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ABSTRACT
Information-theoretic clustering aims to exploit information
theoretic measures as the clustering criteria. A common
practice on this topic is so-called INFO-K-means, which
performs K-means clustering with the KL-divergence as the
proximity function. While expert efforts on INFO-K-means
have shown promising results, a remaining challenge is to
deal with high-dimensional sparse data. Indeed, it is possi-
ble that the centroids contain many zero-value features for
high-dimensional sparse data. This leads to infinite KL-
divergence values, which create a dilemma in assigning ob-
jects to the centroids during the iteration process of K-
means. To meet this dilemma, in this paper, we propose a
Summation-based Incremental Learning (SAIL) method for
INFO-K-means clustering. Specifically, by using an equiv-
alent objective function, SAIL replaces the computation of
the KL-divergence by the computation of the Shannon en-
tropy. This can avoid the zero-value dilemma caused by the
use of the KL-divergence. Our experimental results on var-
ious real-world document data sets have shown that, with
SAIL as a booster, the clustering performance of K-means
can be significantly improved. Also, SAIL leads to quick
convergence and a robust clustering performance on high-
dimensional sparse data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.5.3 [Pattern Recognition]: Clustering
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1. INTRODUCTION
In recent years, we have witnessed an increased interest

in information-theoretic clustering [6, 7, 21, 16, 17, 8], since
information theory [3] can be naturally used as the guidance
for the clustering process. For instance, the clustering anal-
ysis can be treated as the iteration process of finding a best
partition on data in a way such that the loss of mutual infor-
mation due to the partitioning is the least [6]. Indeed, many
information theoretic measures, such as the KL divergence
and the Shannon entropy, have been widely exploited as the
clustering criteria for information-theoretic clustering.

This paper is focused on the problem of K-means cluster-
ing with the KL-divergence as the proximity function. To fa-
cilitate the discussion, we call the K-means with information-
theoretic measures as INFO-K-means. To better understand
the theoretic foundation of INFO-K-means, we present an
organized study of two different views on the objective func-
tions of INFO-K-means. First, we derive the objective func-
tion of INFO-K-means from a probabilistic view. In this
regard, we know that the probabilistic view takes several
assumptions on data distributions, and the goal of INFO-K-
means is to maximize the likelihood function on multinomial
distributions. In contrast, the information-theoretic view
has no prior assumption on data distributions. In this case,
the objective function of INFO-K-means is to find a best par-
tition on data so that the loss of mutual information is min-
imized. The above indicates that the information-theoretic
view on INFO-K-means is more appealing, since we do not
need to make any assumption on data distributions. As a
result, in this paper, we take the information-theoretic view
on INFO-K-means.

While INFO-K-means has the sound theoretic foundation,
there are some challenging issues with INFO-K-means. For
example, people have shown that, for document clustering,
the performance of K-means with the KL-divergence is not
better than that of the spherical K-means, which has the
cosine similarity as the proximity function [21]. Indeed, for
high-dimensional sparse document data, K-means with the
KL-divergence often has some difficult scenarios. As an ex-
ample, the centroids in sparse data usually contain many
zero-value features. This creates infinite KL-divergence val-
ues, which lead to a challenge in assigning objects to the
centroids during the iteration process of K-means.



A traditional way to handle this zero-value dilemma is
to smooth the sparse data by adding a very small value to
every instance in the data [16]. In this way, there is no in-
stance having zero feature values. This smoothing method
can avoid the zero-value dilemma for K-means with the KL-
divergence, however it can degrade the clustering perfor-
mance since the real data values have been changed.

As an alternative to the smoothing method, in this pa-
per, we propose a Summation-based Incremental Learning
(SAIL) method for INFO-K-means clustering. Specifically,
by using an equivalent objective function, SAIL replaces the
computation of the KL-divergence by the computation of the
Shannon entropy. This can avoid the zero-value dilemma
caused by the use of the KL-divergence. Our experimen-
tal results on various real-world document data sets have
shown that, with SAIL as a booster, the clustering perfor-
mance of K-means can be significantly improved. Also, SAIL
leads to quick convergence and a robust clustering perfor-
mance on high-dimensional sparse data. Finally, the key
ideas developed in the SAIL method are not limited to the
KL-divergence. These ideas can be extended to some other
types of proximity functions that fit K-means clustering in
the case that the values of proximity functions cannot be
directly computed for data with some special properties.

2. AN OVERVIEW OF INFO-K-MEANS
To better understand the theoretic foundation of INFO-K-

means, in this section, we provide an organized study of two
different views, the probabilistic view and the information-
theoretic view, on the objective functions of INFO-K-means.

2.1 The Objective Function of Info-K-means
K-means [13] is a prototype-based, simple partitional clus-

tering technique which attempts to find the user-specified K
clusters. These clusters are represented by their centroids
(a cluster centroid is typically the mean of the data objects
in that cluster). K-means has an objective function:

obj : min
K
X

i=1

X

x∈ci

πxdist(x, mi), (1)

where ci denotes cluster i, mi is the centroid of ci, dist(·)
is the distance function, and πx is the weight of x given
P

x πx = 1. To reach the minimum, K-means employs
a heuristic clustering process as follows. First, K initial
centroids are selected. Then the two-phase iterations are
launched. In the first phase, every point in the data is as-
signed to the closest centroid, and each collection of points
assigned to a centroid forms a cluster; then in the second
phase, the centroid of each cluster is updated based on the
points assigned to the cluster. This process is repeated until
no point changes clusters.

As we know, different distance functions lead to different
types of K-means. Our focus in this paper is on INFO-K-
means. Let D(x‖y) denote the KL-divergence between two
discrete distributions x and y, we have

D(x‖y) =
X

i

xi log
xi

yi
. (2)

It is easy to observe that, in most cases, D(x‖y) �= D(y‖x),
so D(·) is not a true metric which holds the symmetric prop-
erty, such as the well-known Euclidean distance. If we let
dist(·) ≡ D(·) in Formula (1), we have the objective function
of INFO-K-means with the KL-divergence as follows.

obj : min
X

k

X

x∈ck

πxD(x‖mk), (3)

where each instance x has been normalized before clustering.
To further understand INFO-K-means, we take two different
views on the objective function (Equation (3)) of INFO-K-
means in the following two subsections.

2.2 The Probabilistic View
In this subsection, we first derive the objective function

of INFO-K-means from a probabilistic view. Specifically,
the objective function can be derived by maximizing the
“partitioned” likelihood function of the EM algorithm, i.e.,
the crisp version of EM [21].

Let us take the document data set as the example. As-
sume that we have a document data set D, which consists
of K crisp partitions in multinomial distributions with dif-
ferent parameters, i.e., θ1, · · · , θK respectively. Let n(x, y)
denote the number of occurrences of term y in document x,
and n(x) =

P

y n(x, y). Then we have

Theorem 1. Let L = P (X|Θ) = Πxp(x|Θ) be the like-
lihood function, A = −

P

x n(x)H(p(Y |x)), B =
P

x n(x),
where H(·) is the Shannon entropy [3]. Then, we have

A − log L

B
=
X

k

X

x∈ck

p(x)D(p(Y |x)‖p(Y |θk)), (4)

where p(x) = n(x)/
P

x n(x) and p(y|x) = n(x, y)/n(x).

Proof: By definition,

log L =
P

x log p(x|Θ)
a
=
P

k

P

x∈ck
log p(x|θk)

b
=

P

k

P

x∈ck

P

y n(x, y) log(p(y|θk))

=
P

k

P

x∈ck
n(x)

P

y p(y|x) log p(y|θk),

where “a” reflects the “crisp” property of the modified EM
model, and “b” follows the multinomial distribution, i.e.,
p(x|θ) = Πyp(y|θ)n(x,y).

Meanwhile, A can be transformed into

A =
X

k

X

x∈ck

n(x)
X

y

p(y|x) log p(y|x).

If we substitute the transformed A and log L into the left-
hand-side of Equation (4), we can easily get the right-hand-
side. So, the proof is completed.

Remark: Let us compare Equation (4) with Equation (3).
If we let πx ≡ p(x), x ≡ p(Y |x), and mk ≡ p(Y |θk), we
have obj ⇔ min(A − log L)/B ⇔ max log L. This im-
plies that, if we take the probabilistic view of the objec-
tive function, INFO-K-means aims to maximize the likeli-
hood function on multinomial distributions. This proba-
bilistic view of INFO-K-means requires a series of assump-
tions: p(x) = n(x)/

P

x n(x), p(y|x) = n(x, y)/n(x), and
p(y|θk) = (p(x)/

P

x∈ck
p(x))p(y|x). However, in the exper-

imental section, we will show these assumptions can degrade
the performance of INFO-K-means.

2.3 The Information-Theoretic View
Here, we derive the objective function in Equation (3)

from an information-theoretic point of view. We begin our
analysis by introducing an important lemma as follows.

Given a set of probabilistic distributions {p1, p2, · · · , pn}
and the corresponding weights {π1, π2, · · · , πn}, we have



Lemma 1 (Cover&Thomas,2006).

n
X

i=1

πiD(pi||
n
X

i=1

πipi) = H(
n
X

i=1

πipi) −
n
X

i=1

πiH(pi). (5)

Now, given a document data set D, we want to partition D

into K clusters without overlapping. Let random variables
X, Y and C denote the document, term and cluster respec-
tively, and x, y and c be the corresponding instances with
p(x), p(y) and p(c) as the occurrence probabilities. Further-
more, we assume that p(c) =

P

x∈c p(x). Then we have

Theorem 2. Let I(X, Y ) be the mutual information be-
tween discrete distributions X and Y , then

I(X, Y ) − I(C, Y ) =
X

k

X

x∈ck

p(x)D(p(Y |x)‖p(Y |ck)). (6)

Proof: By definition,

I(X, Y ) − I(C, Y )

=
P

x

P

y p(x, y) log
p(x,y)

p(x)p(y) −
P

k

P

y p(ck, y) log
p(ck,y)

p(ck)p(y)

=
X

x

X

y

p(y|x)p(x) log p(y|x)

| {z }

(a)

−
X

k

X

y

p(y|ck)p(ck) log p(y|ck)

| {z }

(b)

−
X

x

X

y

p(y|x)p(x) log p(y)

| {z }

(c)

+
X

k

X

y

p(y|ck)p(ck) log p(y)

| {z }

(d)

.

If we substitute p(y|ck) =
P

x∈ck

p(x)
p(ck)

p(y|x) into (d), we

have (c)=(d). Furthermore, it is easy to show

(a) = −
P

k p(ck)
“

P

x∈ck

p(x)
p(ck)

H(p(Y |x))
”

,

(b) = −
P

k p(ck)H
“

P

x∈ck

p(x)
p(ck)

p(Y |x)
”

.

By Lemma 1, we finally have Equation (6).

Remark: Theorem 2 illustrates the information theoretic
view of INFO-K-means; that is, INFO-K-means tries to find
a best partition on data so that the loss of mutual informa-
tion due to the partitioning is minimized.

In summary, we can have two different views on INFO-
K-means. Both views provide the sound theoretic founda-
tion. Furthermore, while Equation (6) is very similar to
Equation (4), the information-theoretic view on INFO-K-
means seems to be more appealing, since there is no prior
assumption for p(x) and p(x|c), which is inevitable if we take
the probabilistic view. In fact, we can view the probabilis-
tic framework as a special case of the information-theoretic
framework for INFO-K-means.

3. THE DILEMMA OF INFO-K-MEANS
In addition to having sound theoretic foundations, INFO-

K-means has been widely shown that it has inferior per-
formances to the spherical K-means on document cluster-
ing [21]. However, in this section, we illustrate an implemen-
tation challenge of INFO-K-means. We believe this chal-
lenge is one of the key issues that degrade the clustering
performance of INFO-K-means.

For example, assume that we use INFO-K-means to clus-
ter document data sets. To optimize the objective in Equa-
tion (3), we also launch the two-phase iteration process –

reassigning instances to the “nearest” centroids, and up-
dating the centroids according to the newly assigned in-
stances subsequently. To this end, we must compute the
KL-divergence values between each instance p(Y |x) and each
centroid p(Y |ck). In practice, we usually let

p(Y |x) =
x

n(x)
,

p(Y |ck) =
p(x)

P

x∈ck
p(x)

p(Y |x),

where n(x) is the sum of all the term frequencies of x, p(x)
is the weight of x, as in Equations (4) and (6). Therefore,
by Equation (2), to compute D(p(Y |x)‖p(Y |ck)), we should
expect that all the feature values of x are positive real num-
bers. Unfortunately, however, this is not the case for high-
dimensional document data sets, which are famous for the
sparseness in their high dimensions.

To illustrate this, we observe the computation of each di-
mension y. As we know,

D(p(Y |x)‖p(Y |ck)) =
X

y

p(y|x) log
p(y|x)

p(y|ck)
.

To simplify the discussion, we denote p(y|x) log(p(y|x)/p(y|ck))
by Dy below. Then, the different combinations of p(y|x) and
p(y|ck) values can result in four different cases as follows.

1. Case 1: p(y|x) > 0 and p(y|ck) > 0. In this case, the
computation of Dy is straightforward, and the result
can be any real number.

2. Case 2: p(y|x) = 0 and p(y|ck) > 0. In this case,
log(p(y|x)/p(y|ck)) = log 0 = −∞, which implies that
the direct computation is infeasible. However, by the
L’ Hospital’s rule [2], limx→0+ x log(x/a) = 0 (a > 0).
So we can let x ≡ p(y|x), and thus have Dy = 0.

3. Case 3: p(y|x) > 0 and p(y|ck) = 0. In this case,
Dy = +∞, which is hard to handle in practice.

4. Case 4: p(y|x) = 0 and p(y|ck) = 0. In this case, we
can simply omit this feature, or equivalently, we can
let Dy = 0.

We summarize the above four cases in Table 1. As can
be seen, for case 1 and 4, the computation of Dy is reason-
able. However, the computation of Dy in case 2 has trouble;
that is, it can not reveal any difference between p(Y |x) and
p(Y |ck) in dimension y, although p(y|ck) may be much larger
than zero. Nevertheless, the most difficult case to handle is
case 3. On the one hand, it is hard to do computations with
+∞ in practice. On the other hand, it is easy to know, if
there is some dimension y of case 3, the total KL-divergence
of p(Y |x) and p(Y |ck) is infinite. This does not work for
high dimensional sparse data sets, because the centroids of
such data sets may typically contain many zero-value fea-
tures. Therefore, we will have big challenges in assigning
instances to the centroids, since the “instance-centroid” dis-
tances measured by the KL-divergence can be infinite. We
call this problem as the zero-value dilemma.

Table 1: Cases in KL-divergence Computations.
The Feature Value

p(y|x) > 0 = 0 > 0 = 0
p(y|ck) > 0 > 0 = 0 = 0
Dy ∈ R 0 +∞ 0



One way to solve the above dilemma is to smooth the
sparse data sets. For instance, we can add a very small value
to the entire data set so as to avoid having any zero feature
value. While this smoothing technique indeed changes the
sparseness property of the data sets, we will demonstrate in
the experimental section that this method actually degrades
the clustering performance of INFO-K-means.

In summary, there is a need to develop a new implemen-
tation scheme for INFO-K-means which should be able to
avoid the zero-value dilemma.

4. THE SAIL SCHEME FOR INFO-K-MEANS
In this section, we propose a new implementation scheme,

named SAIL, for INFO-K-means. To illustrate SAIL, we
first present the concept of K-means distance, and then
use K-means distance to simplify the objective function of
INFO-K-means. Finally, we introduce the SAIL method.

4.1 The K-means Distance
Here, we briefly introduce the K-means distance. A de-

tailed study of the K-means distance is available in [19].

Definition 1 (K-means Distance). We say that a dis-
tance function F is a K-means distance, if there exists some
differentiable convex function φ : Rd → R such that

F (x, y) = φ(x) − φ(y) − (x − y)t∇φ(y).

In fact, any distance function that fits K-means must have
the ability to facilitate the convergence of the two-phase
iterations. So we have

Lemma 2. A distance function F (x, y): Rd × Rd → R

fits K-means1, if and only if ∀C = {x1, x2, · · · , xn} ⊂ Rd,

x =

Pn
i=1 xi

n
∈ {y| arg min

y∈Rd

n
X

i=1

F (xi, y)}

The K-means distance fits the K-means clustering. In-
deed, under certain acceptable assumptions, the K-means
distance is the only distance that fits K-means when the
centroid type is the mean. That is,

Theorem 3. Assume that F : Rd × Rd → R is a non-
negative function such that: (1) F (x, x) = 0, ∀x ∈ Rd,
(2) F and Fx are continuous, and (3) Fy is continuously
differentiable on x. Then F fits K-means if and only if F is
a K-means distance.

The details and proofs can be found in [19]. We must point
out that a K-means distance is not necessary to be a metric;
that is, a K-means distance may not satisfy symmetry and
triangle inequality properties. Also, the K-means distance is
a family of distance functions with different φ, including the
well-known Bregman divergence induced by strictly convex
functions [1]. We list some popular K-means distances in
Table 2.

We know that the KL-divergence belongs to the family
of K-means distance. Specifically, according to Definition 1,
KL-divergence can be rewritten as

D(x‖y) = −H(x) + H(y) + (x − y)t∇H(y). (7)

1Throughout this paper we focus on K-means with the arith-
metic mean of cluster members as the centroid.

Table 2: Some K-means Distances.
φ(x) F (x, y) Distance

‖x‖2 ‖x − y‖2 Euclidian distance
‖x‖ ‖x‖ − xty/‖y‖ cosine distance

−H(x) D(x‖y) KL-divergence

4.2 The SAIL Method
In this subsection, we introduce the Summation-BAsed

Incremental Learning (SAIL) scheme for INFO-K-means.
In general, SAIL has two distinct functions: 1) performing
summations for each cluster during the clustering process;
and 2) maintaining the summations incrementally.

To simply the discussion, we first transform the objective
function in Equation (6) as follows.

Theorem 4. obj : min
P

k

P

x∈ck
p(x)D(p(Y |x)‖p(Y |ck))

is equivalent to

obj : min
X

k

p(ck)H(p(Y |ck)), (8)

given p(ck) =
P

x∈ck
p(x).

Proof: By Formula (7), we have

D(p(Y |x)‖p(Y |ck)) = −H(p(Y |x)) + H(p(Y |ck))

+(p(Y |x) − p(Y |ck))t∇H(p(Y |ck)).

Since

X

k

X

x∈ck

p(x)(p(Y |x) − p(Y |ck))t∇H(p(Y |ck)) = 0,

we have

X

k

X

x∈ck

p(x)D(p(Y |x)‖p(Y |ck))

=
X

k

p(ck)H(p(Y |ck))

| {z }

(a)

−
X

x

p(x)H(p(Y |x))

| {z }

(b)

.

It is easy to observe that (b) is constant for the given
data set and the weights for the instances. Thus, the goal
of minimizing the original objective function is equivalent to
minimize (a).

Next, based on the simplified objective function in (8),
we establish the SAIL scheme for INFO-K-means. Gener-
ally speaking, SAIL is a greedy scheme which updates the
objective function value “instance by instance”. In other
words, SAIL iteratively repeats the same procedure. First,
SAIL randomly selects an instance from the data and assigns
it to the most suitable cluster; then updates the objective
function value and other related variables according to the
assignment. This process is repeated until some stopping
criterion is satisfied.

It is clear that SAIL differs from the traditional K-means.
Indeed, SAIL is an incremental algorithm while the tradi-
tional K-means usually employs the batch learning mode.

Furthermore, SAIL also differs from the traditional incre-
mental K-means; that is, to decide the assignment of each
selected instance, SAIL does not compute the KL-divergence



values between the instance and all the centroids. Instead, it
computes the Shannon entropies for the centroids which are
assumed to be updated. This computation is supported by
the two incrementally maintained summations for each clus-
ter c: p(ck) =

P

x∈c p(x) and p(Y |ck) =
P

x∈c p(x)p(Y |x).
For instance, suppose SAIL randomly selects p(Y |x′) from

a cluster ck′ . Then, if we assign p(Y |x′) to the cluster ck, by
the objective function in (8), the new objective value after
this assignment will be as follows.

obj(new) = obj(old)

+ (p(ck′ ) − p(x
′
))H

0

@

P

x∈c
k′ p(x)p(Y |x) − p(x′)p(Y |x′)

p(ck′ ) − p(x′)

1

A

| {z }

(a)

− p(ck′ )H

 

P

x∈c
k′ p(x)p(Y |x)

p(ck′ )

!

| {z }

(b)

+ (p(ck) + p(x
′
))H

 

P

x∈ck
p(x)p(Y |x) + p(x′)p(Y |x′)

p(ck) + p(x′)

!

| {z }

(c)

− p(ck)H

 

P

x∈ck
p(x)p(Y |x)

p(ck)

!

| {z }

(d)

,

where (a)-(b) and (c)-(d) represent the two parts of changes
on the objective function value due to the movement of
p(Y |x′) from cluster ck′ to cluster ck. It is clear that the
additivity of

P

x∈c p(x) and
P

x∈c p(x)p(Y |x) facilitates the
computation. Then, among the new objective function val-
ues resulted by assigning the instance to all the clusters,
we select the smallest one and assign the instance to the
corresponding cluster. Finally, we update the two sum-
mations for ck′ and ck accordingly. This is the assigning
routine of SAIL for each selected instance. Apparently, the
two incrementally updating summations, i.e.,

P

x∈c p(x) and
P

x∈c p(x)p(Y |x), are the keys for SAIL.
In summary, by the equivalent objective function in (8),

the computations of the KL-divergences are replaced by the
computations of Shannon entropies. As a result, we can
avoid the zero-value dilemma.

4.3 A Description of the SAIL Algorithm
Figure 1 shows the pseudocode of the SAIL algorithm.

Some implementation details are as follows.
Lines 1-3 are about data initialization. The preprocessing

of D in line 2 includes the row and column modeling. This
routine is also used to smooth the instances and/or assign
weights to the features. Then, in line 3, we normalize the
raw data instance x to p(Y |x) where p(y|x) = n(x, y)/n(x)
for any feature y.

Lines 4-17 show the clustering process. Line 5 is for initial-
ization, where objV al denotes the objective function value,
labeln×1 contains the cluster labels of the instances, πK×1

stores the weight summation of the instances in each clus-
ter, and cluSumK×d stores the summation of the weighted
instances in each cluster. That is, π[k] =

P

x∈ck
p(x) and

cluSum[k] =
P

x∈ck
p(x)p(Y |ck), for k = 1, · · · , K, where n,

d and K are the numbers of instances, features and clusters
respectively. Two initialization modes have been employed
in our implementation. In “Random Assignment” mode, we
randomly assign the labels to the instances and then com-

SAIL (Summation Based Incremental Learning)

Input: D: the data set.
πx: the weight of x ∈ D.
K: the number of clusters.
reps: the number of clusterings.
maxIter: the max number of iterations.

Output: objV al∗: the value of the obj. func. after clustering.
label∗: the cluster labels of the instances.

Procedure:
1. Read D and {πx|x ∈ D};
2. D′=Preprocess(D);
3. ∀x ∈ D′, x = Normalize(x);
4. for i=1:reps
5. Initialize(objV al(i), label(i), π(i), CluSum(i));
6. for j=1:maxIters
7. for l=1:n
8. x = RandomSelect({x|x ∈ D′});
9. ΔobjV al = TestAssign(x, πx, π(i), CluSum(i));
10. k = arg maxs{ΔobjV al[s], s = 1, · · · , K};
11. Update(objV al(i), label(i), π(i), CluSum(i), k);
12. end for
13. if label(i) is unchanged in iteration l
14. break;
15. end if
16. end for
17. end for
18. t = arg mini objV al(i);
19. objV al∗ = objV al(t), label∗ = label(t);

Figure 1: The SAIL Algorithm.

pute the required variables. But in “Random Read” mode,
we read the whole instances one by one at random, and use
a routine very similar to the clustering one to assign each
instance. Lines 8-11 describe the clustering routine for each
instance, which has been introduced in details in the previ-
ous subsection. Lines 13-14 show one stopping criterion in
addition to the maxIter parameter; that is, in one cluster-
ing if no instance changes its label after several iterations,
we should stop this clustering. Finally, lines 18-19 choose
the best clustering result among reps clusterings.

Next, we briefly discuss the convergence issues and the
computational complexity of SAIL. First, SAIL is a heuris-
tic approach, so it does not guarantee to converge to a global
minimum. While the objective function value decreases con-
tinuously (may not strictly) after reassigning each instance,
and the combinations of the instances are limited, SAIL can
still converge to some local minima. That is why we do
multiple clusterings in SAIL and choose the best solution.
In addition, SAIL also preserves the prominent advantage of
the partitional clustering methods – low computational cost.
Specially, the storage required is O((n + K)d) and the time
requirement for SAIL is O(IKnd), where I is the number
of iterations required for convergence, K is the number of
clusters, d is the number of features, and n is the number of
objects. Since K is small, I is often not beyond 20, and d can
be substantially reduced due to the sparseness of data sets,
the SAIL algorithm is extremely fast in our experiments.

5. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of SAIL

on improving the performance of INFO-K-means. Specifi-
cally, we show: 1) the traditional implementation of INFO-
K-means with the KL-divergence is not effective on sparse
data sets; 2) a simple smoothing technique is not a good so-



lution for the zero-value dilemma; and 3) SAIL based INFO-
K-means can achieve superior performances to the smooth-
ing method as well as the spherical K-means.

5.1 The Experimental Setup
Experimental Tools. In the experiments, we employ four
types of clustering tools. The first one is our developed
SAIL-based INFO-K-means. The other three are well-known
software packages for K-means clustering, including MAT-
LAB v7.1 [14], CO-CLUSTER v1.1 [5], and CLUTO v2.1.1 [11].

The MATLAB implementation of K-means is the batch-
learning version which must compute the distances between
instances and centroids. We extend it to include more dis-
tance functions, such as KL-divergence. Therefore, it is a
centroid-based implementation of INFO-K-means which has
to compute the KL-divergence directly.

CO-CLUSTER is a C++ program which implements the
information theoretic co-clustering algorithm [7]. Although
it still computes the “instance-centroid” KL-divergences, it
provides various methods to improve the clustering perfor-
mances such as annealing, batch and local search, etc.

CLUTO is a software package for clustering high dimen-
sional data sets. Specifically, its K-means implementation
with cosine similarity as the proximity shows superior per-
formances on clustering document data sets and gene ex-
pression data sets [20]. In the experiments, we compare
CLUTO with our SAIL-based INFO-K-means on a number
of real-world data sets.

Note that the parameters of the four K-means implemen-
tations were set to match one another for the purpose of the
comparison, and the cluster number K was set to match the
class number of each data set.
Validation Measures. Many recent studies on clustering
used the Normalized Mutual Information (NMI) to eval-
uate the clustering performance [21]. For consistency, we
also use NMI in our experiments, which can be computed
as: NMI = I(X, Y )/

p

H(X)H(Y ), where the random vari-
ables X and Y denote the cluster and class sizes, respec-
tively. NMI values are in [0,1], and a larger NMI value
indicates a better clustering result.

Moreover, we use Coefficient of Variation (CV ) [4] to mea-
sure the dispersion degree of the cluster sizes. The CV is
defined as the ratio of the standard deviation to the mean.
Given a set of objects X = {x1, x2, . . . , xn}, we have CV =

s/x̄ where x̄ =
Pn

i=1 xi/n and s =
p

Pn
i=1(xi − x̄)2/(n − 1).

CV is a dimensionless number that allows comparison of
the variation of populations that have significantly different
mean values. In general, the larger the CV value is, the
greater the variability in the data.
Experimental Data Sets. For our experiments, we used a
number of real-world document data sets. Some character-
istics of these data sets are shown in Table 3.

The fbis data set was from the Foreign Broadcast Infor-
mation Service data of the TREC-5 collection [18], and the
classes correspond to the categorization used in that collec-
tion. The sports data set was derived from the San Jose
Mercury newspaper articles that were distributed as part of
the TREC collection (TIPSTER Vol. 3). It contains doc-
uments about baseball, basketball, bicycling, boxing, foot-
ball, golfing, and hockey. Data sets tr11, tr12, tr23, tr31,
tr41 and tr45 were derived from TREC-5 [18], TREC-6 [18],
and TREC-7 [18] collections. The classes of these data sets
correspond to the documents that were judged relevant to

Table 3: Experimental Data Sets.
Dataset Source #Case #Attr. #Class CV0
fbis FBIS (TREC) 2463 2000 17 0.961
sports San Jose Mercury (TREC) 8580 126373 7 1.022
tr11 TREC 414 6429 9 0.882
tr12 TREC 313 5804 8 0.638
tr23 TREC 204 5832 6 0.935
tr31 TREC 927 10128 7 0.936
tr41 TREC 878 7454 10 0.913
tr45 TREC 690 8261 10 0.669
la1 LA Times (TREC) 3204 21604 6 0.493
la2 LA Times (TREC) 3075 31472 6 0.516
la12 LA Times (TREC) 6279 31472 6 0.503
ohscal OHSUMED-233445 11162 11465 10 0.266
k1a WebACE 2340 21839 20 1.004
k1b WebACE 2340 21839 6 1.316
wap WebACE 1560 8460 20 1.040
classic CACM/CISI/CRAN/MED 7094 41681 4 0.547
cranmed CRAN/MED 2431 41681 2 0.212
re0 Reuters-21578 1504 2886 13 1.502

particular queries. Data sets la1, la2 and la12 were ob-
tained from articles of Los Angeles Times that was used
in TREC-5 [18]. The categories include documents from
the entertainment, financial, foreign, metro, national, and
sports desks. The ohscal data set was obtained from the
OHSUMED collection [10], which contains documents from
various biological sub-fields. Data sets k1a, k1b and wap

were from the WebACE project [9]; each document corre-
sponds to a web page listed in the subject hierarchy of Ya-
hoo!. In particular, k1a and k1b contain exactly the same set
of documents but the former contains a finer-grain catego-
rization. The classic data set was obtained by combining
the CACM, CISI, CRANFIELD, and MEDLINE abstracts
that were used in the past to evaluate various information
retrieval systems. Data set cranmed was attained similarly.
Finally, the data set re0 was from Reuters-21578 collection
Distribution 1.0 [12]. For all data sets, we used a stop-list to
remove common words, and the words were stemmed using
Porter’s suffix-stripping algorithm [15].

5.2 The Effect of the Zero-Value Dilemma
Here, we demonstrate the effect of the zero-value dilemma.

Specifically, we show the difficulties of the traditional im-
plementation of INFO-K-means with the KL-divergence on
sparse data sets. Since MATLAB K-means can handle in-
finity (denoted by INF), we selected tr23 and tr45 as the
test data sets and applied MATLAB K-means for testing
without smoothing. The clustering results are shown in Ta-
ble 4, in which CV0 and CV1 represent the distributions of
the class sizes and cluster sizes, respectively.

As indicated by the close-to-zero NMI values, the cluster-
ing performance of MATLAB K-means without smoothing
is extremely poor. Also, by comparing the CV0 and CV1

values, we found that the distributions of the resultant clus-

Table 4: Clustering Results of MATLAB K-means.
Data Set NMI CV0 CV1

tr23 0.035 0.935 2.435
tr45 0.022 0.669 3.157

Table 5: Clustering Results of CO-CLUSTER.
Data Set Search Annealing NMI CV0 CV1

tr12 batch 1.0 0.058 0.638 0.295
0.5 0.040 0.638 0.374

none 0.031 0.638 0.376
local 1.0 0.045 0.638 0.334

0.5 0.059 0.638 0.339
none 0.048 0.638 0.461

tr31 batch 1.0 0.007 0.936 0.426
0.5 0.011 0.936 0.362

none 0.010 0.936 0.405
local 1.0 0.014 0.936 0.448

0.5 0.009 0.936 0.354
none 0.011 0.936 0.365



(a) tr11 Data Set (b) tr45 Data Set

Figure 2: The Effect of Data Smoothing.

ter sizes are much more skewed than the distributions of the
class sizes. In fact, for both test data sets, nearly all the
data instances have been assigned to ONE cluster! There-
fore, this experiment result confirms our analysis in Section 3
on the zero-value dilemma on sparse document data sets.

Furthermore, we tested CO-CLUSTER on tr12 and tr31

data sets. As mentioned above, CO-CLUSTER also com-
putes the KL-divergence values in the clustering process,
but it provides different search modes and the annealing
technique to avoid poor local minima. Table 5 shows the
clustering results, where “Search” and “Annealing” indicate
the search modes and annealing parameters respectively.

In Table 5, we can observe that the use of annealing tech-
nique and different search modes does not improve the clus-
tering performance. The near-to-zero NMI values indicate
the poor clustering performance. This again confirms that
the direct computation of the KL-divergence values is infea-
sible for sparse data sets. Another interesting observation
is that, the clusters produced by CO-CLUSTER are much
more balanced than the clusters produced by MATLAB K-
means as indicated by the much smaller CV1 values.

5.3 SAIL versus Smoothing
Here, we first illustrate the effect of the smoothing tech-

nique on sparse data sets. In this experiment, we use MAT-
LAB K-means and select seven document data sets. Fig-
ure 2(a) and 2(b) show the clustering results on data sets
tr11 and tr45, where the added small values gradually in-
crease along the horizon axis.

One observation is that data smoothing indeed improves
the clustering performance of INFO-K-means. This fur-
ther justifies our observation on the zero-value dilemma for
INFO-K-means with the KL-divergence as the proximity
function. Another interesting observation is that the opti-
mal added values (OAV) are different for different data sets.
For instance, while OAV ≈ 0.1 for tr11, OAV ≈ 0.01 for
tr45. This implies one issue with data smoothing in prac-
tice; that is, it is difficult to have the optimal smoothing
effect. Nevertheless, we should avoid setting extreme values
for added values. A tiny added value may not mitigate the
zero-value dilemma, but a large value may damage the in-
tegrity of the data instances, and thus leads to the degraded
clustering performance. Figure 2(b) well illustrates this.

For the purpose of comparison, we also tested SAIL on
these data sets. The parameters were set by default as fol-

lows. 1) πx = 1/n, for any x ∈ D; 2) no row or column
modeling in step 2 of Figure 1; 3) the initialization mode of
the variables in step 5 of Figure 1 is “random read”.

Figure 3: Smoothing vs. SAIL.

Figure 3 shows the comparison results. As can be seen,
SAIL shows consistently superior performances to the smooth-
ing technique. For some data sets such as tr11, tr12, tr41
and tr45, SAIL takes the lead with a wide margin. Please
note that, for the smoothing method, we tried a series of
added numbers, i.e., 10−5, 10−4, 10−3, 10−2, 10−1, 1, and
selected the best one for comparison.

In summary, while the traditional data smoothing tech-
nique can improve the performance of INFO-K-means on
sparse data sets, it changes the data integrity and has is-
sues on setting the optimal data value added into the data.
In contrast, SAIL has no parameter setting issue and can
lead to consistent better clustering performances than the
smoothing technique. This indicates that SAIL is a better
solution for the zero-value dilemma.

5.4 SAIL versus Spherical K-means
In this subsection, we compare the clustering performance

between SAIL and the spherical K-means. In the literature,
people have shown that spherical K-means usually produces
better clustering results than traditional K-means [21]. And
the CLUTO version of the spherical K-means [11] even shows
superior performances on document data sets, which makes
it to be the benchmark method for document clustering.
However, we would like to show in the experiment that the
performance of SAIL is comparable to or even slightly better
than the spherical K-means in CLUTO.



Table 6: Spherical K-means vs. SAIL.
Data Set CLUTO SAIL Density

none-IDF IDF
classic 0.450 0.561 0.678 0.0008

cranmed 0.900 0.976 0.990 0.0014
fbis 0.579 0.603 0.612 0.0799
k1a 0.574 0.549 0.584 0.0068
k1b 0.589 0.583 0.623 0.0068
la1 0.360 0.571 0.585 0.0048
la12 0.396 0.000 0.586 0.0048
la2 0.355 0.443 0.537 0.0047

ohscal 0.347 0.606 0.438 0.0053
re0 0.411 0.666 0.430 0.0179

sports 0.442 0.583 0.638 0.0010
tr11 0.628 0.111 0.696 0.0438
tr12 0.634 0.401 0.637 0.0471
tr23 0.271 0.493 0.429 0.0661
tr31 0.411 0.543 0.511 0.0265
tr41 0.551 0.244 0.690 0.0262
tr45 0.554 0.364 0.674 0.0340
wap 0.567 0.679 0.596 0.0167

Note: Measured by NMI.

In this experiment, the parameter settings in CLUTO
are as follows: clmethod=direct, crfun=i2, sim=cosine, ntri-
als=10. Since the column modeling makes great impact on
the spherical K-means, we provide clusterings with and with-
out column modeling, corresponding to “IDF” (Inverse Doc-
ument Frequency) and “none-IDF” in Table 6. For SAIL,
we used the default settings as the previous experiments.
Table 6 shows the clustering results.

As can be seen, if matched parameters are used (i.e.,
“none-IDF” for the spherical K-means), SAIL shows consis-
tent better clustering quality on all 18 data sets. This can
be observed in Figure 4: the NMI curve of the spherical
K-means is completely included in the NMI curve of SAIL.

The Spherical K-means with IDF shows more appealing
clustering results. As can be seen in Table 6, the cluster-
ing performances of 11 out of 18 data sets have been im-
proved with IDF. In particular, for data sets ohscal, re0,
tr23, tr31 and wap, the clustering results are even better
than that of SAIL. Nevertheless, we should also notice that
the spherical K-means with IDF also degrades the cluster-
ing performances of the rest 7 data sets. For data sets la12,
tr11, tr12, tr41 and tr45, the negative impact is quite sub-
stantial. This implies that column modeling is an X factor
for the performance of the spherical K-means. That is, for
data sets without class information, whether to use column
modeling in the spherical K-means is a dilemma: it may im-
prove or degrade the clustering performance. In contrast,
SAIL with default settings shows consistent clustering per-
formances and is more robust in practice.

Figure 4: Spherical K-means vs. SAIL.

Table 7: Impact of Parameter Settings on SAIL.
Data Set Default Column Modeling Row Weighing

(IDF) (Entropy) (Sum)
tr11 0.696 0.614 0.669 0.644
tr12 0.637 0.501 0.574 0.474
tr23 0.429 0.402 0.368 0.171
tr31 0.511 0.491 0.428 0.540
tr41 0.690 0.618 0.669 0.756
tr45 0.674 0.750 0.653 0.563
wap 0.596 0.573 0.606 0.593

Note: Measured by NMI.

Figure 5: The Convergent Speed of SAIL.

5.5 Robustness and Computation Performance
In this subsection, we investigate the robustness and com-

putation performance of SAIL.
First, we observe the impact of data sparseness on SAIL.

We compute the “density”, i.e., the number of none-zero val-
ues to the number of all values, for each document data set in
Table 6. Thus we have the correlation between “SAIL” and
“Density”columns: -0.16. This implies that the performance
of SAIL has no strong correlation with data sparseness. In
other words, the performance of SAIL is not sensitive to the
data sparseness. This means that SAIL is a good solution
to the zero-value dilemma.

Second, we observe the impact of parameter settings on
SAIL. Table 7 shows the results, where “Default” means
no row or column modeling and the weights are the same,
“Column Modeling” employs IDF only, and “Row Weigh-
ing” uses entropy-based and sum-based weighing methods
respectively. Note that, for each instance x, the entropy-
based method uses 1/H(p(Y |x)) as the weight, while the
summation-based method uses n(x) as the weight.

As can be seen in the table, column modeling and row
weighing improve the clustering performances of SAIL on
several data sets, as highlighted by bold font. However, in
many cases, SAIL with default settings can produce satis-
fying results already. Therefore, SAIL is relatively robust
with the parameter settings.

Finally, Figure 5 shows the relationship between the num-
ber of data instances and the number of iterations for con-
vergence. In the figure, we can observe that the number of
iterations for convergence (NIC) of SAIL is no more than 20
except for la2 and ohscal. Also, NIC increases slowly as
the rapid increase of the number of objects n.

6. RELATED WORK
In the literature, great research efforts have been taken

to incorporate information theoretic measures into exist-



ing clustering algorithms, such as K-means. However, the
zero-denominator dilemma remains a critical challenge. For
instance, Dhillon et al. proposed information-theoretic K-
means, which used the KL-divergence as the proximity func-
tion [6]. While the authors noticed the “infinity” values
when computing the KL-divergence, they did not provide
specific solutions to this dilemma. In addition, Dhillon et al
further extended information-theoretic K-means to the so-
called information-theoretic co-clustering [7]. This algorithm
is the two-dimensional version of information theoretic K-
means which monotonically increases the preserved mutual
information by interwinding both the row and column clus-
terings at all stages. Also, there is no solution provided for
handling the zero-value dilemma when computing the KL-
divergence. Finally, the information bottleneck (IB) is simi-
lar to INFO-K-means in preserving mutual information [17].
In [16], Slonim and Tishby also found that the IB-based
word clustering can lead to the zero-value dilemma. They
suggested to use the smoothing method by adding 0.5 to
each entry of the document data set.

This paper indeed fills this crucial void. Specifically, in
our SAIL method, the computation of the KL-divergence is
replaced by the computation of the Shannon entropy. This
helps to avoid the zero-value dilemma.

7. CONCLUDING REMARKS
This paper studied the problem of exploiting information

theoretic measures, such as the KL divergence and the Shan-
non Entropy, as the clustering criteria for K-means cluster-
ing. In particular, we revealed the dilemma of the KL diver-
gence for handling high-dimensional sparse data; that is, the
centroids in sparse data usually contain zero-value features,
and thus lead to infinite KL divergence values. This makes
it difficult to use the KL divergence as a criterion for as-
signing objects to the centroids. To that end, we developed
a Summation-based Incremental Learning (SAIL) method,
which can avoid the zero-value dilemma by using the Shan-
non entropy instead of the KL divergence. This replacement
is guaranteed by an equivalent mathematical transformation
in the K-means objective function. Finally, as demonstrated
in our experiments, SAIL can greatly improve the perfor-
mance of K-means on high-dimensional sparse data.
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