the form of a contingency
matrix, as shown in Table 2. Throughout this paper, we will
use the notations in this contingency matrix.

The Measures. Table 1 shows the list of measures to
be studied. The “Definition” column gives the computation

forms of the measures by using the notations in the contin-
gency matrix. Next, we briefly introduce these measures.

The entropy and purity are frequently used external mea-
sures for K-means [20, 26]. They measure the “purity” of
the clusters with respect to the given class labels.

F-measure was originally designed for the evaluation of hi-
erarchical clustering [19, 13], but has also been employed for
partitional clustering. It combines the precision and recall
concepts from the information retrieval community.

The Mutual Information (MI) and Variation of Informa-
tion (VI) were developed in the field of information the-
ory [3]. MI measures how much information one random
variable can tell about another one [21]. VI measures the
amount of information that is lost or gained in changing
from the class set to the cluster set [16].

The Rand statistic [18], Jaccard coefficient, Fowlkes and
Mallows index [5], and Hubert’s two statistics [8, 9] evaluate
the clustering quality by the agreements and/or disagree-
ments of the pairs of data objects in different partitions.

The Minkowski score [1] measures the difference between
the clustering results and a reference clustering (true clus-
ters). And the difference is computed by counting the dis-
agreements of the pairs of data objects in two partitions.

The classification error takes a classification view on clus-
tering [2]. It tries to map each class to a different cluster so
as to minimize the total misclassification rate. The “σ” in
Table 1 is the mapping of class j to cluster σ(j).

The van Dongen criterion [23] was originally proposed for
evaluating graph clustering. It measures the representative-
ness of the majority objects in each class and each cluster.

Finally, the micro-average precision, Goodman-Kruskal
coefficient [6] and Mirkin metric [17] are also popular mea-
sures. However, the former two are equivalent to the purity
measure and the Mirkin metric is equivalent to the Rand
statistic (M/2

`

n
2

´

+ R = 1). As a result, we will not discuss
these three measures in the future sections.

In summary, we have 13 (out of 16) candidate measures.
Among them, P , F , MI, R, J , FM , Γ, and Γ′ are posi-
tive measures — a higher value indicates a better clustering
performance. The remainder, however, consists of measures
based on the distance notion. Throughout this paper, we
will use the acronyms of these measures.
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3. DEFECTIVE VALIDATION MEASURES
In this section, we present some validation measures which

will produce misleading validation results for K-means on
data with skewed class distributions.

3.1 K-means: The Uniform Effect
One of the unique characteristic of K-means clustering

is the so-called uniform effect; that is, K-means tends to
produce clusters with relatively uniform sizes [25]. To quan-
tify the uniform effect, we use the coefficient of variation
(CV ) [4], a statistic which measures the dispersion degree
of a random distribution. CV is defined as the ratio of the
standard deviation to the mean. Given a sample data ob-
jects X = {x1, x2, . . . , xn}, we have CV = s/x̄, where

x̄ =
Pn

i=1 xi/n and s =
p

Pn
i=1(xi − x̄)2/(n − 1). CV

is a dimensionless number that allows the comparison of
the variations of populations that have significantly differ-
ent mean values. In general, the larger the CV value is, the
greater the variability in the data.

Example. Let CV0 denote the CV value of the “true”
class sizes and CV1 denote the CV value of the resultant
cluster sizes. We use the sports data set [22] to illustrate
the uniform effect by K-means. The “true” class sizes of
sports have CV0 = 1.02. We then use the CLUTO imple-
mentation of K-means [11] with default settings to cluster
sports into seven clusters. We also compute the CV value
of the resultant cluster sizes and get CV1 = 0.42. Therefore,
the CV difference is DCV = CV1 − CV0 = −0.6, which
indicates a significant uniform effect in the clustering result.

Indeed, it has been empirically validated that the 95%
confidence interval of CV1 values produced by K-means is
in [0.09, 0.85] [24]. In other words, for data sets with CV0

values greater than 0.85, the uniform effect of K-means can
distort the cluster distribution significantly.

Now the question is: Can these widely used validation
measures capture the negative uniform effect by K-means
clustering? Next, we provides a necessary but not sufficient
criterion to testify whether a validation measure can be ef-
fectively used to evaluate K-means clustering.

3.2 A Necessary Selection Criterion
Assume that we have a sample document data containing

50 documents from 5 classes. The class sizes are 30, 2, 6,
10 and 2, respectively. Thus, we have CV0 = 1.166, which
implies a skewed class distribution.

For this sample data set, we assume there are two clus-
tering results as shown in Table 3. In the table, the first
result consists of five clusters with extremely balanced sizes.
This is also indicated by CV1 = 0. In contrast, for the
second result, the five clusters have varied cluster sizes with
CV1 = 1.125, much closer to the CV value of the“true”class
sizes. Therefore, from a data distribution point of view, the
second result should be better than the first one.

Indeed, if we take a closer look on contingency Matrix I
in Table 3, we can find that the first clustering partitions
the objects of the largest class C1 into three balanced sub-
clusters. Meanwhile, the two small classes C2 and C5 are

Table 3: Two Clustering Results.
I C1 C2 C3 C4 C5

P1 10 0 0 0 0
P2 10 0 0 0 0
P3 10 0 0 0 0
P4 0 0 0 10 0
P5 0 2 6 0 2

II C1 C2 C3 C4 C5

P1 27 0 0 2 0
P2 0 2 0 0 0
P3 0 0 6 0 0
P4 3 0 0 8 0
P5 0 0 0 0 2

totally “disappeared” — they are overwhelmed in cluster P5

by the objects from class C3. In contrast, we can easily
identify all the classes in the second clustering result, since
they have the majority objects in the corresponding clus-
ters. Therefore, we can draw the conclusion that the first
clustering is indeed much worse than the second one.

As shown in Section 3.1, K-means tends to produce clus-
ters with relatively uniform sizes. Thus the first clustering in
Table 3 can be regarded as the negative result of the uniform
effect. So we establish the first necessary but not sufficient
criterion for selecting the measures for K-means as follows.

Criterion 1. If an external validation measure cannot
capture the uniform effect by K-means on data with skewed
class distributions, this measure is not suitable for validating
the results of K-means clustering.

Next, we proceed to see which existing external cluster val-
idation measures can satisfy this criterion.

3.3 The Cluster Validation Results
Table 4 shows the validation results for the two cluster-

ings in Table 3 by all 13 external validation measures. We
highlighted the better evaluation of each validation measure.

As shown in Table 4, only three measures, E, P and MI,
cannot capture the uniform effect by K-means and their vali-
dation results can be misleading. In other words, these mea-
sures are not suitable for evaluating the K-means clustering.
These three measures are defective validation measures.

3.4 The Issues with the Defective Measures
Here, we explore the issues with the defective measures.

First, the problem of the entropy measure lies in the fact
that it cannot evaluate the integrity of the classes.

We know E = −
P

i pi

P

j

pij

pi
log

pij

pi
. If we take a ran-

dom variable view on cluster P and class C, then pij =
nij/n is the joint probability of the event: {P = Pi

V

C =
Cj}, and pi = ni·/n is the marginal probability. There-
fore, E =

P

i pi

P

j −p(Cj |Pi) log p(Cj |Pi) =
P

i piH(C|Pi)

= H(C|P ), where H(·) is the Shannon entropy [3]. The
above implies that the entropy measure is nothing but the
conditional entropy of C on P . In other words, if the objects
in each large partition are mostly from the same class, the
entropy value tends to be small (indicating a better cluster-
ing quality). This is usually the case for K-means clustering
on highly imbalanced data sets, since K-means tends to par-
tition a large class into several pure sub-clusters. This leads
to the problem that the integrity of the objects from the
same class has been damaged. The entropy measure cannot
capture this information and penalize it.

The mutual information is strongly related to the en-
tropy measure. We illustrate this by the following Lemma.

Lemma 1. The mutual information measure is equivalent
to the entropy measure for cluster validation.
Proof. By information theory, MI =

P

i

P

j pij log
pij

pipj
=

H(C)−H(C|P ) = H(C)−E. Since H(C) is a constant for
any given data set, MI is essentially equivalent to E. 2

The purity measure works in a similar fashion as the
entropy measure. That is, it measures the “purity” of each
cluster by the ratio of the objects from the majority class.
Thus, it has the same problem as the entropy measure for
evaluating K-means clustering.

In summary, entropy, purity and mutual information are
defective measures for validating K-means clustering.
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Table 4: The Cluster Validation Results
E P F MI V I R J FM Γ Γ′ MS ε V D

I 0.274 0.920 0.617 1.371 1.225 0.732 0.375 0.589 0.454 0.464 0.812 0.480 0.240
II 0.396 0.9 0.902 1.249 0.822 0.857 0.696 0.821 0.702 0.714 0.593 0.100 0.100

3.5 Improving the Defective Measures
Here, we give the improved versions of the above three de-

fective measures: entropy, mutual information, and purity.

Lemma 2. The Variation of Information measure is an
improved version of the entropy measure.

Proof. If we view cluster P and class C as two random
variables, it has been shown that V I = H(C) + H(P ) −
2MI = H(C|P ) + H(P |C) [16]. The component H(C|P )
is nothing but the entropy measure, and the component
H(P |C) is a valuable supplement to H(C|P ). That is, H(P |C)
evaluates the integrity of each class along different clusters.
Thus, we complete the proof. 2

By Lemma 1, we know MI is equivalent to E. Therefore,
V I is also an improved version of MI.

Lemma 3. The van Dongen criterion is an improved ver-
sion of the purity measure.

Proof. V D =
2n−

P

i maxj nij−
P

j maxi nij

2n
= 1 − 1

2
P −

P

j maxi nij

2n
. Apparently,

P

j maxi nij/n reflects the integrity
of the classes and is a supplement to the purity measure. 2

4. MEASURE NORMALIZATION
In this section, we show the importance of measure nor-

malization and provide normalization solutions to some mea-
sures whose normalized forms are not available.

4.1 Normalizing the Measures
Generally speaking, normalizing techniques can be divided

into two categories. One is based on a statistical view, which
formulates a baseline distribution to correct the measure for
randomness. A clustering can then be termed “valid” if it
has an unusually high or low value, as measured with respect
to the baseline distribution. The other technique uses the
minimum and maximum values to normalize the measure
into the [0,1] range. We can also take a statistical view on
this technique with the assumption that each measure takes
a uniform distribution over the value interval.

The Normalizations of R, F M , Γ, Γ′, J and MS.
The normalization scheme can take the form as

Sn =
S − E(S)

max(S)− E(S)
, (1)

where max(S) is the maximum value of the measure S, and
E(S) is the expected value of S based on the baseline distri-
bution. Some measures derived from the statistics commu-
nity, such as R, FM , Γ and Γ′, usually take this scheme.

Specifically, Hubert and Arabie (1985) [9] suggested to use
the multivariate hypergeometric distribution as the baseline
distribution in which the row and column sums are fixed
in Table 2, but the partitions are randomly selected. This
determines the expected value as follows.

E(
X

i

X

j

“nij

2

”

) =

P

i

`ni·
2

´

P

j

`n
·j
2

´

`n
2

´ . (2)

Based on this value, we can easily compute the expected
values of R, FM , Γ and Γ′ respectively, since they are the

Table 5: The Normalized Measures.
Measure Normalization

1 Rn, Γ′

n (m−m1m2/M)/(m1/2 + m2/2−m1m2/M)
2 J ′

n, MS′

n (m1 + m2 − 2m)/(m1 + m2 − 2m1m2/M)
3 FMn (m−m1m2/M)/(

√
m1m2 −m1m2/M)

4 Γn (mM −m1m2)/
p

m1m2(M −m1)(M −m2)

5 V In 1 + 2
P

i
P

j pij log(pij/pipj)

(
P

i pi log pi+
P

j pj log pj)

6 V Dn
(2n−

P

i maxj nij−

P

j maxi nij)

(2n−maxi ni·−maxj n
·j)

7 Fn (F − F−)/(1− F−)
8 εn (1− 1

n maxσ

P

j nσ(j),j)/(1− 1/ max(K, K′))

Note: (1) m =
P

i,j

`nij
2

´

, m1 =
P

i

`ni·
2

´

, m2 =
P

j

`n
·j
2

´

, M =
`n
2

´

.

(2) pi = ni·/n, pj = n·j/n, pij = nij/n.
(3) Refer to Table 1 for F , and Procedure 1 for F−.

linear functions of
P

i

P

j

`

nij
2

´

under the hypergeometric
distribution assumption. Furthermore, although the exact
maximum values of the measures are computationally pro-
hibited under the hypergeometric distribution assumption,
we can still reasonably approximate them by 1. Then, ac-
cording to Equation (1) and (2), we can finally have the
normalized R, FM , Γ and Γ′ measures, as shown in Table 5.

The normalization of J and MS is a little bit complex,
since they are not linear to

P

i

P

j

`

nij
2

´

. Nevertheless, we
can still normalize the equivalent measures converted from
them. Let J ′ = 1−J

1+J
= 2

1+J
− 1 and MS′ = MS2.

It is easy to show J ′ ⇔ J and MS′ ⇔ MS. Then based
on the hypergeometric distribution assumption, we have the
normalized J ′ and MS′ as shown in Table 5. Since J ′ and
MS′ are negative measures — a lower value implies a better
clustering, we normalize them by modifying Equation (1) as
Sn = (S − min(S))/(E(S) − min(S)).

Finally, we would like to point out some interrelationships
between these measures as follows.

Proposition 1.

(1) (Rn ≡ Γ′

n) ⇔ (J ′

n ≡ MS′

n).
(2) Γn ≡ Γ.

The above proposition indicates that the normalized Hu-
bert Γ statistic I (Γn) is the same as Γ. Also, the normalized
Rand statistic (Rn) is the same as the normalized Hubert
Γ statistic II (Γ′

n). In addition, the normalized Rand statis-
tic (Rn) is equivalent to J ′

n, which is the same as MS′

n.
Therefore, we have three independent normalized measures
including Rn, FMn and Γn for further study. Note that this
proposition can be easily proved by mathematical transfor-
mation. Due to the space limitation, we omit the proof.

The Normalizations of V I and V D. Another nor-

malization scheme is formalized as Sn = S−min(S)
max(S)−min(S)

.

Some measures, such as V I and V D, often take this scheme.
However, to know the exact maximum and minimum values
is often impossible. So we usually turn to a reasonable ap-
proximation, e.g., the upper bound for the maximum, or the
lower bound for the minimum.

When the cluster structure matches the class structure
perfectly, V I = 0. So, we have min(V I) = 0. However,
finding the exact value of max(V I) is computationally in-
feasible. Meila suggested to use 2 log max(K, K′) to approx-
imate max(V I) [16], so the normalized V I is V I

2 log max(K,K′)
.

The V D in Table 1 can be regarded as a normalized mea-
sure. In this measure, 2n has been taken as the upper
bound [23], and min(V D) = 0.
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However, we found that the above normalized V I and V D
cannot well capture the uniform effect of K-means, because
the proposed upper bound for V I or V D is not tight enough.
Therefore, we propose new upper bounds as follows.

Lemma 4. Let random variables C and P denote the class
and cluster sizes respectively, H(·) be the entropy function,
then V I ≤ H(C) + H(P ) ≤ 2 log max(K′, K).

Lemma 4 gives a tighter upper bound H(C) + H(P ) than
2 log max(K′, K) which was provided by Meila [16]. With
this new upper bound, we can have the normalized V In as
shown in Table 5. Also, we would like to point out that, if
we use H(P )/2 + H(C)/2 as the upper bound to normal-
ize mutual information, the V In can be equivalent to the
normalized mutual information MIn (V In + MIn = 1).

Lemma 5. Let ni·, n·j and n be the values in Table 2,
then V D ≤ (2n − maxi ni· − maxj n·j)/2n ≤ 1.

Due to the page limit, we omit some proofs. The above two
lemmas imply that the tighter upper bounds of V I and V D
are the functions of the class and cluster sizes. Using these
two new upper bounds, we can derive the normalized V In

and V Dn in Table 5.
The Normalization of F and ε have been seldom dis-

cussed in the literature. As we know, max(F ) = 1. Now
the goal is to find a tight lower bound. In the following, we
propose a procedure to find the lower bound of F .

Procedure 1: The computation of F−.
1: Let n∗ = maxi ni·.
2: Sort the class sizes so that n·[1] ≤ n·[2] ≤ · · · ≤ n

·[K′].

3: Let aj = 0, for j = 1, 2, · · · , K′.
4: for j = 1 : K′

5: if n∗ ≤ n·[j], aj = n∗, break.
6: else aj = n·[j], n∗ ← n∗ − n·[j].

7: F− = (2/n)
PK′

j=1 aj/(1 + maxi ni·/n·[j]).

With the above procedure, we can have the following
lemma, which finds a lower bound for F .

Lemma 6. Given F− computed by Procedure 1, F ≥ F−.

Proof. It is easy to show:

F =
X

j

n·j

n
max

i

2nij

ni· + n·j
≥

2

n
max

i

X

j

nij

ni·/n·j + 1
(3)

Let us consider an optimization problem as follows.

min
xij

X

j

xij

ni·/n·j + 1

s.t.
X

j

xij = ni·; ∀j, xij ≤ n·j ; ∀j, xij ∈ Z+

For this optimization problem, to have the minimum objective
value, we need to assign as many objects as possible to the cluster
with highest ni·/n·j + 1, or equivalently, with smallest n·j . Let
n
·[0] ≤ n

·[1] ≤ · · · ≤ n
·[K′] where the virtual n

·[0] = 0, and

assume
Pl

j=0 n
·[j] < ni· ≤

Pl+1
j=0 n

·[j], l ∈ {0, 1, · · · , K′ − 1}, we

have the optimal solution:

xi[j] =

8

>

>

<

>

>

:

n
·[j], 1 ≤ j ≤ l;

ni· −
Pl

k=1 n
·[k], j = l + 1;

0, l + 1 < j ≤ K′.

Therefore, according to (3), F ≥ 2
n

maxi
PK′

j=1

xi[j]

ni·/n
·[j]+1

.

Let Fi = 2
n

PK′

j=1

xi[j]

ni·/n
·[j]+1

= 2
n

PK′

j=1

xi[j]/ni·

1/n
·[j]+1/ni·

. Denote

“xi[j]/ni·” by “yi[j]”, and “ 1
1/n

·[j]+1/ni·
” by “pi[j]”, we have Fi =

2
n

PK′

j=1 pi[j]yi[j]. Next, we remain to show

arg max
i

Fi = arg max
i

ni·.

Assume ni· ≤ ni′·, and for some l,
Pl

j=0 n
·[j] < ni· ≤

Pl+1
j=0 n

·[j],

l ∈ {0, 1, · · · , K′ − 1}. This implies that

yi[j]

(

≥ yi′[j], 1 ≤ j ≤ l;

≤ yi′[j], l + 1 < j ≤ K′.

Since
PK′

j=1 yi[j] =
PK′

j=1 yi′[j] = 1 and j ↑ ⇒ pi[j] ↑, we

have
PK′

j=1 pi[j]yi[j] ≤
PK′

j=1 pi[j]yi′[j].

Furthermore, according to the definition of pi[j], we have pi[j] ≤

pi′[j], ∀ j ∈ {1, · · · , K′}. Therefore,

Fi =
2

n

K′

X

j=1

pi[j]yi[j] ≤
2

n

K′

X

j=1

pi[j]yi′[j] ≤
2

n

K′

X

j=1

pi′[j]yi′[j] = F ′

i ,

which implies that“ni· ≤ ni′·” is the sufficient condition for“Fi ≤

F ′

i ”. Therefore, by Procedure 1, we have F− = maxi Fi, which

finally leads to F ≥ F−. Thus we complete the proof. 2

Therefore, Fn = (F − F−)/(1 − F−), as listed in Table 5.
Finally, as to ε, we have the following lemma.

Lemma 7. Given K′ ≤ K, ε ≤ 1 − 1/K.

Proof. Assume σ1 : {1, · · · , K′} → {1, · · · , K} is the optimal
mapping of the classes to different clusters, i.e.,

ε = 1 −

PK′

j=1 nσ1(j),j

n
.

Then we construct a series of mappings σs : {1, · · · , K′} 7→
{1, · · · , K} (s = 2, · · · , K) which satisfy

σs+1(j) = mod(σs(j), K) + 1, ∀j ∈ {1, · · · , K′},

where “mod(x, y)” returns the remainder of positive integer x di-
vided by positive integer y. By definition, σs (s = 2, · · · , K) can
also map {1, · · · , K′} to K′ different indices in {1, · · · , K} as σ1.

More importantly we have
PK′

j=1 nσ1(j),j ≥
PK′

j=1 nσs(j),j , ∀s =

2, · · · , K, and
PK

s=1

PK′

j=1 nσs(j),j = n.

Accordingly, we have
PK′

j=1 nσ1(j),j ≥ n
K

, which implies ε ≤

1 − 1/K. The proof is completed. 2

Therefore, we can use 1 − 1/K as the upper bound of ε,
and the normalized εn is shown in Table 5.

4.2 The DCV Criterion
Here, we present some experiments to show the impor-

tance of DCV (CV1−CV0) for selecting validation measures.
Experimental Data Sets. Some synthetic data sets were

generated as follows. Assume we have a two-dimensional
mixture of two Gaussian distributions. The means of the
two distributions are [-2,0] and [2,0], respectively. And their
covariance matrices are exactly the same as [σ2 0; 0 σ2].

Therefore, given any specific value of σ2, we can gener-
ate a simulated data set with 6000 instances, n1 instances
from the first distribution, and n2 instances from the sec-
ond one, where n1 + n2 = 6000. To produce simulated data
sets with imbalanced class sizes, we set a series of n1 val-
ues: {3000, 2600, 2200, 1800, 1400, 1000, 600, 200}. If
n1 = 200, n2 = 5800, we have a highly imbalanced data set
with CV0 = 1.320. For each mixture model, we generated
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Figure 1: A Simulated Data Set (n1 = 1000, σ2 = 2.5).
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Figure 2: Relationship of CV0 and DCV .

8 simulated data sets with CV0 ranging from 0 to 1.320.
Further, to produce data sets with different clustering ten-
dencies, we set a series of σ2 values: {0.5, 1, 1.5, 2, 2.5, 3,
3.5, 4, 4.5, 5}. As σ2 increases, the mixture model tends to
be more unidentifiable. Finally, for each pair of σ2 and n1,
we repeated the sampling 10 times, thus we can have the
average performance evaluation. In summary, we produced
8 × 10 × 10 = 800 data sets. Figure 1 shows a sample data
set with n1 = 1000 and σ2 = 2.5.

We also did sampling on a real-world data set hitech

to get some sample data sets with imbalanced class dis-
tributions. This data set was derived from the San Jose
Mercury newspaper articles [22], which contains 2301 doc-
uments about computers, electronics, health, medical, re-
search and technology. Each document is characterized by
126373 terms, and the class sizes are 485, 116, 429, 603, 481
and 187, respectively. We carefully set the sampling ratio
for each class, and get 8 sample data sets with the class-size
distributions (CV0) ranging from 0.490 to 1.862, as shown in
Table 6. For each data set, we repeated sampling 10 times,
so we can observe the averaged clustering performance.

Experimental Tools. We used the MATLAB 7.1 [15] and
CLUTO 2.1.1 [11] implementations of K-means. The MAT-
LAB version with the squared Euclidean distance is suitable
for low-dimensional and dense data sets, while CLUTO with
the cosine similarity is used to handle high-dimensional and
sparse data sets. Note that the number of clusters, i.e., K,
was set to match the number of “true” classes.

The Application of Criterion 1. Here, we show how
we can apply Criterion 1 for selecting measures. As pointed
out in Section 3.1, K-means tends to have the uniform effect
on imbalanced data sets. This implies that for data sets with
skewed class distributions, the clustering results by K-means
tend to be away from “true” class distributions.

Table 6: The Sizes of the Sampled Data Sets.
Data Set 1 2 3 4 5 6 7 8
Class 1 100 90 80 70 60 50 40 30
Class 2 100 90 80 70 60 50 40 30
Class 3 100 90 80 70 60 50 40 30
Class 4 250 300 350 400 450 500 550 600
Class 5 100 90 80 70 60 50 40 30
Class 6 100 90 80 70 60 50 40 30
CV0 0.49 0.686 0.88 1.078 1.27 1.47 1.666 1.86

Table 8: The Benchmark Data Sets.
Data Set Source #Class #Case #Feature CV0

cacmcisi CA/CI 2 4663 41681 0.53
classic CA/CI 4 7094 41681 0.55

cranmed CR/ME 2 2431 41681 0.21
fbis TREC 17 2463 2000 0.96

hitech TREC 6 2301 126373 0.50
k1a WebACE 20 2340 21839 1.00
k1b WebACE 6 2340 21839 1.32
la1 TREC 6 3204 31472 0.49
la2 TREC 6 3075 31472 0.52
la12 TREC 6 6279 31472 0.50
mm TREC 2 2521 126373 0.14

ohscal OHSUMED 10 11162 11465 0.27
re0 Reuters 13 1504 2886 1.50
re1 Reuters 25 1657 3758 1.39

sports TREC 7 8580 126373 1.02
tr11 TREC 9 414 6429 0.88
tr12 TREC 8 313 5804 0.64
tr23 TREC 6 204 5832 0.93
tr31 TREC 7 927 10128 0.94
tr41 TREC 10 878 7454 0.91
tr45 TREC 10 690 8261 0.67
wap WebACE 20 1560 8460 1.04

DLBCL KRBDSR 3 77 7129 0.25
Leukemia KRBDSR 7 325 12558 0.58

LungCancer KRBDSR 5 203 12600 1.36
ecoli UCI 8 336 7 1.16

pageblocks UCI 5 5473 10 1.95
letter UCI 26 20000 16 0.03

pendigits UCI 10 10992 16 0.04
MIN - 2 77 7 0.03
MAX - 26 20000 126373 1.95

Note: CA-CACM, CI-CISI, CR-CRANFIELD, ME-MEDLINE.

To further illustrate this, let us take a look at Figure 2(a)
of the simulated data sets. As can be seen, for the extreme
case of σ2 = 5, the DCV values decrease as the CV0 values
increase. Note that DCV values are usually negative since
K-means tends to produce clustering results with relative
uniform cluster sizes (CV1 < CV0). This means that, when
data become more skewed, the clustering results by K-means
tend to be worse. From the above, we know that we can
select measures by observing the relationship between the
measures and the DCV values. As the DCV values go down,
the good measures are expected to show worse clustering
performances. Note that, in this experiment, we applied the
MATLAB version of K-means.

A similar trend can be found in Figure 2(b) of the sampled
data sets. That is, as the CV0 values go up, the DCV val-
ues decrease, which implies worse clustering performances.
Indeed, DCV is a good indicator for finding the measures
which cannot capture the uniform effect by K-means cluster-
ing. Note that, in this experiment, we applied the CLUTO
version of K-means clustering.

In the next section, we use the Kendall’s rank correlation
(κ) [12] to measure the relationships between external val-
idation measures and DCV. Note that, κ ∈ [−1, 1]. κ = 1
indicates a perfect positive rank correlation, whereas κ = −1
indicates an extremely negative rank correlation.

4.3 The Effect of Normalization
In this subsection, we show the importance of measure

normalization. Along this line, we first apply K-means clus-
tering on the simulated data sets with σ2 = 5 and the sam-
pled data sets from hitech. Then, both unnormalized and
normalized measures are used for cluster validation. Finally,
the rank correlation between DCV and the measures are
computed and the results are shown in Table 7.

As can be seen in the table, if we use the unnormal-
ized measures to do cluster validation, only three measures,
namely R, Γ, Γ′, have strong consistency with DCV on both
groups of data sets. V I, V D and MS even show strong con-
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Table 7: The Correlation between DCV and the Validation Measures.
κ V I V D MS ε F R J FM Γ Γ′

Simulated Data -0.71 0.79 -0.79 1.00 1.00 1.00 0.91 0.71 1.00 1.00
Sampled Data -0.93 -1.00 -1.00 0.50 0.21 1.00 0.50 -0.43 0.93 1.00

κ V In V Dn MS′

n εn Fn Rn J ′

n FMn Γn Γ′

n

Simulated Data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sampled Data 1.00 1.00 1.00 0.50 0.79 1.00 1.00 1.00 0.93 1.00
Note: Poor or even negative correlations have been highlighted by the bold and italic fonts.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
a
lu

e
s

V D V Dn R Rn

Figure 3: Un-normalized and Normalized Measures.

R

Γ′

Γ

MS

V I

J

FM

F

ε

V D

R Γ
′

Γ M
S

V
I

J F
M

F ε V
D

 

 

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Unnormalized Measures.

εn

Fn

J ′n

Rn

Γ′n

MS ′n

FMn

Γn

V Dn

V In

ε
n

F
n

J
′ n

R
n

Γ
′ n

M
S
′ n

F
M

n

Γ
n

V
D

n

V
I
n

 

 

0.5

0.6

0.7

0.8

0.9

1

(b) Normalized Measures.

Figure 4: Correlations of the Measures.

flict with DCV on the sampled data sets, since their κ values
are all close to -1 on sampled data. In addition, we notice
that F , ε, J and FM show weak correlation with DCV .

Table 7 shows the rank correlations between DCV and
the normalized measures. As can be seen, all the normalized
measures show perfect consistency with DCV except for Fn

and εn. This indicates that the normalization is crucial for
evaluating K-means clustering. The proposed bounds for
the measures are tight enough to capture the uniform effect
in the clustering results.

In Table 7, we can observe that both Fn and εn are not
consistent with DCV . This indicates that normalization
does not help F and ε too much. The reason is that the pro-
posed lower bound for F and upper bound for ε are not very
tight. Indeed, the normalizations of F and ε are very chal-
lenging. This is due to the fact that they both exploit rel-
atively complex optimization schemes in the computations.
As a result, we cannot easily compute the expected values
from a multivariate hypergeometric distribution perspective,
and it is also difficult to find tighter bounds.

Nevertheless, the above experiments show that the nor-
malization is very valuable. In addition, Figure 3 shows the
cluster validation results of the measures on all the simu-
lated data sets with σ2 ranging from 0.5 to 5. It is clear
that the normalized measures have much wider value range
than the unnormalized ones along [0,1]. This indicates that
the values of normalized measures are more spread in [0, 1].

In summary, to compare cluster validation results across
different data sets, we should use normalized measures.

5. MEASURE PROPERTIES
In this section, we investigate measure properties, which

can serve as the guidance for the selection of measures.

Rn Γ′n J
′
n MS

′
n FMn V InεnFnV DnΓn

s=1 s=0.98

s=0.95

s=0.89

s=0.85
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s=0.75

Figure 5: The Measure Similarity Hierarchy.

Table 9: M(R1) − M(R2).
Rn FMn Γn V Dn Fn εn V In

Rn 0.00 0.09 0.13 0.08 0.10 0.26 -0.01
FMn 0.09 0.00 0.04 0.00 0.10 0.22 -0.10

Γn 0.13 0.04 0.00 0.04 0.14 0.22 -0.06
V Dn 0.08 0.00 0.04 0.00 0.05 0.20 -0.18

Fn 0.10 0.10 0.14 0.05 0.00 0.08 -0.08
εn 0.26 0.22 0.22 0.20 0.08 0.00 0.04

V In -0.01 -0.10 -0.06 -0.18 -0.08 0.04 0.00

5.1 The Consistency between Measures
Here, we define the consistency between a pair of mea-

sures in terms of the similarity between their rankings on
a series of clustering results. The similarity is measured by
the Kendall’s rank correlation. And the clustering results
are produced by the CLUTO version of K-means clustering
on 29 benchmark real-world data sets listed in Table 8. In
the experiment, for each data set, the cluster number is set
to be the same as the “true” class number.

Figure 4(a) and 4(b) show the correlations between the
unnormalized and normalized measures, respectively. One
interesting observation is that the normalized measures have
much stronger consistency than the unnormalized measures.
For instance, the correlation between V I and R is merely
−0.21, but it reaches 0.74 for the corresponding normalized
measures. This observation indeed implies that the normal-
ized measures tend to give more robust validation results,
which also agrees with our previous analysis.

Let us take a closer look on the normalized measures in
Figure 4(b). According to the colors, we can roughly find
that Rn, Γ′

n, J ′

n, MS′

n, FMn and Γn are more similar to
one another, while V Dn, Fn, V In and εn show inconsis-
tency with others in varying degrees. To gain the precise
understanding, we do hierarchical clustering on the mea-
sures by using their correlation matrix. The resultant hier-
archy can be found in Figure 5 (“s” means the similarity).
As we know before, Rn, Γ′

n, J ′

n and MS′

n are equivalent, so
they have perfect correlation to one another, and form the
first group. The second group contains FMn and Γn. These
two measures behave similarly, and have just slightly weaker
consistency with the measures in the first group. Finally,
V Dn, Fn, εn and V In have obviously weaker consistency
with other measures in a descending order.

Furthermore, we explore the source of the inconsistency
among the measures. To this end, we divide the data sets
in Table 8 into two repositories, where R1 contains data
sets with CV0 < 0.8, and R2 contains the rest. Then we
compute the correlation matrices of the measures on the two
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repositories respectively (denoted by M(R1) and M(R2)),
and observe their difference (M(R1) − M(R2)) in Table 9.
As can be seen, roughly speaking, all the measures except
V In show weaker consistency with one another on data sets
in R2. In other words, while V In acts in the opposite way,
most measures tend to disagree with one another on data
sets with highly imbalanced classes.

5.2 Properties of Measures
In this subsection, we investigate some key properties of

external clustering validation measures.

Table 10: Two Clustering Results.
I C1 C2 C3

P

P1 3 4 12 19
P2 8 3 12 23
P3 12 12 0 24
P

23 19 24 66

II C1 C2 C3

P

P1 0 7 12 19
P2 11 0 12 23
P3 12 12 0 24
P

23 19 24 66

Table 11: The Cluster Validation Results.
Rn FMn Γn V Dn Fn εn V In

I 0.16 0.16 0.16 0.71 0.32 0.77 0.78
II 0.24 0.24 0.24 0.71 0.32 0.70 0.62

The Sensitivity. The measures have different sensitivity
to the clustering results. Let us illustrate this by an exam-
ple. For two clustering results in Table 10, the differences
between them are the numbers in bold. Then we employ
the measures on these two clusterings. Validation results
are shown in Table 11. As can be seen, all the measures
show different validation results for the two clusterings ex-
cept for V Dn and Fn. This implies that V Dn and Fn are
less sensitive than other measures. This is due to the fact
that both V Dn and Fn use maximum functions, which may
loose some information in the contingency matrix. Further-
more, V In is the most sensitive measure, since the difference
of V In values for the two clusterings is the largest.

Impact of the Number of Clusters. We use the data
set la2 in Table 8 to show the impact of the number of clus-
ters on the validation measures. Here, we change the cluster
numbers from 2 to 15. As shown in Figure 6, the measure-
ment values for all the measures will change as the increase
of the cluster numbers. However, the normalized measures
including V In, V Dn and Rn can capture the same optimal
cluster number 5. Similar results can also be observed for
other normalized measures, such as Fn, FMn and Γn.

A Summary of Math Properties. We summarize five
math properties of measures as follows. Due to the space
limit, we omit the proofs here.

Property 1 (Symmetry). A measure O is symmet-
ric, if O(MT ) = O(M) for any contingence matrix M .

The symmetry property treats the pre-defined class struc-
ture as one of the partitions. Therefore, the task of cluster
validation is the same as the comparison of partitions. This
means transposing two partitions in the contingency matrix
should not bring any difference to the measure value. This
property is not true for Fn which is a typical measure in
asymmetry. Also, εn is symmetric if and only if K = K′.

Property 2 (N-invariance). For a contingence ma-
trix M and a positive integer λ, a measure O is n-invariant,
if O(λM) = O(M), where n is the number of objects.

Intuitively, a mathematically sound validation measure
should satisfy the n-invariance property. However, three
measures, namely Rn, FMn and Γn cannot fulfill this re-
quirement. Nevertheless, we can still treat them as the
asymptotically n-invariant measures, since they tend to be
n-invariant as the increase of n.

Table 12: Math Properties of Measures.
Fn V In V Dn εn Rn FMn Γn

P1 No Yes Yes Yes** Yes Yes Yes
P2 Yes Yes Yes Yes No No No
P3 Yes* Yes* Yes* Yes* No No No
P4 No Yes Yes No No No No
P5 Yes Yes Yes Yes Yes Yes Yes
Note: Yes* — Yes for the un-normalized measures.

Yes** — Yes for K = K′.

Property 3 (Convex additivity). Let P = {P1, · · · ,
PK} be a clustering, P ′ be a refinement of P 1, and P ′

l be
the partitioning induced by P ′ on Pl. Then a measure O is
convex additive, if O(M(P, P ′)) =

PK
l=1

nl
n

O(M(IPl , P
′

l )),
where nl is the number of data points in Pl, IPl represents
the partitioning on Pl into one cluster, and M(X, Y ) is the
contingency matrix of X and Y .

The convex additivity property was introduced by Meila [16].
It requires the measures to show additivity along the lattice
of partitions. Unnormalized measures including F , V D, V I
and ε hold this property. However, none of the normalized
measures studied in this paper holds this property.

Property 4 (Left-domain-completeness). A mea-
sure O is left-domain-complete, if, for any contingence ma-
trix M with statistically independent rows and columns,

O(M) =



0, O is a positive measure;
1, O is a negative measure.

When the rows and columns in the contingency matrix are
statistically independent, we should expect to see the poor-
est values of the measures, i.e., 0 for positive measures and
1 for negative measures. Among all the measures, however,
only V In and V Dn can meet this requirement.

Property 5 (Right-domain-completeness). A mea-
sure O is right-domain-complete, if, for any contingence ma-
trix M with perfectly matched rows and columns,

O(M) =



1, O is a positive measure;
0, O is a negative measure.

This property requires measures to show optimal values
when the class structure matches the cluster structure per-
fectly. The above normalized measures hold this property.

5.3 Discussions
In a nutshell, among 16 external validation measures shown

in Table 1, we first know that Mirkin metric (M) is equiv-
alent to Rand statistic (R), and micro-average precision
(MAP ) and Goodman-Kruskal coefficient (GK) are equiva-
lent to the purity measure (P ) by observing their computa-
tional forms. Therefore, the scope of our measure selection is
reduced from 16 measures to 13 measures. In Section 3, our
analysis shows that purity, mutual information (MI), and
entropy (E) are defective measures for evaluating K-means
clustering. Also, we know that variation of information (V I)
is an improved version of MI and E, and van Dongen cri-
terion (V D) is an improved version of P . As a result, our
selection pool is further reduced to 10 measures.

In addition, as shown in Section 4, it is necessary to use
the normalized measures for evaluating K-means clustering,
since the normalized measures can capture the uniform ef-
fect by K-means and allow to evaluate different clustering
results on different data sets. By Proposition 1, we know

1“P ′ be a refinement of P” means P ′ is the descendant node
of node P in the lattice of partitions. See [16] for details.
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Figure 6: Impact of the Number of Clusters.

that the normalized Rand statistic (Rn) is the same as the
normalized Hubert Γ statistic II (Γ′

n). Also, the normalized
Rand statistic is equivalent to J ′

n, which is the same as MS′

n.
Therefore, we only need to further consider Rn and can ex-
clude J ′

n, Γ′

n as well as MS′

n. The results in Section 4 show
that the normalized F-measure (Fn) and classification er-
ror (εn) cannot well capture the uniform effect by K-means.
Also, these two measures do not satisfy some math proper-
ties in Table 12. As a result, we can exclude them. Now,
we have five normalized measures: V In, V Dn, Rn, FMn,
and Γn. In Figure 5, we know that the validation perfor-
mances of Rn, FMn, and Γn are very similar to each other.
Therefore, we only need to consider to use Rn.

From the above study, we believe it is most suitable to
use the normalized van Dongen criterion (V Dn), since V Dn

has a simple computation form, satisfies all mathematically
sound properties as shown in Table 12, and can measure well
on the data with imbalanced class distributions. However,
for the case that the clustering performances are hard to
distinguish, we may want to use the normalized variation of
information (V In) instead2, since V In has high sensitivity
on detecting the clustering changes. Finally, Rn can also be
used as a complementary to the above two measures.

6. CONCLUDING REMARKS
In this paper, we compared and contrasted external val-

idation measures for K-means clustering. As our results
revealed, it is necessary to normalize validation measures
before they can be employed for clustering validation, since
unnormalized measures may lead to inconsistent or even mis-
leading results. This is particularly true for data with im-
balanced class distributions. Along this line, we also provide
normalization solutions for the measures whose normalized
solutions are not available. Furthermore, we summarized the
key properties of these measures. These properties should
be considered before deciding what is the right measure to
use in practice. Finally, we investigated the relationships
among these validation measures. The results showed that
some validation measures are mathematically equivalent and
some measures have very similar validation performances.
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