
Volatile Correlation Computation: A Checkpoint View

Wenjun Zhou
MSIS Department

Rutgers, the State University of New Jersey

wjzhou@pegasus.rutgers.edu

Hui Xiong
MSIS Department

Rutgers, the State University of New Jersey

hxiong@rutgers.edu

ABSTRACT

Recent years have witnessed increased interest in computing
strongly correlated pairs in very large databases. Most pre-
vious studies have been focused on static data sets. How-
ever, in real-world applications, input data are often dy-
namic and must continually be updated. With such large
and growing data sets, new research efforts are expected to
develop an incremental solution for correlation computing.
Along this line, in this paper, we propose a CHECK-POINT
algorithm that can efficiently incorporate new transactions
for correlation computing as they become available. Specifi-
cally, we set a checkpoint to establish a computation buffer,
which can help us determine an upper bound for the corre-
lation. This checkpoint bound can be exploited to identify
a list of candidate pairs, which will be maintained and com-
puted for correlations as new transactions are added into the
database. However, if the total number of new transactions
is beyond the buffer size, a new upper bound is computed
by the new checkpoint and a new list of candidate pairs
is identified. Experimental results on real-world data sets
show that CHECK-POINT can significantly reduce the cor-
relation computing cost in dynamic data sets and has the
advantage of compacting the use of memory space.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms

Algorithms

Keywords

Pearson’s Correlation Coefficient, φ Correlation Coefficient,
Volatile Correlation Computing, Checkpoint

1. INTRODUCTION
Given a set of data objects, the problem of correlation

computing is concerned with identification of strongly-related

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24­27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM X­XXXXX­XX­X/XX/XX ...$5.00.

(e.g. as measured by Pearson’s correlation coefficient for
pairs [13]) groups of data objects. Many important applica-
tions in science and business [2, 6, 12, 14] depend on efficient
and effective correlation computing techniques to discover
relationships within large collections of information. Despite
the development of traditional statistical correlation com-
puting techniques [4, 10, 8, 11, 9, 15, 16], researchers and
practitioners are still facing increasing challenges to mea-
sure associations among data produced by emerging data-
intensive applications.

Indeed, the size of real-world datasets is growing at an
extraordinary rate, and these data are often dynamic and
need to be continually updated. With such large and grow-
ing data sets, new research efforts are expected to develop
an incremental solution for correlation computing. To that
end, in this paper, we limit our scope to provide a pilot
study of incrementally querying all item pairs with correla-
tions above a user specified minimum correlation threshold
when new data become available.

A straightforward approach is to recompute the correla-
tions for all the item pairs every time that new data of trans-
actions become available. However, for large data sets, this
approach is infeasible, particularly if the application needs
the results in a timely fashion. An alternative method is
to use more space to save the time. Along this line, we de-
scribe a SAVE-ALL algorithm, which saves the intermediate
results for all item pairs. When new transactions are added
into the database, SAVE-ALL only updates the stored val-
ues corresponding to each item pair and computes the corre-
lation query results with the intermediate values. Obviously,
the SAVE-ALL method compromises space for time. If the
number of items in the data set becomes considerably large,
the number of pairs grow even larger, to the extent that it is
impossible to save the intermediate computing results of all
item pairs in the memory space. This motivates our interest
in incremental correlation computing.

Specifically, we propose a CHECK-POINT algorithm that
makes a time-space tradeoff and can efficiently incorporate
new transactions for correlation computing as they become
available. In the CHECK-POINT algorithm, we set a check-
point to establish a computation buffer, which can help us
to determine a correlation upper bound. This checkpoint
bound can be exploited to identify a list of candidate pairs,
which will be maintained and computed for correlations as
new transactions are added into the database. However, if
the total number of new transactions exceeds the buffer size,
a new upper bound is computed by the new checkpoint and
a new list of candidate pairs is identified.

1

The rationale behind CHECK-POINT is that, if the num-
ber of new transactions is much smaller than the total num-
ber of transactions in the database, the correlation coeffi-
cients of most item pairs do not change substantially. In
other words, we only need to establish a very short list of
candidate pairs at the checkpoint and maintain this can-
didate list in the memory as new transactions are added
into the database. Unlike SAVE-ALL, CHECK-POINT only
maintains the intermediate computing results of a very small
portion of the item pairs. This can greatly compact the use
of the memory space by using slightly more time.

As demonstrated by our experimental results on several
real-world data sets, CHECK-POINT can significantly re-
duce the computational cost compared to existing correla-
tion computing benchmark algorithms, i.e. TAPER, in a
dynamic data environment. Also, we observe that there is
a trade-off between the use of space and the time by setting
different checkpoint values. Indeed, the size of the candidate
list increases with the increase of the checkpoint value. In
contrast, the average computational savings is reduced with
the increase of the checkpoint value. Finally, our experi-
mental results show that CHECK-POINT, as compared to
SAVE-ALL, can greatly reduce the use of memory space.

Overview. The remainder of this paper is organized as
follows. In Section 2, we introduce some basic concepts and
formulate the problem. Section 3 provides a checkpoint view
for dynamic all-strong-pairs correlation queries. In Section
4, we describe the CHECK-POINT and SAVE-ALL algo-
rithms. Section 5 shows the experimental results. Finally,
in Section 6, we provide the concluding remarks.

2. PRELIMINARIES
In this section, we first introduce some basic concepts and

notations that will be used in this paper. Then, we provide
the problem formulation.

2.1 Basic Concepts
The φ correlation coefficient [13] is the computation

form of the Pearson’s correlation coefficient [5] for binary
variables. In a 2 × 2 contingency table shown in Table 1,
the calculation of the φ correlation coefficient reduces to

φ =
P(00)P(11) − P(01)P(10)

p

P(0+)P(1+)P(+0)P(+1)

, (1)

where P(ij), for i ∈ {0, 1} and j ∈ {0, 1}, denotes the num-
ber of samples which are classified in the ith row and jth
column of the table, and N is the total number of samples.
Furthermore, we let P(i+) denote the total number of sam-
ples classified in the ith row, and we let P(+j) denote the
total number of samples classified in the jth column. Thus,
P(i+) =

P1
j=0 P(ij) and P(+j) =

P1
i=0 P(ij).

Table 1: A two-way contingency table of item A and
item B.

P
0
1

Column Total

1
P (01)

0
P

P
P (+0)

(10)

(00)

Row

(11)

P (+1)

Total

P (0+)

P (1+)

N

A

B

Hence, when adopting the support measure of association
rule mining [1], for two items a and b in a market basket

database, we have supp(a) = P(1+)/N , supp(b) = P(+1)/N ,
and supp(a, b) = P(11)/N . In Xiong et al. (2004) [15]
the support form of the φ correlation coefficient has been
derived, as shown in Equation 2.

φ{a,b} =
supp(a, b) − supp(a)supp(b)

p

supp(a)supp(b)(1 − supp(a))(1 − supp(b))
(2)

Xiong et al. (2004) has also identified an upper bound
for φ{a,b} [15]. Without loss of generality, if we assume that
supp(a) ≥ supp(b), then an upper bound for φ{a,b} is

upper(φ{a,b}) =

s

supp(b)

supp(a)

s

1 − supp(a)

1 − supp(b)
(3)

For the purpose of simplicity, we denote Na as the number
of transactions in the database that contain item a, Nb as the
number of those containing item b, and Nab as the number
of those containing both items. Then supp(a) = Na/N ,
supp(b) = Nb/N , and supp(a, b) = Nab/N . Substituting
into Equation 2, we can calculate the φ correlation coefficient
for items a and b as

φ{a,b} =
NNab − NaNb

p

Na(N − Na)Nb(N − Nb)
. (4)

2.2 Problem Formulation
Here, we introduce the problem formulation. Let D be

a transaction database, which has M items and N transac-
tions. In this data set, a common task of correlation com-
puting is to find all item pairs whose correlation coefficients
are above a user-specified threshold θ. This is known as
the all-strong-pairs correlation query problem [15]. In this
paper, we investigate the all-strong-pairs correlation query
problem in a dynamic data environment.

Specifically, every time a data set of S new transactions
is added into the original database D, we want to have the
dynamically updated results from the all-strong-pairs cor-
relation query. In other words, this all-strong-pairs cor-
relation query can be a frequent task in a dynamic data
environment. As a result, our goal is to develop an incre-
mental, practical, and computation-efficient solution to this
all-strong-pairs correlation query problem.

3. A CHECKPOINT VIEW
In this section, we first introduce the checkpoint princi-

ple. Then, we provide some theoretical foundations for the
checkpoint framework.

3.1 The Checkpoint Principle
In general, there are three ways for developing the incre-

mental solutions for frequent and dynamic all-strong-pairs
correlation queries.

First, the simplest way is to recompute the correlation val-
ues for all the item pairs every time new data sets of trans-
actions become available. Along this line, we can use an
efficient static all-strong-pairs correlation query algorithm,
such as TAPER [15], for each computation. However, for
very large data sets, this approach is infeasible if data up-
dates are very frequent and the application needs the result
in a timely manner.

The second way is to use more space to save time [3].
Specifically, we can save the support of each item pair and
update the values every time new data are added into the

2

database. In this way, once all the intermediate computing
results are saved, the all-strong-pairs correlation queries can
be done very efficiently, but the memory requirement is very
high. For instance, let us consider a database of 106 items,
which may represent the collection of books available at an

e-commerce Web site. There are
`

106

2

´

≈ 0.5× 1012 possible
item pairs, which needs a huge amount of memory space
to store intermediate computing results. In practice, this
memory requirement cannot be satisfied for data sets with
a large number of items.

Finally, we look for an answer between the above two solu-
tions. Specifically, instead of saving the intermediate com-
puting results for all item pairs, we propose to save them
for only selected item pairs. Aiming for a tradeoff between
time and space, we use a checkpoint to establish a computa-
tion buffer, which can help us determine a correlation upper
bound. Specifically, at a checkpoint, assuming that we know
that ∆N (∆N << N) new transactions will be added into
the database before the next checkpoint, we can develop an
upper bound for all the item pairs on N +∆N transactions.
This upper bound has taken the newly added ∆N trans-
actions into consideration. Therefore, based on this upper
bound, we can establish a list of candidate item pairs whose
upper bounds are greater than or equal to the threshold θ.
This list of candidate item pairs can be treated as a compu-
tation buffer for all-strong-pairs correlation queries. While
new transactions can be added into the buffer dynamically,
we only need to maintain the intermediate results for item
pairs in this candidate list as long as the cumulative number
of new transactions is less than ∆N . The above process is
illustrated in Figure 1.

Check Point
N N +∆Ν

variable fill rate

A correlation computing point

Figure 1: An Illustrate of the Checkpoint Process.

The reason that the candidate list can remain unchanged
(as long as the cumulative number of new transactions is
less than ∆N) is as follows. With a checkpoint at N + ∆N ,
we identify upper bounds for all item pairs for all N known
transactions and ∆N unknown transactions. In other words,
these upper bounds are the maximum possible values they
can achieve no matter what kind of ∆N transactions have
been added into the database. Then, if the cumulative num-
ber of new transactions is less than ∆N , the upper bounds
for all the item pairs in N + ∆N transactions will remain
unchanged. Therefore, the candidate list will also remain
unchanged. We call this the checkpoint principle.

Once the cumulative number of new transactions is greater
than ∆N , we need to set a new checkpoint at N + 2∆N .
This iterative process will form an incremental solution for
the dynamic all-strong pairs query problem. The rationale

behind the checkpoint principle is that a small number of
new transactions will not cause a significant effect on the
correlation coefficients of most item pairs in the database if
the total number of transactions is very large.

3.2 Predicted φ Correlation Coefficient at the
Next Checkpoint

In Section 2.1 we have shown that the φ correlation co-
efficient can be computed by Equation 4. In the original
database D, the frequencies for item a, b, and item pair
{a, b} are denoted as Na, Nb, and Nab, respectively. Suppose
that at a checkpoint, we set the next checkpoint right after
∆N new transactions. In the ∆N new transactions, we as-
sume that there are ∆Na, ∆Nb, and ∆Nab new transactions
containing item a, item b, and item pair {a, b}, respectively.
Then according to Equation 4, at the next checkpoint the
new φ correlation will be

φ′
{a,b} =

N ′N ′
ab − N ′

aN ′
b

p

N ′
a(N ′ − N ′

a)N ′
b(N

′ − N ′
b)

, (5)

whereN ′ = N +∆N , N ′
a = Na +∆Na, N ′

b = Nb +∆Nb, and
N ′

ab = Nab + ∆Nab.
Unfortunately, we do not have any information about the

∆N new transactions, so ∆Na, ∆Nb and ∆Nab are all un-
known. Thus, we cannot compute the new φ′ directly. How-
ever, because the size of the new data set is much smaller
than that of the original database, for any pair of items,
the new φ′ is expected not to change greatly from the cur-
rent φ value. For this reason, we aim to derive an upper
bound for φ′, and use it as a criterion regarding whether
we should save the intermediate computation result for that
pairs. Specifically, if upper(φ′) is less than the threshold θ,
then we can guarantee that item pair {a, b} will never be-
come a strongly-correlated pair prior to the next checkpoint.
As a result, we can save intermediate computation results
only for pairs having φ′ beyond the threshold θ.

However it is difficult to derive an exact upper bound for
φ′, because the denominator and the numerator are both
affected by common factors, and they do not change mono-
tonically by these factors. In the following subsections, we
derive a loose upper bound for φ′

{a,b} when ∆N new trans-
actions are added into the databases.

Looking closely at Equation 5, we can split the right hand
side into three parts. Let u = N ′N ′

ab −N ′
aN ′

b, v = N ′
a(N ′ −

N ′
a), and w = N ′

b(N
′ − N ′

b), then Equation 5 can be re-
written as

φ′
{a,b} =

u√
vw

. (6)

The upper bound is calculated as the maximum possible
value of u divided by the product of the minimum possible
values of v and w. The ratio is a loose upper bound for φ{a,b}

because the maximum and the minimum values may not be
achieved simultaneously. Since we do not know the exact
value of ∆Na, ∆Nb, and ∆Nab to come, our derivations are
only based on the fact that 0 ≤ ∆Nab ≤ ∆Na ≤ ∆N , and
0 ≤ ∆Nab ≤ ∆Nb ≤ ∆N .

3.3 Maximum Value of the Numerator u

In this subsection, we derive the maximum possible value
for the numerator φ′, u.

Given N , Na, Nb, Nab, and ∆N , the numerator of φ′
{a,b},

written as u = N ′N ′
ab −N ′

aN ′
b = (N + ∆N)(Nab + ∆Nab)−

3

(Na + ∆Na)(Nb + ∆Nb), is large when Nab is large, and
∆Na and ∆Nb are small. Specifically, we have the following
lemma.

Lemma 1. Given N , Na, Nb, Nab, and ∆N , the maxi-
mum possible value for u, the numerator of the φ correlation
coefficient φ{a,b} at the next checkpoint, is

umax =

8

<

:

f(0) if t ≤ −∆N ;
f(x∗) if − ∆N ≤ t ≤ ∆N ;
f(∆N) if t ≥ ∆N,

(7)

where f(x) = (N + ∆N)(Nab + x) − (Na + x)(Nb + x), t =
N − Na − Nb, and x∗ = (N − Na − Nb + ∆N)/2.

Proof. Because of symmetry, we can assume without
loss of generality that ∆Na ≤ ∆Nb. Let ∆Nab = x, x ≥ 0;
∆Na = x + c1, c1 ≥ 0; ∆Nb = x + c1 + c2, c2 ≥ 0. In the
following we derive the maximum value for u by taking first
and second partial derivatives [7].

First, because ∂u/∂c2 = −(Na + x + c1) < 0, u increases
monotonically as c2 decreases. In order to reach the maxi-
mum of u, c2 must take the minimum value in its range, 0.
Similarly, because ∂u/∂c1 = −(Nb + x + c1 + c2) − (Na +
x + c1) < 0, u takes the maximum value when c1 = 0.

As a result, ∂u/∂x = (N + ∆N) − (Nb + x + c1 + c2) −
(Na + x + c1) = N −Na −Nb + ∆N − 2x. Since ∂2u/∂x2 =
−2 < 0, u reaches its maximum value when ∂u/∂x = 0.
Let ∂u/∂x = 0, then the solution of the equation is x∗ =
(N +∆N −Na −Nb −2c1−c2)/2 = (N −Na −Nb +∆N)/2.

However, because 0 ≤ x = ∆Nab ≤ ∆N , the above value
can be reached only if −∆N ≤ N − Na − Nb ≤ ∆N . If
N −Na −Nb ≤ −∆N , then ∂u/∂x = N −Na −Nb + ∆N −
2x ≤ −∆N + ∆N − 2x = −2x ≤ 0, therefore u reaches
its maximum when x takes its minimum possible value 0.
On the other hand, if N − Na − Nb ≥ ∆N , then ∂u/∂x =
N−Na−Nb+∆N−2x ≥ ∆N+∆N−2x = 2(∆N−x) ≥ 0. u
reaches its maximum when x takes the maximum value ∆N .
Now we have completed the proof of Lemma 1.

3.4 Minimum Value of the Denominator
√

vw

In this subsection, we derive the minimum value of the
denominator of φ′,

√
vw. This is equivalent to finding the

minimum value of vw.
First, a lower bound of vw can be reached by taking the

minimum value of v and the minimum value of w. Again,
the minimum values of v and w may or may not be reached
simultaneously, so the lower bound for the denominator we
derive here is also a loose bound.

Lemma 2. Given N , Na, and ∆N , the minimum possible
value for v in Equation 6 is

vmin = min{h(Na), h(Na + ∆N)} (8)

where h(x) = x(N + ∆N − x) is a function with respect to
x, defined on the range [0, N + ∆N].

Proof. Since v = N ′
a(N ′ − N ′

a) = (Na + ∆Na)(N +
∆N − Na − ∆Na) = h(Na + ∆Na), finding the minimum
of v is equivalent to finding the minimum value of function
h(x) within the range of Na + ∆Na. Since 0 ≤ ∆Na ≤
∆N , we have Na ≤ Na + ∆Na ≤ Na + ∆N . Now we will
prove that the minimum possible value of h(x) in the range
[Na, Na + ∆N] is either h(Na) or h(Na + ∆N).

Obviously h(x) is a quadratic function of x. It is concave
and symmetric with respect to x = (N + ∆N)/2. Thus, the

further x = Na + ∆Na is from (N + ∆N)/2, the smaller
f(x) is. Because Na ≥ 0 and Na + ∆N ≤ N + ∆N , Na +
∆Na ∈ [Na, Na + ∆N] ⊆ [0, N + ∆N]. The minimum value
of f(Na +∆Na) must be at some end of the range [Na, Na +
∆N], depending on whether Na or Na +∆N is further from
(N + ∆N)/2. Now Lemma 2 has been proven.

Lemma 3. Given N , Nb, and ∆N , the minimum possible
value for w in Equation 6 is

wmin = min{h(Nb), h(Nb + ∆N)} (9)

where h(x) = x(N + ∆N − x) is a function with respect to
x, defined on the range [0, N + ∆N].

Proof. Similar to the proof of Lemma 2, we can simply
prove that the minimum possible value of h(x) in the range
[Nb, Nb + ∆N] is either h(Nb) or h(Nb + ∆N).

3.5 The Loose Upper Bound for φ′

In this section, we can derive a loose upper bound for φ
correlation coefficient φ = u/

√
vw by Lemma 1, Lemma 2,

and Lemma 3 as the following:

Lemma 4. A loose upper bound for the new φ correlation
coefficient at the next checkpoint, φ′ = u/

√
vw, is

upper(φ′) =
umax√

vminwmin

, (10)

where umax follows Equation (7), vmin follows Equation (8),
and wmin follows Equation (9).

Proof. The proof is straightforward, since we have umax,
vmin, and wmin from Lemmas 1, 2, and 3.

4. ALGORITHM DESCRIPTIONS
In this section, we describe three different solutions to the

all-strong-pairs correlation query problem in a dynamic data
environment. First, we present a straightforward solution,
named r-TAPER, which recomputes correlation coefficients
for all the item pairs every time new data are added into
the database. The second SAVE-ALL approach stores the
intermediate computing results for all the item pairs and can
greatly save the computational cost. Finally, we also pro-
vide an incremental solution, called CHECK-POINT, which
strikes a balance between the use of memory space and the
computational efficiency.

4.1 The r­TAPER Algorithm
In this method, we need to recompute correlation coef-

ficients for all the item pairs every time the database has
been updated. No intermediate result has been reused for
the next correlation computing practice. Since we have al-
ready known that a brute-force way to compute all-strong-
pairs correlation queries is computationally expensive [15],
we apply the TAPER algorithm [15] in this study. TAPER
is an efficient algorithm for the all-strong-pairs correlation
query on static data [15]. Figure 2 shows the pseudo code
of the r-TAPER algorithm which computes all-strong-pairs
queries in a dynamic data environment. In the figure, we
can see that the r-TAPER algorithm repeatedly calls the
TAPER procedure every time new transactions are added
into the database. Note that the implementation details of
TAPER can be found in [15].

4

ALGORITHM r-TAPER(D,D∆,θ)
Input:

D: the original database
D∆: the set of new transactions
θ: the threshold for pair-wise φ correlation

Output:
L: list of item pairs with φ ≥ θ.

1. D ← D ∪D∆

2. L← TAPER(D, θ)
3. Output L

Figure 2: The r-TAPER Algorithm

4.2 The SAVE­ALL Algorithm
In the r-TAPER algorithm, we have observed the fact that

the computational bottleneck for the all-strong-pairs query
is to count the frequencies of all item pairs on the fly, and
no intermediate computing results have been reused for the
next correlation computation. On the contrary, the SAVE-
ALL method stores the frequencies of all item pairs and
incrementally update the stored values while new data are
added into the database. In this way, SAVE-ALL uses more
space for the sake of saving computation time.

Figure 3 shows the implementation details of the SAVE-
ALL algorithm. In this figure, Lines 1-5 process the dy-
namic data, and update frequencies of items and item pairs
as needed. The frequencies of individual items are saved on
the main diagonal. Lines 6-12 compute the φ correlation
coefficient for each item pair and check if it is beyond the
threshold θ. Since the frequencies of all the item pairs are
stored in the memory, the computation of φ correlation co-
efficient for each item pair is very efficient. However, the
drawback of this SAVE-ALL method is that, if the number
of items becomes extremely large, we may not have enough
memory space for running the algorithm.

ALGORITHM SAVE-ALL(M ,D∆,θ)
Input:

M : M [i, j] is the frequency of item pair {i, j}
D∆: the set of new transactions
θ: the threshold for pair-wise correlation

Output:
L: list of item pairs with φ ≥ θ.

1. for each transaction t in D∆ do

2. for each pair of items {i, j} in t do

3. M [i, j]←M [i, j] + 1
4. end for

5. end for

6. L← ∅
7. for each possible pair {a, b} do

8. Compute φ{a,b}

9. if φ{a,b} ≥ θ then

10. Add pair {a, b} to L
11. end if

12. end for

13. Output L

Figure 3: The Pseudocode of SAVE-ALL

4.3 The CHECK­POINT Algorithm
The above mentioned two algorithms are quite straight

forward. However, they represent two extreme cases of the

all-strong-pairs correlation query problem in a dynamic data
environment. The r-TAPER algorithm, which repeat the
query every time new data become available, disregards the
previously computed results, and thus wastes a lot of com-
putation. On the other hand, the SAVE-ALL algorithm
requires an extremely large amount of memory space for
saving the intermediate computing results. This becomes
infeasible when the number of items is very large. As we
have discussed in Section 3, we look for a solution in be-
tween the above two methods. This solution should have
the capabilities in storing some intermediate computing re-
sults to save the computation, and do not overuse the mem-
ory space. Based on what we have discovered in Section 3,
we have developed a new algorithm called CHECK-POINT,
which is described in Figure 4.

ALGORITHM CHECK-POINT (CL,D,D∆,θ,Check)
Input:

CL: the candidate list
D: the original database
D∆: a set of new transactions
θ: threshold for pair-wise correlation
Check: a boolean variable indicating whether there

is a checkpoint at the end of this step
Output:

L: list of item pairs with φ ≥ θ.

1. for each transaction t in D∆ do

2. for each pair of items {i, j} in t do

3. if {i, j} ∈ CL then

4. Nij ← Nij + 1
5. end if

6. end for

7. end for

8. L← ∅
9. for each pair {a, b} in C do

10. Compute φ{a,b}

11. if φ{a,b} ≥ θ then

12. Add pair {a, b} to L
13. end if

14. end for

15. Output L
16. if Check then

17. D ← D ∪D∆

18. CL← UpdateCandidateList(D,∆N)
19. end if

Figure 4: The Pseudocode of the CHECK-POINT
Algorithm

In the figure, we can see that the CHECK-POINT algo-
rithm consists of three parts. The first part, Lines 1-7, reads
the new data and only updates the frequencies of item pairs
on the candidate list. The second part, Lines 8-15, computes
the φ correlation for each candidate pair and outputs if the
correlation coefficient exceeds the threshold. Note that it is
safe to ignore all other item pairs which are not on the candi-
date list. This is guaranteed by the way that the candidate
list is constructed (please refer to the checkpoint principle in
Section 3). The last part, described in Lines 16 through 19,
calls a sub-procedure UpdateCandidateList, only if there
is a checkpoint scheduled at the end of this step. In other
words, the cumulative number of new transactions is greater
than the computation buffer ∆N .

The UpdateCandidateList sub-procedure, described in Fig-
ure 5, shows what happens at each checkpoint. Given that

5

ALGORITHM UpdateCandidateList(D,∆N)
1. CL← ∅
2. for each possible item pair {a, b} do

3. Calculate the upper bound of φ′
{a,b}

with ∆N

4. if upper(φ′
{a,b}

) ≥ θ then

5. Add {a, b} to CL, and store Nab

6. end if

7. end for

8. return CL

Figure 5: The Pseudocode of the UpdateCandi-
dateList subprocedure in CHECK-POINT.

the original data set has been updated, and that the fre-
quency of each item is readily available, for each item pair
{a, b}, we can compute an upper bound of its future φ cor-
relation coefficient if we know that the next checkpoint is
scheduled after ∆N new transactions to come. If the upper
bound is no less than the threshold, then the item pair is
put into the candidate list; otherwise we know that the item
pair will never have a correlation coefficient above the user-
specified correlation threshold θ even if another ∆N new
transactions are added into the database.

5. EXPERIMENTAL RESULTS
In this section, we present the experimental results to

evaluate the performance of the CHECK-POINT algorithm.
Specifically, we study: (1) the computational performance of
CHECK-POINT compared with r-TAPER and SAVE-ALL
algorithms; (2) the performance of the CHECK-POINT al-
gorithm in terms of the use of space.

5.1 The Experimental Setup
Our experiments were conducted on three real-world data

sets: chess, connect, and pumsb. The first two data
sets, chess and connect, are from UCI Machine Learning
Repository (http://archive.ics.uci.edu/ml/). The last data
set, pumsb, which is often used as a benchmark data set
for evaluating frequent pattern mining algorithms, is from
FIMI (http://fimi.cs.helsinki.fi/data/).

Table 2: Basic Characteristics of the Data Sets.
Data set # Items # Transactions Source
chess 75 3196 UCI Repository

connect 127 67557 UCI Repository
pumsb 2113 49046 FIMI

Table 2 summarizes basic characteristics of the data sets
used in our experiments. In this paper, our goal is to in-
crementally perform the all-strong-pairs correlation queries
in a dynamic data situation. To mimic this dynamic real-
world scenario, we did the following preprocessing on these
three benchmark data sets. First, we generated a base data
set of 100000 transactions for each data set by random sam-
pling with replacement from the corresponding original data
set. To make the results more comparable across different
methods, step sizes, and checkpoint densities, we fixed the
number of new transactions as 6000, a 6% increment of the
base data. Again, these 6000 new transactions were gener-
ated by random sampling from the original data sets.

The difference between a step and a checkpoint is that a
step is the number of new transactions after which we need
an updated output of the strongly-correlated-pairs query,
while a checkpoint is where we update the candidate list of
item pairs. For example, an online store, which updates its
bundle recommendations once they have received 1000 new
transactions, has a step size 1000. The checkpoint size, how-
ever, is a parameter for the CHECK-POINT method, which
the store can choose regarding how many transactions are
to be collected between two neighboring checkpoints. Ob-
viously, checkpoints do not apply to r-TAPER and SAVE-
ALL, but these three methods can be compared with respect
to the number of transactions processed.

For each data set, we carried out three groups of exper-
iments. The first group aims to evaluate the effect of the
checkpoint density for a fixed step size. Specifically, we fix
the step size as 100 and use checkpoint sizes 200, 500, 1000,
1500, and 2000. The second group of experiments evaluates
the effect of step sizes, in which we fix the checkpoint size
as 1000, whereas try step sizes 10, 50, 100, 200, and 250.
The last group of experiments fixes the ratio of checkpoint
size versus step size. When using different step sizes, such
as 10, 50, 100, 150, and 200, we insert a checkpoint at the
end of every 10 steps, no matter what the step size is. The
experimental groups are summarized in Tables 3, 4, and 5.

Table 3: Experimental Group I.
Step Size Checkpoint Size # Steps # Checkpoints

100 200 2 30
100 500 5 12
100 1000 10 6
100 1500 15 4
100 2000 20 3

Table 4: Experimental Group II.
Step Size Checkpoint Size # Steps # Checkpoints

10 1000 100 6
50 1000 20 6
100 1000 10 6
200 1000 5 6
250 1000 4 6

Table 5: Experimental Group III.
Step Size Checkpoint Size # Steps # Checkpoints

10 100 10 60
50 500 10 12
100 1000 10 6
150 1500 10 4
200 2000 10 3

Experimental Platform. All the experiments were per-
formed on a Dell Optiplex 755 Minitower with Intel 2 Quad
processor Q6600 and 4 GB of memory running the Microsoft
Windows XP Professional operating system.

5.2 Computational Performance
In this subsection, we show a comparison of computational

performance for three algorithms: r-TAPER, SAVE-ALL,
and CHECK-POINT.

Figure 6 illustrates the running time of each step for the
chess, connect, and pumsb datasets. Unsurprisingly, the

6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e
(s

ec
)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(a) chess

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e
(s

ec
)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(b) connect

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e
(s

ec
)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(c) pumsb

Figure 6: The running time at each step of the CHECK-POINT, r-TAPER and SAVE-ALL algorithms on
chess, connect, and pumsb datasets. (S = 100, C = 1000, θ = 0.5).

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(a) chess

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(b) connect

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

R
un

ni
ng

 T
im

e
(s

ec
)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(c) pumsb

Figure 7: Accumulative running time at each step of the CHECK-POINT, r-TAPER and SAVE-ALL algo-
rithms on chess, connect, and pumsb datasets. (S = 100, C = 1000, θ = 0.5).

SAVE-ALL algorithm costs the least time, because the pair-
wise frequencies are stored in the memory. r-TAPER takes
much longer time than SAVE-ALL and CHECK-POINT,
because all the pairwise frequencies are not available and
need to be counted every step when new data become avail-
able. It is reasonable according to the r-TAPER algorithm
that the higher the threshold, the more pairs are pruned and
the less computation is needed. For different thresholds, the
time consumed by the CHECK-POINT algorithm is almost
always as little as SAVE-ALL, except for the running time
at checkpoints, where CHECK-POINT need to take time for
building a new candidate list of item pairs.

Even though CHECK-POINT takes longer time to update
the candidate list at the checkpoints than one-running time
of r-TAPER, overall the CHECK-POINT algorithm takes
much less time than r-TAPER. In Figure 7, we illustrate
the accumulative time at each step. Because the SAVE-ALL
method is so fast, as time goes, its accumulative time grows
very slowly. On the contrary, the accumulative time by r-
TAPER increases much faster. The CHECK-POINT algo-
rithm lies in between SAVE-ALL and r-TAPER. Its accu-
mulative time increases slowly except for checkpoints where
larger jumps can be observed. However, the overall trend
shows that it increases much slower than r-TAPER.

Figure 8 shows a comparison of the CHECK-POINT, r-
TAPER, and SAVE-ALL algorithms at different threshold
levels. We have already known that the higher the thresh-
olds, the more item pairs are pruned by the r-TAPER algo-
rithm; however in the dynamically growing databases, as the
threshold goes down, the running time of CHECK-POINT
increases much more slowly than that of r-TAPER.

Figure 9 shows the effect of the checkpoint density on
the running time. Because the checkpoints are the most
costly steps, the more frequent we update the candidate
list, the more time in total we will need. However, using too
few checkpoints will require more space. We will show this
tradeoff in the next subsection.

To study the effect of step sizes, we fix the checkpoint
densities and plot the accumulative running time in Figure
10. We can see that all the curves are almost overlapping
each other. Again, the reason is that the checkpoints are
the most costly steps, thus the choice of step sizes does not
affect the performance greatly. The implications on real
world applications is that sizes of steps, where we want an
update-to-date output of all the strongly correlated pairs,
can be determined by the application itself. All we need
to leverage is the choice of the checkpoint density, so that
both the running time and the space required is reasonably
balanced and practical.

Finally, when fixing the step size and the checkpoint den-
sity, Figure 11 shows the effect of correlation thresholds on
the running time. It is easy to see that, overall, the lower
the threshold, the more running time is needed. Our ex-
periments on other data sets and parameters show similar
trends. Due to the page limit, we do not present these ex-
perimental results in this paper.

5.3 The Use of Space
In this section, we investigate the performance of the

CHECK-POINT algorithm in terms of the use of space.
Along this line, our goal is to check how many item pairs can

7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(a) θ = 0.8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(b) θ = 0.7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

CHECK-POINT
r-TAPER

SAVE-ALL

(c) θ = 0.6

Figure 8: Accumulative running time of the CHECK-POINT, r-TAPER and SAVE-ALL algorithms on chess

(S = 100, C = 1000).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

C = 2000
C = 1500
C = 1000
C = 500
C = 200

Figure 9: The accumulative running time at each
step of the CHECK-POINT algorithm on chess.
(S = 100, θ = 0.6).

be pruned at the checkpoints. In other words, these pruned
item pairs will not be maintained in the candidate list

To study the pruning effect of different densities of check-
points, we fix the step size and the correlation threshold,
and then get the plots in Figure 12. In this figure, similar
trends can be found for different data sets.

First of all, the denser the checkpoints, the fewer candi-
dates are needed. In each of the subgraphs, each data point
corresponds to a checkpoint. We can see that curves with
fewer checkpoints lie higher than those with more check-
points. This indicates that the less frequent the checkpoint
is, the more candidates are needed to be stored.

Secondly, as time goes, the number of candidates may
vary. Our experiments show that the number of candidates
increases or decreases only slightly over time. The reason is
that we generated the data sets uniformly at random, which
eliminates the evolving trend over time in the original data
sets. However, this may not be the case in practice.

Finally, the pruning ratio is data dependent. As an ex-
ample, Table 6 shows the sizes of candidate lists for three
test data sets. In the table, we can see that that the number
of candidate item pairs for chess is only 4, meaning that
99.86% of all possible item pairs are pruned. Instead of sav-
ing the frequencies of all 2775 item pairs, we only need to
track the change of 4 pairs. Similarly, the connect data set
has a pruning ratio of 97.60%. The pruning ratio for pumsb
is only 45.57%, which explains why the computational per-
formance of CHECK-POINT on the pumsb data set is not

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

tiv
e

R
un

ni
ng

 T
im

e
(s

ec
)

Transactions

S = 10
S = 50

S = 100
S = 200
S = 250

Figure 10: The accumulative running time at each
step of the CHECK-POINT algorithm on chess.
(C = 1000, θ = 0.6).

as good as on the other two data sets. The reason is that the
chess and connect data sets are much denser than pumsb.
Our proposed CHECK-POINT algorithm works better on
dense data sets.

Table 6: The Sizes of Candidate Lists (S = 10, C =
100, θ = 0.7).

Data Set #Items #Pairs #Cand’s Ratio
chess 75 2775 4 99.86%

connect 127 8001 191 97.60%
pumsb 2113 2231328 1214496 45.57%

6. CONCLUDING REMARKS
In this paper, we studied the problem of correlation com-

puting in large and dynamically growing data sets. Specifi-
cally, we proposed a CHECK-POINT algorithm, which can
incrementally search all the item pairs with correlations above
a user-specified minimum correlation threshold. The key
idea is to establish a computation buffer by setting a check-
point for dynamic input data. This checkpoint can be ex-
ploited to identify a list of candidate pairs, which are main-
tained and computed for correlations as new transactions
are added into the database. However, if the total number
of new transactions is beyond the check point, a new candi-
date list is generated by the new checkpoint. Experimental
results on real-world data sets show that CHECK-POINT

8

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs

Transactions

C = 200
C = 500

C = 1000
C = 1500
C = 2000

(a) chess

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs

Transactions

C = 200
C = 500

C = 1000
C = 1500
C = 2000

(b) connect

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 1.9e+06

 2e+06

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 C

an
di

da
te

 P
ai

rs

Transactions

C = 200
C = 500

C = 1000
C = 1500
C = 2000

(c) pumsb

Figure 12: Number of candidate pairs at each checkpoint for chess, connect, and pumsb (S = 100, θ = 0.9).

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000

A
cc

um
ul

at
iv

e
R

un
ni

ng
 T

im
e

(s
ec

)

Transactions

Theta = 0.9
Theta = 0.8
Theta = 0.7
Theta = 0.6
Theta = 0.5

Figure 11: The accumulative running time at each
step of the CHECK-POINT algorithm on chess.
(S = 100, C = 1000).

can compact the use of memory space by maintaining a can-
didate pair list, which is only a very small portion of all the
item pairs. Also, CHECK-POINT can significantly reduce
the correlation computing cost in dynamic data sets with a
large number of transactions.

7. ACKNOWLEDGMENTS
This research was partially supported by the Rutgers Seed

Funding for Collaborative Computing Research. Also, this
research was supported in part by a Faculty Research Grant
from Rutgers Business School- Newark and New Brunswick.

8. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
pages 207–216, 1993.

[2] C. Alexander. Market Models: A Guide to Financial
Data Analysis. John Wiley & Sons, 2001.

[3] J. Bentley. Programming Pearls. Addison-Wesley, Inc.,
2nd edition, 2000.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond
market baskets: Generalizing association rules to
correlations. In Proceedings ACM SIGMOD
International Conference on Management of Data,
pages 265–276, 1997.

[5] J. Cohen, P. Cohen, S. West, and L. Aiken. Applied
multiple regression/correlation analysis for the

behavioral sciences. Lawrence Erlbaum Associates,
Hillsdale, NJ, 3rd edition, 2003.

[6] P. Cohen, J. Cohen, S. G. West, and L. S. Aiken.
Applied Multiple Regression/Correlation Analysis for
the Behavioral Science. Lawrence Erlbaum Assoc; 3rd
edition, 2002.

[7] R. Courant and F. John. Introduction to Calculus and
Analysis Volume II/1: Chapters 1 - 4 (Classics in
Mathematics). Springer, 1999.

[8] W. DuMouchel and D. Pregibon. Empirical bayes
screening for multi-item associations. In Proceedings of
the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
67–76, 2001.

[9] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and
A. Aboulnaga. Cords: Automatic discovery of
correlations and soft functional dependencies. In
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, 2004.

[10] C. Jermaine. The computational complexity of
high-dimensional correlation search. In Proceedings of
the 2001 IEEE International Conference on Data
Mining (ICDM), pages 249–256, 2001.

[11] C. Jermaine. Playing hide-and-seek with correlations.
In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2003.

[12] W. Kuo, T. Jenssen, A. Butte, L. Ohno-Machado, and
I. Kohane. Analysis of matched mrna measurements
from two different microarray technologies.
Bioinformatics, 18(3), 2002.

[13] H. T. Reynolds. The Analysis of Cross-classifications.
The Free Press, New York, 1977.

[14] H. V. Storch and F. W. Zwiers. Statistical Analysis in
Climate Research. Cambridge University Press;
Reprint edition, February 2002.

[15] H. Xiong, S. Shekhar, P. Tan, and V. Kumar.
Exploiting a support-based upper bound of pearson’s
correlation coefficient for efficiently identifying
strongly correlated pairs. In Proceedings of the Tenth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
334–343, 2004.

[16] H. Xiong, S. Shekhar, P.-N. Tan, and V. Kumar.
Taper: A two-step approach for all-strong-pairs
correlation query in large databases. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 18(4):493–508, April 2006.

9

