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ABSTRACT

In this study, we formalize a multi-focal learning problem,
where training data are partitioned into several different fo-
cal groups and the prediction model will be learned within
each focal group. The multi-focal learning problem is mo-
tivated by numerous real-world learning applications. For
instance, for the same type of problems encountered in a cus-
tomer service center, the problem descriptions from different
customers can be quite different. The experienced customers
usually give more precise and focused descriptions about the
problem. In contrast, the inexperienced customers usually
provide more diverse descriptions. In this case, the examples
from the same class in the training data can be naturally in
different focal groups. As a result, it is necessary to identify
those natural focal groups and exploit them for learning at
different focuses. The key developmental challenge is how
to identify those focal groups in the training data. As a case
study, we exploit multi-focal learning for profiling problems
in customer service centers. The results show that multi-
focal learning can significantly boost the learning accuracies
of existing learning algorithms, such as Support Vector Ma-
chines (SVMs), for classifying customer problems.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining ; I.5.2 [Pattern Recognition]: Design Method-
ology—Classifier Design and Evaluation

General Terms

Algorithms, Experimentation
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Multi-focal Learning, Customer Service Support

1. INTRODUCTION
Customer service support is becoming an integral part of

most companies. Many companies have a customer service
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department that provides inspection, installation, and main-
tenance support for their world-wide customers. Problem
ticket generation usually is the first step in today’s process
services management. This step is responsible for describ-
ing problem symptoms reported by customers and problem
tickets are the link between customers and the services in-
frastructure. Once a problem ticket is generated, it will be
enqueued in the ticketing system and routed to an appro-
priate service center or service people for problem determi-
nation. Most existing large call centers collect service data
that are then used to assess and improve the performances
of their representatives. Typically, these problem records
are stored in relational databases with both structured (e.g.
current status, problem type, support person/group han-
dling the problem, type of system and component related
to the problem) as well as unstructured (e.g. free-format
text descriptions of problems and solutions as entered by
the support personnel) attributes.

Indeed, the increasing availability of problem logs cre-
ates unprecedented opportunities to change the paradigm
for risk management for avoiding/alleviating organizational
crisis, product design, and product quality control. Cur-
rently, these problem logs are mostly used for tracking, au-
diting and reporting the problem management processes [4,
11, 3]. Most steps in these processes (e.g., problem diagno-
sis, ticket routing, etc.) are still manually taken. However, a
lot of subject knowledge and experiences that these manual
steps rely on are embedded in the existing problem records
(i.e. historical data) [14, 16]. It is expected that we develop
the ability to automatically extract the expert experiences
as the knowledge to improve process services management
and identify early symptoms of defect products.

To this end, in this study, we aim to exploit large-scale
problem logs for predicting problem category/determination
automatically. This is a main aspect of customer service pro-
filing [8]. If problems can be automatically determined, the
problems can be routed to the right support group/personnel
more efficiently. In turn, this can offer an organization
tremendous benefit by, for instance, identifying sources of
problem resolution error, delay, and optimization of the prob-
lem management processes. Also, this can help to reduce
the expense caused by manual processing. Furthermore, it
is possible to facilitate customer service profiling if we have
the ability to automatically categorize problems.

While it is appealing to automate the process of problem
categorization/determination, it is very challenging to make
use of the information and expert knowledge encoded in
problem logs. For problems reported by customers, the best
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Table 1: A Sample Problem Log Entry
ProblemID CauseCode System OccurredDate/Time Component ReportGroup ResolverGroup
30446586 APPLICATION E-ESM 01-Jan-07/00.18.55 PROBLEM AINTT HDL2PW AINTT HDL2PW

Problem Description Problem Solution
I changed my password over the holidays and I didn’t write

it down. Now I can’t remember it.

Left a message to get the ID file and password

and closing the ticket

information we can use is the problem description provided
by customers. If we treat the problem descriptions as train-
ing samples and the problem result categories (determined
by experts) as labels, it appears that existing off-the-shelf
classification algorithms [17] can be used for problem cat-
egorization. However, after carefully examining real-world
problem logs, we have observed some unique characteris-
tics inherent in problem logs. A key issue is that all the
problem descriptions for the same problem are provided by
customers with diverse background and these problem de-
scriptions can be quite different. The experienced customers
usually give more precise and focused descriptions about the
problem. In contrast, the inexperienced customers usually
provide diverse descriptions for the same problem. As an ex-
ample, for a simple password problem, the description from
experienced customers can be as simple as “need to reset
password”. However, inexperienced customers provide much
more diverse descriptions, such as “cannot connect to the
network”and“my computer does not work”. In other words,
the training samples for the same class can be naturally in
different focal groups. If we treat these problem descriptions
as the same and fit into existing learning models, we may
not be able to have desirable classification performances.

The above observations cast the light on the major body of
this research. Specifically, we formalize a multi-focal learn-
ing problem, where training data are partitioned into sev-
eral different focal groups and the prediction model will be
learned within each focal group. A key developmental chal-
lenge is how to identify those focal groups in the training
data. As mentioned above, for the same problem, the prob-
lem descriptions from experienced customers are very precise
and focused. Accordingly, the descriptions of problem solu-
tions are also very precise and focused and highly correlated
with the problem descriptions by experienced customers (if
descriptions have been turned into vectors of words). In con-
trast, the problem descriptions for the same problem from
inexperienced customers are weakly correlated with the de-
scriptions of their corresponding problem solutions. Viewed
in this light, we propose a correlation method (CORRELA-
TION) to partition problem descriptions within each class
into two different groups: one for experienced customers and
the other for inexperienced customer. In addition, to bet-
ter capture the information encoded in problem logs, we
also develop an ontology-enhanced correlation method (ON-
TOLOGY) for identifying different focal groups. After the
learning models are constructed for different focal groups,
the new samples will be assigned to a learning model based
on a nearest neighbor method; that is, a new sample will be
assigned to a learning model if this sample is closer to the
centroid of the train samples for this learning model than
that of any other model.

To evaluate the performances of multi-focal learning, we
present a theoretical risk analysis of multi-focal learning
with the Näıve Bayes classifier and reveal that the risk of
multi-focal learning with the Näıve Bayes classifier is smaller
than the risk of the single Näıve Bayes learning model. More-
over, we exploit the multi-focal learning model for catego-

rizing problems using real-world problem logs. The exper-
imental results show that multi-focal learning can signifi-
cantly boost the learning accuracies of existing learning al-
gorithms, such as SVMs and RIPPER [18]. Finally, we show
that both CORRELATION and ONTOLOGY can lead to a
better learning performance than other focal-group forma-
tion methods, such as the methods based on clustering and
random-partition. However, ONTOLOGY results in slightly
better learning performances than CORRELATION.

2. OVERVIEW OF PROBLEM LOGS
We aim to develop a problem categorization model for

facilitating customer service analysis. To achieve this, we
build a prediction model based on the problem logs collected
from customer service centers. While the problem logs used
here are only related to IT Enterprise products and service
functions, the developed prediction methodology and the
prediction framework can be easily extended to deal with
problem logs from broader business sectors.

Problem logs used in this paper were collected from IBM
customer service centers. These problem logs are mainly
IBM customer service texts describing the customer prob-
lems and these texts were recorded during problem inci-
dences. While these problem logs record issues dominated
by IBM related products and services, there are some prob-
lem logs which report problems from other vendors as well.
All problem logs are stored in relational databases with both
structured (e.g. problem ID, cause code, Person/group han-
dling the problem, type of system and component related
to the problem) as well as unstructured (e.g. free-text de-
scriptions of problem and problem solution descriptions en-
tered by the support personnel) attributes. Table 1 shows
a sample problem log. In the table, we can observe some
structured attributes as well as two unstructured attributes
of this sample problem log. As can be seen, problem de-
scriptions are about the descriptions of problems and were
supplied by customers with diverse background. In contrast,
the descriptions about problem solution were provided by
IBM service people. Both problem descriptions and their
problem solutions are in the free-text format.

In this study, we focus on the unstructured attributes,
since the free-text descriptions of problems supplied by cus-
tomers are original and essential for the solutions of the
problems. Compared with structured data, unstructured
free-text descriptions offer more original information that
will reveal “what” and “why” aspects of the problems that a
customer might have encountered. However, the analysis of
unstructured text is extremely difficult because of the fol-
lowing reasons. First of all, any unstructured text is usually
very noisy with many irrelevant text contents [6]. Second,
the problem descriptions usually reflect the problem percep-
tions of customers and are given in customers’ own words.
In other words, the same problem can be described in many
different ways since the different customers have very differ-
ent levels of domain knowledge.

Finally, before we can apply learning models on prob-
lem logs for predicting problem categorization, we need to
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first do data preprocessing, which includes data cleaning and
data transformation. For data transformation, we transform
unstructured problem descriptions and problem solutions
into structured vectors. This involves extracting keywords
from text paragraphs and then representing each problem
log as a vector with 0/1 values. This data pre-processing
is similar to that in text categorization. Note that we have
used the Porter word stemming algorithm [13] to reduce
words to their base stem.

3. MULTI-FOCAL LEARNING
In this section, we first introduce the concept of multi-

focal learning. Then, we explain how the multi-focal learn-
ing model works by providing an illustrating example. In
addition, we propose two methods for forming focal groups
in problem logs. Finally, we provide a theoretic analysis to
show the effectiveness of the multi-focal learning.

3.1 An Overview of Multi-focal Learning
The idea of multi-focal learning is motivated by the ob-

servation that there are inherent large variations in many
real-world training data. For instance, problem descriptions
in problem logs for the same problem can be quite differ-
ent, since these descriptions may be from customers with
different background. Some customers may be experienced
people and they can provide more precise descriptions about
the problems. In contrast, some inexperienced customers
may provide diverse descriptions on the same problem. As
a result, the learning performances can be significantly im-
pacted by the diversity inherent in the training data. This
is referred as the multi-focal property in this paper.

To deal with this multi-focal property, we provide a multi-
focal learning framework as shown in Figure 1. As can be
seen, there are three phases for the multi-focal learning. In
the first and the most challenging phase, there is a need to
identify different focal groups in a way such that training
samples in the same focal group are more similar to each
other. This focal-group formation process is challenging be-
cause there is no simple and effective way to identify focal
groups in different types of real-world data. The best focal-
group formation method usually relies on the special charac-
teristics inherent in the data. Here, we provide two methods
for finding focal groups in problem logs in the following sub-
sections. The second phase is focused on building learning
models in each focal group. Any traditional learning models,
such as Support Vector Machines (SVMs), Bayesian Learn-
ing, and Decision Trees, can be applied here. Finally, in the
third phase, the test samples will be first assigned to a focal
group using a nearest neighbor method. Then, the learning
model from the corresponding focal group will be used for
the learning on this test sample.

3.2 An Illustration of Multi-focal Learning
Here, we exploit SVMs on a synthetic data set to illus-

trate multi-focal learning. Specifically, we generate two-
dimensional synthetic data with two classes as shown in Fig-
ure 2 (a). In the figure, the objects of two classes are repre-
sented by triangle and square symbols respectively and these
objects are naturally located in two different focal groups:
one dense group and one sparse group. Note that the SVMs
tool we used here is LIBSVM [2] with the linear kernel.

First of all, we generate the learning model by directly ap-
plying SVMs for the whole original data and the results are

Multi-focal Learning
Input: TR: a training data set.

TE: a test data set.
LCF: a classifier, such as SVMs.
K: the number of focal groups in training data.

Note K=2 in this study.
Output: CMs: the multi-focal models built on TR.

CR: the prediction results.
Procedure:
Phase I: Identifying focal Groups
1. if do local partition within each class
2. for class i=1 to C //C: #classes
3. Groupi

(k=1,··· ,K)
=Partition(TR(i),K);

4. end for
5. for group k=1 to K
6. Groupk=mergei=1,··· ,CGroupi

k
7. end for
8. else do global partition in all classes
9. Group(k=1,··· ,K)=partition(TR,K)
10. end if
Phase II: Training the model in each focal group.
11. for group k=1 to K
12. CM(k)=train(Groupk,LCF);
13. end for
Phase III: Testing/prediction
14. CM*=choose(Groups,TE);
15. predictLabel=predict(CM*,TE)

Figure 1: The Multi-focal Learning Framework

show in Figure 2 (b). In this figure, the solid line represents
the maximal margin hyperplane (MMH) learned by SVMs.
As can be seen, there are many classification errors. This
is due to the multi-focal property of the original data. In-
deed, even if we use non-linear kernels (i.e. the Radial Basis
Function), the classification accuracy is still about 60%.

Instead, we exploit multi-focal learning methods. Along
this line, we first partition the data into two groups. One is
the dense group and the other is the sparse group as shown
in Figure 2 (c). In this figure, we can see that samples from
two classes co-exist in these two focal groups. Next, we ap-
ply SVMs to build learning models in each group and the
results are shown in Figure 2 (d). As can be seen, there
is one MMH in each group and there are few classification
errors compared to Figure 2 (b). Finally, to predict a test
sample in the multi-focal learning framework, we first as-
sign the test sample to a focal group based on the nearest
neighbor methods. Then, the learning model from the cor-
responding focal group will be used for the prediction of this
test sample. The above example illustrates the multi-focal
learning process and the reasons why it can lead to bet-
ter performances for the data with the multi-focal property.
However, in practice, a key developmental challenge is how
to effectively identify the focal groups from the data.

3.3 Focal Group Formation:CORRELATION
As a practice, in this subsection, we propose a CORRE-

LATION method to generate focal groups in problem logs.
This method is motivated by our observation that problem
logs have been provided by customers with diverse back-
ground. The experienced customers usually give more pre-
cise and focused descriptions about the problems. These
problem descriptions are highly correlated with the problem
solutions provided by service people. In contrast, the in-
experienced customers usually give diverse descriptions for
the same problem and their descriptions usually have low
correlation with the final problem solutions.
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                 (a) Original Data (b) Single SVMs

(c) Focal Group Formation (d) Training SVMs within each Group (e) Multiple SVMs
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Figure 2: An Illustration of Multi-focal Learning.

To measure the correlation between problem descriptions
and their problem solutions, we need to first transform prob-
lem descriptions and their solutions into vectors with 0/1
values. Specially, we first extract key words from the text
descriptions of problems and their solutions and build a word
vector to include all the key words. Then, a problem descrip-
tion or a problem solution can be transformed into a vector
with 0/1 values based on whether the corresponding word
in the word vector is in the problem description/solution or
not. In this way, we turn all the problem descriptions and
their problem solutions into binary vectors. To measure the
strength of the relationships among these vectors, we use
the Jaccard Coefficient [17], as follows.

J(X, Y ) =
#of matching presences

#of attributes not involved in 00 matches

=
f11

f01 + f10 + f11
. (1)

Where fij is the number of attributes where X is i and Y is
j (i = 0 or 1; j = 0 or 1). After we compute the semantic
correlation between problem descriptions and their problem
solutions, we partition problem logs into two focal groups:
one with high correlation values and another one with low
correlation values. Note that we empirically choose the cor-
relation thresholds for partitioning.

3.4 Focal Group Formation: ONTOLOGY
After carefully examining the problem logs, we have no-

ticed that the key words from problem descriptions/solutions
can be naturally organized into a hierarchy of concepts. In
the above CORRELATION method, all the key words are
treated equally in the correlation computation. However,
the significance of key words from different concept levels
should be different. Thus, in this subsection, we propose an
ontology-enhanced correlation method (ONTOLOGY) for
focal group formation in problem logs.

Indeed, ontology is an effective tool to represent hierarchi-
cal concepts within a domain [12] and it has been used for
text classification [1]. In this study, we exploit ontology to
improve focal group formation. Specifically, we construct an
ontology with extracted concepts from problem logs. Fig-
ure 3 shows a sample ontology. In this ontology, the key

Virus Internet

Ticket#32639225

MSN Virus Trojan Vundo

Pop ups

3945ABG

MSN Worm/Virus

PasswordResetWireless Card, WiFi Card,... 

TSO/PasswordATT/PasswordIntel PRO

Symantec AV/Error WinGeneric.dll

synonyms bag

Figure 3: Sample Ontology.

words at top levels are very general and the key words at
bottom levels are very specific. Both experienced and inex-
perienced customers are likely to use the key words from the
top levels. However, the key words from the bottom levels
(e.g. 3945ABG and Ticket#32639225) are usually the words
hard-coded into the software system as error messages. Inex-
perienced customers are more likely to copy these key words
when they report problems. In addition, there are some key
words which are synonyms, such as monitor and LCD. Dif-
ferent customers may use different words for the same mean-
ing. To capture these synonyms, we produce synonym bags
which include all synonyms for the same concept. These
synonym bags are integrated in the ontology.

With the help of the ontology, we know there is still room
to better capture expert knowledge and improve focal group
formation. Specifically, in ONTOLOGY, we first manually
generate the ontology over all the key words. This pro-
cess includes the generation of synonym bags. Then, we
exploit a weighting scheme to assign small weights on the
words at the top and the bottom levels and large weights
on the words at the middle levels. Since the words at the
middle levels are more likely used by experienced customers
and the words at the top and bottom levels are more likely
used by inexperienced customers, this weighting scheme can
help to turn binary vectors into weighted vectors. In this
case, we employ the cosine similarity to compute the cor-
relations instead of the Jaccard measure, since the Jaccard
measure can only handle binary vectors. Let X and Y be
binary vectors of problem descriptions and solutions. Also,
let W represent the weight vector obtained from ONTOL-
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OGY. Then the Ontology-Enhanced correlation can be com-

puted as Cosw(X, Y ) = (X∗W )·(Y ∗W )
‖X‖ ‖Y ‖

, where ‖ X ‖ is the

length of vector X, · is dot product and ∗ is defined as
X ∗ W = [x1w1, · · · , xdwd], where X,Y and W are both d
dimension vectors.

Note that the ontology-enhanced correlation computing
can increase the correlations between problem descriptions
and their problem solutions for experienced customers and
decrease the correlations between problem descriptions and
their problem solutions for inexperienced customer, and thus
better capturing two focal groups.

3.5 Risk Analysis of Multi-Focal Learning
In this subsection, we present a theoretical risk analysis

of multi-focal learning. For the illustration purpose, we use
the Näıve Bayes classifier as the base learning model.

First, given the input variable x and output variable y,
the expected prediction error (EPE ) [15] is:

EPE(f) := E[L(y, f(x))] =

Z

X×Y

L(y, f(x))p(x, y)dxdy (2)

where L(y, f(x)) is the loss function, such as squared loss or
0-1 loss. The goal of classification is to find f(x) so that EPE

is minimized. In the Bayesian Classification terminology [7],
EPE is also called Risk which is actually more widely used
than EPE. Assume that we have prior probability for class
Hi as pi = p(Hi), i = 1, 2, ..., M . We can assign a loss func-
tion (Lij) to each possible decision outcome; We also know
the conditional/likelihood probability as p(x|Hi). Then, the
total risk in the Bayesian terminology can be rewritten as:

Risk =
M

X

j=1

M
X

i=1

Lijp(Hi is true)p(Hj is chosen|Hi is true)

=
M

X

j=1

M
X

i=1

Lijpi

Z

Rj

p(x|Hi)dx

=
M

X

j=1

Z

Rj

M
X

i=1

Lijpip(x|Hi)dx (3)

where Rj is the classification boundary. Since Rj partitions
the entire space, any x belongs to exactly one such Rj . In
fact, the Bayesian Classifier decides class j by maximizing
the posterior probability; that is, j := argmaxj p(Hj |x)

Then, the total risk can be simplified as

Risk =
M

X

i=1

Lijpip(x|Hi) (4)

If we choose 0-1 criterion for loss function, Equation (4) can
be rewritten as:

Risk =
M

X

i=1,i6=j

pip(x|Hi) = p(x)
M

X

i=1,i6=j

pip(x|Hi)

p(x)

= p(x)

M
X

i=1,i6=j

p(Hi|x) = c

M
X

i=1,i6=j

p(Hi|x) (5)

Since p(x) is the same value for all x, the total risk is actually
the product of one constant term c and the probability of
error. Next, we introduce the following Theorem.

Theorem 1. The risk of multi-focal learning with the Näıve

Bayes classifier is smaller than the risk of the single Näıve

Bayes learning model.

Proof. Let Risk′ be the risk of multi-focal learning with
the Näıve Bayes classifier and Risk be the risk of the single
Näıve Bayes learning. For a new object x, we assume that
Class j′ is predicted by the multi-focal learning model and
Class j is predicted by the single learning model. According
to Equation (5), we have Risk′ =

PM

i=1,i6=j′
pip

′(x|Hi) =

c
PM

i=1,i6=j′
p′(Hi|x) and Risk =

PM

i=1,i6=j
pip(x|Hi) =

c
PM

i=1,i6=j
p(Hi|x), where c is one constant number. We

need to prove ∆Risk (∆Risk = Risk′ − Risk) < 0.

∆Risk = Risk′ − Risk

= c
M

X

i=1,i6=j′

p′(Hi|x) − c
M

X

i=1,i6=j

p(Hi|x)

= c(1 − p′(Hj′ |x)) − c(1 − p(Hj |x))

= c(p(Hj |x) − p′(Hj′ |x)) (6)

Apparently, both p(Hj |x) and p′(Hj′ |x) are maximums as
the posterior probability with the Näıve Bayes Classifier. In-
stead of p′(Hj′ |x), let us consider p′(Hj |x) first. p′(Hj′ |x)
will be bigger than p(Hj |x) if p′(Hj |x) > p(Hj |x), because
p′(Hj′ |x) is maximal posterior probability for multi-focal
learning model. That is, if ∆RiskT = c(p(Hj |x)−p′(Hj |x)) <
0, then ∆Risk = c(p(Hj |x) − p′(Hj′ |x)) < 0. So next we
try to prove ∆RiskT < 0. For the Näıve Bayes Classi-
fier, each attribute xk, k = 1, 2, ..., D, of x is assumed to
be independent. In other words, p(Hj |x) ∝ pjp(x|Hj) =

pj

QD

k=1 p(xk|Hj), where pj is the same value for each class.

So we can write ∆RiskT as:

∆RiskT = c(p(Hj |x) − p′(Hj |x))

= c(pj

D
Y

k=1

p(xk|Hj) − pj

D
Y

k=1

p′(xk|Hj))

= c′(

D
Y

k=1

p(xk|Hj) −

D
Y

k=1

p′(xk|Hj)) (7)

where c′ is also a constant number. Similar to the text
classification problem, we use frequency ratio to estimate
p(xk|Hj) or p′(xk|Hj). We have:

p(xk|Hj) =
(# of xk|given Hj)

(# of training samples|givenHj)
(8)

p′(xk|Hj) =
(# of xk|given Hj)

′

(# of training samples|givenHj)′
(9)

where #ofxk means the number of times of attribute xk.
Then, if xk 6= 0, then xk only appears in one focal group(this
can be enforced by focal group formation methods), thus
(# of xk|givenHj) in Equation (8) and (# of xk|givenHj)

′

in Equation (9) should be equal. However, (# of training

samples|givenHj)
′ in Equation (9) is smaller than (# of

training samples|giveHj) in Equation (8) for the whole train-
ing data. So p′(xk|Hj) is greater than p(xk|Hj) for xk 6= 0.
Also, if xk = 0, the corresponding attribute tends to be ir-
relevant. For an irrelevant attribute, p(xk|Hj) or p′(xk|Hj)
becomes almost uniformly distributed , thus it almost has
no impact on the overall computation of posterior probabil-
ity [17]; therefore, it has no impact on the value of ∆RiskT .

As a result, we can conclude that
QD

k=1 p′(xk|Hj) is greater

than
QD

k=1 p(xk|Hj), thus ∆RiskT < 0. So we can conclude
∆Risk < 0. Thus, this theorem is held.
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Figure 4: Sythetic Data Sets.

4. EXPERIMENTAL RESULTS
In this section, we provide an empirical study of the per-

formances of multi-focal learning.

4.1 The Experimental Setup
Real-world Problem Logs. In the experiments, we

have used real-world problem logs collected from IBM cus-
tomer service centers. A detailed description of problem
logs has been given in Section 2. In the experiments, we
have formalized two-class classification as well as multi-class
classification problems. For the two-class classification prob-
lem, we are focused on two categories of customer problems.
One category includes the problems caused by the users,
such as “reset/forget password”. Another category includes
the problems related to product quality, such as “battery
dead” and “system crash”. In contrast, to study the multi-
class learning problem, we prepare three categories of prob-
lems including user-caused problems, hardware problems,
and software problems. All the problems were labeled by
domain experts. Finally, to evaluate the focal group for-
mation methods, problem descriptions were also labeled as
“experienced” or “inexperienced” by domain experts. These
labels are used as benchmarks in the experiments.

Synthetic Data. Figure 4 shows four synthetic data sets
including DS1,DS2,DS3 and DS4, which have the multi-focal
property. Some data characteristics are shown in Table 2.

Table 2: Some Characteristics of Synthetic Data
dataset # of classes size of class1 size of class2

DS1 2 131 128
DS2 2 617 554
DS3 2 662 409
DS4 2 614 459

Experimental Tools. We employ four base classifiers,
Support Vector Machines (SVMs), Naive Bayes classifier,
decision tree, and rule-based classifiers (RIPPER [18]). Also,
we use MFL to indicate multi-focal learning.

To evaluate focal group formation methods, we compare
CORRELATION and ONTOLOGY with clustering and ran-
dom partitioning methods. For the clustering method, we
employ Chameleon [5] in CLUTO [10], since we need to cap-
ture clusters with different densities. Problem descriptions
labeled by domain experts are used as the benchmark.

Evaluation Metrics. The classification accuracy and F-
measure [17] have been used for the performance evaluation.
For all the experiments, we did five-cross validation.

4.2 Results on Problem Logs
In this subsection, we show the performances of multi-

focal learning on real-world problem logs.
Two-class Categorization. The goal is to group prob-

lems into two categories: user-caused problems and product

problems. Here, we use CORRELATION for generating fo-
cal groups. Specifically, we measure the correlations between
problem descriptions and their problem solutions. If the cor-
relation is lower than 0.07, the corresponding problem log is
placed in a sparse (inexperienced) group. If the correlation
is larger than 0.1, we put the problem log in a dense (ex-
perienced) group. The thresholds are empirically specified.
Once we have two focal groups, we build learning models
with some base classifiers on both focal groups.

Table 3: Performances of MFL (2 Classes)
Method Accuracy within group Accuracy
SVMs N/A 59.43%
MFL with SVMs 68.24% (dense group)

74.59% (sparse group) 71.94%

Ripper N/A 67.14%
MFL with Ripper 74.71% (dense group)

79.89% (sparse group) 77.74%

C4.5 N/A 64.50%
MFL with C4.5 71.28% (dense group)

82.70% (sparse group) 77.82%

Bayes N/A 67.60%
MFL with Bayes 61.24% (dense group)

73.59% (sparse group) 68.84%

Table 3 shows the comparison results of multi-focal learn-
ing and traditional classification methods including SVMs,
Ripper, C4.5, and Bayes. In the table, we can observe that
multi-focal learning can improve the performances of these
traditional classification methods with a significant margin.

Table 4: Performances of MFL (3 Classes)
Method Accuracy within group Accuracy
SVMs N/A 44.15%

CORRELATION
MFL with SVMs 72.38% (dense group)

39.25% (sparse group) 52.86%

ONTOLOGY
MFL with SVMs 72.62% (dense group)

39.88% (sparse group) 53.17%

Bayes N/A 48.39%
CORRELATION

MFL with Bayes 55.90% (dense group)

47.72% (sparse group) 51.05%

ONTOLOGY
MFL with Bayes 55.01% (dense group)

48.83% (sparse group) 51.29%

Three-class Categorization. Here, we target grouping
problem logs into three categories: user-caused problems,
hardware problems, and software problems. In this exper-
iment, we apply both CORRELATION and ONTOLOGY
methods for generating focal groups. Table 4 shows the com-
parison results of multi-focal learning and traditional clas-
sification methods including SVMs and Bayes. As can be
seen, multi-focal learning can improve the classification per-
formances of both SVMs and Bayes. Also, we can observe
that ONTOLOGY leads to slightly better classification per-
formances compared to CORRELATION.

4.3 Performance Comparisons
In this subsection, we evaluate the performances of several

focal group formation methods including CORRELATION,
ONTOLOGY, clustering methods, random partitioning on

354



real-world problem logs. Here, we use SVMs as the base
classifier and target two-class categorization problem, which
has a similar experimental setting as the two-class catego-
rization problem in Section 4.2.

For ONTOLOGY, we stratify the domain concepts into
four levels. The weights on concepts on the top and bottom
levels are set as one and the weights on concepts on the mid-
dle two levels are set as three. Then, we measure weighted
correlations between problem descriptions and their prob-
lem solutions. If the correlation is lower than 0.13, the cor-
responding problem log is placed in a sparse group. If the
correlation is greater than 0.23, the problem log is placed in a
dense group. These two thresholds are empirically specified.
In addition, the clustering method we used is the Chameleon
algorithm in CLUTO, since there are different densities in
the data. The default parameters for running Chameleon
in CLUTO were used except the number of neighbors (-
nnbrs=80). Other parameters for Chameleon include the use
of graph clustering method (-clmethod=graph) with correla-
tion (-sim=corr) as the similarity and the use of agglomera-
tion (agglofrom=30). Finally, we use the labels from domain
experts (EXPERT) as the benchmark.

Table 5: Performance Comparisons
Method Accuracy within group Accuracy Class Fmeasure
SVMs N/A 59.43% 1 0.7344

2 0.1119
CORRELATION

MFL 68.24% (dense group) 1 0.6855

74.59% (sparse group) 71.94% 2 0.7076
ONTOLOGY

MFL 69.41% (dense group) 1 0.6718

75.54% (sparse group) 73.01% 2 0.7139
CLUSTERING

MFL 67.10% (dense group) 1 0.7338

56.17% (sparse group) 59.45% 2 0.1277
RANDOM

MFL 47.09% (group 1) 1 0.7326

65.96% (group 2) 58.58% 2 0.0982
EXPERT

MFL 71.27% (dense group) 1 0.7767

74.96% (sparse group) 73.53% 2 0.6644

Table 5 shows the results. As can be seen, the performance
of ONTOLOGY is slightly better than that of CORRELA-
TION and is closer to the performance by domain experts
as indicated by EXPERT in the table. Also, both ONTOL-
OGY and CORRELATION can lead to a much better classi-
fication performance compared to the clustering method and
random partition. The above indicates that both CORRE-
LATION and ONTOLOGY are effective methods for iden-
tifying focal groups in problem logs.

4.4 Results on Synthetic Data
In this subsection, we exploit some synthetic data to bet-

ter illustrate the multi-focal property; that is, the impact
of the diversity inherent in the data on the learning perfor-
mance. For four synthetic data sets shown in Figure 4, we
can see that there are simple linear-separable concepts as
well as complex non-linear-separable concepts [9] in these
data sets. Indeed, multi-focal learning is a natural solution
to the data with complex non-linear-separable concepts, be-
cause multi-focal learning allows for decomposing the com-
plex concepts into simple linearly separable concepts by group-
ing data objects into different focal groups.

Since two-dimensional synthetic data sets in Figure 4 can
be easily decomposed by the clustering algorithms, we apply
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the clustering methods for generating focal groups. Specifi-
cally, we use Chameleon [5] in CLUTO [10] with parameters:
-clmethod=graph (graph clustering), -sim=corr (correlation
similarity), and -nnbrs=60 (60 nearest neighbors).

Table 6 shows the results. Here, we use SVMs with both
linear and non-linear kernels as the base classifiers. As can
be seen, in terms of F-measure, the performances of multi-
focal learning are much better than that of single SVMs no
matter linear or non-linear kernels are used in SVMs. Note
that we only show the results of SVMs with linear kernels
on DS1 and DS2 data sets and the results of SVMs with
non-linear kernels on DS3 and DS4 data sets. A similar
trend has actually been observed on all four synthetic data
sets. Due to the space limitation, we omit these results. In
addition, Figure 5 shows the learning performances in terms
of the classification accuracy. In the figure, we can see that
the performances of both dense group and sparse group are
improved significantly with multi-focal learning.

Another interesting observation in Figure 5 is that, while
the clustering algorithms generate the same focal groups for
DS3 and DS4, the distributions of their class objects are dif-
ferent. Indeed, for SVMs with linear kernel, the single model
has a much worse performance on DS4 than on DS3. This
indicates that the complex concepts in DS4 have a negative
impact on the performance of linear kernels. However, with
multi-focal learning, the performance of SVMs with linear
kernels on DS4 has been improved a lot.

Finally, we show the reasons why we choose Chameleon for
data with different densities instead of widely-used K-means.
Here, we use both K-means and Chameleon for generating
focal groups on DS2 and DS4 data sets. Figure 6 shows
the increased ratio of classification accuracies by multi-focal
learning. As can be seen, for both linear and non-linear
cases, Chameleon leads to much better performances than
K-means, while K-means can also lead to an improved per-
formance of multi-focal learning.
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Table 6: F-Measure Comparisons on Synthetic Data
SVMs with linear kernel(-t=0)

Data Method class Precision Recall F-measure
DS1 SVMs 1 0.5106 0.8276 0.6316

2 0.4444 0.1481 0.2222
MFL 1 0.8744 0.7800 0.7520

2 0.8463 0.8092 0.7580
DS2 SVMs 1 0.8443 0.8638 0.8535

2 0.8441 0.8210 0.8318
MFL 1 0.9577 0.9575 0.9571

2 0.9543 0.9507 0.9518

SVMs with nonlinear kernel(-t=2)
DS3 SVMs 1 0.9168 0.9321 0.9243

2 0.8867 0.8628 0.8743
MFL 1 0.9678 0.9548 0.9612

2 0.9279 0.9486 0.9380
DS4 SVMs 1 0.9868 0.8400 0.9072

2 0.8919 0.9919 0.9391
MFL 1 0.9510 0.9248 0.9375

2 0.9442 0.9641 0.9539

4.5 Classification Error Analysis: A Case Study
Here, we provide a simple case study to show that multi-

focal learning with a Naive Bayes classifier can lead to smaller
classification errors. First, let us consider a binary classifi-
cation problem, where y1 and y2 represent two classes and
X represents objects. By Bayesian Theory, we have:

p(y/X) =
p(X/y)p(y)

p(X)
(10)
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Figure 7: One Dimension Class-Conditional Probabilities.

To make decision for classification, it is equal to com-
pare the posterior probabilities of p(y1/X) and p(y1/X).
In Equation (10), p(X) is equal for all objects. Further-
more, if we assume p(y1) is equal to p(y2), then p(y/X)
in Equation (10) can be rewritten as p(y/X) = cp(X/y),
where c = p(y)/p(X). Thus, we get p(y1/X) = cp(X/y1)
and p(y2/X) = cp(X/y2). Next, to classify objects, we
only need to compare class conditional probabilities p(X/y1)
and p(X/y2). There are several ways to estimate these
conditional probabilities by exploiting training data [17].
Here, we take the Gaussian Function for estimating con-
ditional probability. To demonstrate the classification error,
we present the class conditional probabilities and classifica-
tion boundary in one dimension as shown in Figure 7, where
x = h(X = x in one dimension) is the classification bound-
ary for these two classes. The classification error is

error =

Z h

−∞

p(x/y1)dx +

Z ∞

h

p(x/y2)dx. (11)

According to Figure 7 or Equation (11), we know that the
classification error is proportional to the overlap area of
these two Gaussian functions. As we know, the overlap area
is determined by the means and variances of these two Gaus-
sian functions. Similar to the use in Section 3.2, we use

two-dimension Gaussian functions to estimate conditional
probabilities of the synthetic data introduced in Section 3.2.
Specifically, for single model we use two Gaussian functions,
Gau1 and Gau2, to estimate the conditional probabilities of
two classes. For multi-focal learning, we need four Gaussian
functions, GauD

1 and GauD
2 for the dense group and GauS

1

and GauS
2 for the sparse group. We show these Gaussian

functions in Figure 8. As can be seen, there is more over-
lap between Gau1 and Gau2 than that between GauD

1 and
GauD

2 or GauS
1 and GauS

2 . Since this kind of overlap is an
overlap across three dimensions, to make it more clear, we
also show the projection of the overlap on the two-dimension
space as shown in Figure 8. In this case, the classification er-
ror can be computed by integrating over the two dimension
area as the following:

error =

Z Z

R1

Gau1dX +

Z Z

R2

Gau2dX (12)

where, R1 and R2 are determined as

R1 := {X|Gau1(X) < Gau2(X)}

R2 := {X|Gau2(X) < Gau1(X)}
(13)

Note that, for the dense group and the sparse group, both
Equation (12) and Equation (13) have the same form. To
this point, we can clearly see that classification error of
multi-focal learning is much smaller than the error produced
by the single model by either the Gaussian-function figure
or the error computation in Equation (12).

5. CONCLUSIONS AND DISCUSSIONS
In this paper, we formalized a multi-focal learning prob-

lem, which was motivated by the observations of diversities
of samples in training data. The key idea of the multi-focal
learning is to divide training data into different focal groups
and the learning models should be learned within each fo-
cal group instead of building a single learning model using
all the training data as a whole. The multi-focal learning
allows the learning algorithms to mitigate the influence of
the diversities inherent in training data, and thus leads to
better learning performances.

As a practice, we have exploited the multi-focal learn-
ing techniques for automatic problem categorization in real-
world problem logs collected from customer service centers.
A critical challenge in the multi-focal learning is how to
identify focal groups in training data. To address this chal-
lenge in problem logs, we proposed a correlation method
(CORRELATION) to partition problem descriptions within
each class into two different groups: one for experienced
customers and the other for inexperienced customer. In ad-
dition, to better capture the information encoded in prob-
lem logs, we also developed an ontology-enhanced correla-
tion method (ONTOLOGY) for identifying different focal
groups. Experimental results show that both CORRELA-
TION and ONTOLOGY have led to better learning per-
formances than other focal-group formation methods, such
as the methods based on clustering and random-partition,
while the learning performance by ONTOLOGY is lightly
better than that by CORRELATION.

Discussions. In this study, we have illustrated the con-
cept of multi-focal learning by exploiting problem logs col-
lected in real-world customer service centers. While the so-
lution for forming multiple focal groups has made use of data
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Figure 8: A Comparison of Class-Conditional Probabilities.

characteristics that are unique to customer problem logs, the
basic framework of multi-focal learning can be applicable in
a much broader scope. For instance, let us consider a video
surveillance system. There are different types of moving ob-
jects, such as cars, bikes, and human beings. Those moving
objects have different sizes, speed, and moving capabilities.
To better capture abnormal moving patterns, it is expected
to apply the multi-focal learning techniques to first group
moving objects into different focal groups. The detection
of abnormal moving patterns can then be performed within
different focal groups. This will most likely lead to better
performances for finding abnormal events.
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