
Under consideration for publication in Knowledge and Information
Systems

Characterizing Pattern Preserving
Clustering

Hui Xiong1, Michael Steinbach2, Arifin Ruslim2, and Vipin Kumar2

1 Department of Management Science and Information Systems

Rutgers, the State University of New Jersey, USA;

Email: hxiong@rutgers.edu

2 Department of Computer Science and Engineering

University of Minnesota - Twin Cities

Email: {steinbac, aruslim, kumar}@cs.umn.edu

Abstract. This paper describes a new approach for clustering—pattern preserving
clustering—which produces more easily interpretable and usable clusters. This ap-
proach is motivated by the following observation: while there are usually strong patterns
in the data—patterns that may be key for the analysis and description of the data—
these patterns are often split among different clusters by current clustering approaches.
This is, perhaps, not surprising, since clustering algorithms have no built in knowledge
of these patterns and may often have goals that are in conflict with preserving patterns,
e.g., minimize the distance of points to their nearest cluster centroids. In this paper,
our focus is to characterize (1) the benefits of pattern preserving clustering and (2)
the most effective way of performing pattern preserving clustering. To that end, we
propose and evaluate two clustering algorithms, HIerarchical Clustering with pAttern
Preservation (HICAP) and bisecting K-means Clustering with pAttern Preservation
(K-CAP). Experimental results on document data show that HICAP can produce
overlapping clusters that preserve useful patterns, but has relatively worse clustering
performance than bisecting K-means with respect to the clustering evaluation criterion
of entropy. By contrast, in terms of entropy, K-CAP can perform substantially better
than the bisecting K-means algorithm when data sets contain clusters of widely differ-
ent sizes—a common situation in the real-world. Most importantly, we also illustrate
how patterns, if preserved, can aid cluster interpretation.

Keywords: Pattern Preserving Clustering; K-means Clustering; Hyperclique Pattern;
Hierarchical Clustering

Received Jun 21, 2007
Revised Mar 16, 2008
Accepted Apr 12, 2008

2 H. Xiong et al

1. Introduction

Clustering and association analysis are important techniques for analyzing data.
Cluster analysis (Jain and Dubes, 1988) provides insight into the data by dividing
the objects into groups (clusters) of objects, such that objects in a cluster are
more similar to each other than to objects in other clusters. Association analysis
(Agrawal, Imielinski and Swami, 1993), on the other hand, provides insight into
the data by finding a large number of patterns—frequent patterns and other
patterns derived from them—in the data set. Frequent patterns identify sets of
items (attributes) by finding attributes that occur together within a sufficiently
large set of transactions. Thus, noting that clustering and association analysis
can be performed either on objects or attributes, and restricting our discussion to
binary transaction data, clustering and association analysis are both concerned
with finding groups of strongly related objects or attributes, although at different
levels. Association analysis finds strongly related objects or attributes on a local
level, i.e., with respect to a subset of attributes or objects, while cluster analysis
finds strongly related objects or attributes on a global level, i.e., by using all of
the attributes or objects to compute similarity values.

Recently, we have defined a new pattern for association analysis—the hyper-
clique pattern (Xiong, Tan and Kumar, 2003; Xiong, Tan and Kumar, 2006)—
that demonstrates a particularly strong connection between the overall similarity
of a set of attributes (or objects) and the itemset (local pattern) in which they are
involved. The hyperclique pattern is described in more detail later, but possesses
the high affinity property: the attributes (objects) in a hyperclique pattern have
a guaranteed level of global pairwise similarity to one another as measured by
the cosine measure (uncentered Pearson’s correlation coefficient1) (Strehl, Ghosh
and Mooney, 2000). Since clustering depends on similarity, it seems reasonable
that the hyperclique pattern should have some connection to clustering. To this
end, we posed the following question: What happens to hyperclique patterns when
data is clustered by standard clustering techniques, e.g., how are they distributed
among clusters?

We found that hyperclique patterns are mostly destroyed by standard cluster-
ing techniques, i.e., standard clustering schemes do not preserve the hyperclique
patterns, but rather, the objects or attributes comprising them are typically
split among different clusters. To understand why this is not desirable, consider
a set of hyperclique patterns for documents. The high affinity property of hyper-
clique patterns requires that these documents must be similar to one another;
the stronger the hyperclique, the more similar the documents. Thus, for strong
patterns, it would seem desirable (from a clustering viewpoint) that documents
in the same pattern end up in the same cluster in many or most cases. As men-
tioned, however, this is not what happens for traditional clustering algorithms.
This is not surprising since traditional clustering algorithms have no built in
knowledge of these patterns and may often have goals that are in conflict with
preserving patterns, e.g., minimize the distance of points from their closest clus-
ter centroid.

More generally, the breaking of these patterns is also undesirable from an
application point of view. Specifically, in many application domains, there are
fundamental patterns that dominate the description and analysis of data within

1 When computing Pearson’s correlation coefficient, the data mean is not subtracted

Characterizing Pattern Preserving Clustering 3

that area, e.g., in text mining, collections of words that form a topic, and in
biological sciences, a set of proteins that form a functional module (Xiong, He,
Ding, Zhang, Kumar and Holbrook, 2005). If these patterns are not respected,
then the value of a data analysis is greatly diminished for end users. If our
interest is in patterns, such as hyperclique patterns, then we need a clustering
approach that preserves these patterns, i.e., puts the objects or attributes of these
patterns in the same cluster. Otherwise, the resulting clusters will be harder to
understand since they must be interpreted solely in terms of objects instead of
well-understood patterns.

To address the above challenges, we propose a pattern preserving clustering
approach. Our goal is to characterize pattern preserving clustering with respect
to the following two issues.

1. The benefits of pattern preserving clustering.

2. The most effective way of performing pattern preserving clustering.

One benefit of pattern preserving clustering is to provide a better cluster in-
terpretation than traditional clustering approaches by considering the patterns
found in clusters. To achieve this benefit, it is necessary to determine the most
effective approach for pattern preserving clustering. One important aspect of this
is the choice of which association pattern to use. Indeed, as demonstrated in the
paper, the hyperclique pattern is a better candidate than frequent patterns (fre-
quent itemsets) for pattern preserving clustering. First, the hyperclique pattern
possesses the high-affinity property. As a result, hyperclique patterns tend to
include objects that are from the same class (cluster), and thus, are well suited
for pattern preserving clustering. In contrast, frequent patterns often contain ob-
jects from different classes that have low pairwise similarity. Second, hyperclique
patterns have much better coverage of the targeted objects than frequent pat-
terns since hyperclique patterns can be identified at low levels of support. Third,
the computational cost of finding hyperclique patterns is significantly lower than
that of frequent patterns (Xiong et al., 2003). Finally, there are fewer hyperclique
patterns than frequent patterns, and thus, they are more manageable during the
clustering process.

For instance, due to the high affiliation within hyperclique patterns, pattern
preserving clustering naturally lends itself to various applications in search en-
gines. For instance, instead of a long ranked list of keyword queries, it can be
better to return clustered search results by topic. This can be accomplished by
showing only the documents in the hyperclique patterns, which are more com-
pact and representative of those topics. For a query session, instead of returning
the documents where all the query words just co-occur, we can return the doc-
uments from hyperclique patterns that connect the queries and embody their
common topics.

In our preliminary work (Xiong, Steinbach, Tan and Kumpar, 2004), we in-
troduced the Hierarchical Clustering with Pattern Preservation (HICAP) algo-
rithm, which is a pattern preserving clustering technique that utilizes hyper-
clique patterns to create the initial clusters, and then performs a Group Av-
erage agglomerative hierarchical clustering (also known as UPGMA (Jain and
Dubes, 1988; Kaufman and Rousseeuw, 1990)). To the best of our knowledge, HI-
CAP is the first approach that is based on the idea of preserving patterns. While
HICAP can produce overlapping clusters—non-overlapping clustering schemes
tend to break patterns—and has better interpretations for clustering results, it

4 H. Xiong et al

is computationally more expensive than K-means. More importantly, the clus-
ter quality of HICAP with respect to entropy is worse than bisecting K-means
with respect to entropy (Xiong et al., 2004). As we know, k-means, which is a
variant of traditional K-means algorithm whose performance for clustering doc-
ument data is among the best (Steinbach, Karypis and Kumar, 2000; Zhao and
Karypis, 2004).

In this paper, we present a bisecting K-means Clustering with pAttern
Preservation (K-CAP) algorithm that exploits key properties of bisecting K-
means and the hyperclique pattern. K-CAP provides the following two important
benefits.

1. Improved Clustering Quality. For data with widely differing cluster sizes, which
is the normal case for many real-world data sets, K-CAP typically produces
better quality results than bisecting K-means. For data with almost uniform
clusters sizes, K-CAP has a clustering performance (with respect to entropy)
that is comparable to that of bisecting K-means.This is noteworthy because,
as mentioned, bisecting K-means is one of the best document clustering tech-
niques (Steinbach et al., 2000; Zhao and Karypis, 2004).

2. Pattern Preservation. Strong patterns are preserved during the clustering pro-
cess; that is, all objects in the same pattern end up in the same cluster. Tra-
ditional bisecting K-means clustering cannot preserve those strong patterns,
since it has no built in knowledge of these patterns and may often have goals
that are in conflict with preserving patterns; e.g., minimize the distance of
points from their closest centroid.

The reason that K-CAP can produce better clustering quality than bisecting
K-means for data sets with widely differing cluster sizes is explained in more
detail later, but we briefly summarize the approach here. Before clustering, the
group of objects in a hyperclique pattern is replaced by their centroid, thus
reducing the size of the data set. Larger clusters are reduced more than smaller
clusters and the distribution of objects among clusters becomes more uniform.
Clustering is then performed using bisecting K-means, and the K-CAP algorithm
assigns all the objects in a hyperclique pattern to the cluster containing their
corresponding centroid to produce the final clustering results.

Outline: Section 2 provides a background in clustering and also describes re-
lated work. Section 3 introduces the hyperclique pattern, while Section 4 presents
the details of the HICAP and K-CAP algorithms. Experimental results are given
in Section 5. Section 6 provides a brief conclusion and an indication of our plans
for future work.

2. Clustering Background and Related Work

Cluster analysis (Berkhin, 2002; Jain, Murty and Flynn, 1999; Brecheisen, Kriegel
and Pfeifle, 2006; Hinneburg and Keim, 2003; Zhong and Ghosh, 2005) has been
the focus of considerable work, both within data mining and in other fields such
as statistics, machine learning, and pattern recognition. Several recent surveys
may be found in (Berkhin, 2002; Jain et al., 1999), while more discussions of
clustering are provided by the following books (Jain and Dubes, 1988; Kaufman
and Rousseeuw, 1990; Anderberg, 1973). The discussion in this section is, of
necessity, quite limited.

Characterizing Pattern Preserving Clustering 5

While there are innumerable clustering algorithms, almost all of them can
be classified as being either partitional, i.e., producing an un-nested set of clus-
ters that partitions the objects in a data set into disjoint groups (Gondek and
Hofmann, 2007), or hierarchical, i.e., producing a nested sequence of partitions,
with a single, all-inclusive cluster at the top and singleton clusters of individual
points at the bottom (Koga, Ishibashi and Watanabe, 2007). While this standard
description of hierarchical versus partitional clustering assumes that each object
belongs to a single cluster (a single cluster within one level, for hierarchical clus-
tering), this requirement can be relaxed to allow clusters to overlap. Thus, in
this paper we will describe clustering algorithms as hierarchical or partitional
and as overlapping or non-overlapping.2

Perhaps the best known and most widely used partitional clustering technique
is K-means (MacQueen, 1967), which aims to cluster a dataset into K clusters—
K specified by the user—so as to minimize the sum of the squared distances
of points from their closest cluster centroid. (A cluster centroid is the mean
of the points in the cluster.) K-means is simple and computationally efficient,
and a modification of it, bisecting K-means (Steinbach et al., 2000), can also
be used for hierarchical clustering. Indeed, K-means is one of the best ways
for generating a partitional or hierarchical clustering of documents (Steinbach
et al., 2000; Zhao and Karypis, 2002). We use K-means, as implemented by
CLUTO (Karypis, 2006), as one of the methods to compare with our approach.

Traditional hierarchical clustering approaches (Jain and Dubes, 1988) build
a hierarchical clustering in an agglomerative manner by starting with individual
points or objects as clusters, and then successively combining the two most sim-
ilar clusters, where the similarity of two clusters can be defined in different ways
and is what distinguishes one agglomerative hierarchical technique from another.
These techniques have been used with good success for clustering documents
and other types of data. In particular, the agglomerative clustering technique
known as Group Average or UPGMA (Jain and Dubes, 1988; Kaufman and
Rousseeuw, 1990), which defines cluster similarity in terms of the average pair-
wise similarity between the points in the two clusters, is widely used because it is
more robust than many other agglomerative clustering approaches. Furthermore,
a recent study found UPGMA to be the best of the traditional agglomerative
clustering techniques for clustering text (Zhao and Karypis, 2002).

As far as we know, there are no other clustering methods based on the idea
of preserving patterns. However, we mention three other types of clustering ap-
proaches that share some similarity with what we are doing here: constrained
clustering, co-clustering, and frequent itemset based clustering. Constrained clus-
tering (Tung, Ng, Lakshmanan and Han, 2001) is based on the idea of using
standard clustering approaches, but restricting the clustering process. Our ap-
proach can be viewed as constraining certain objects to stay together during
the clustering process. However, our constraints are automatically enforced by
putting objects in hypercliques together, before the clustering process begins,
and thus, the general framework for constrained clustering is not necessary for
our approach. Also, co-clustering (Madeira and Oliveira, 2004) finds an optimal
partitioning by co-clustering of both rows and columns of a data matrix. In a
document clustering setting, co-clustering of both words and documents can pro-

2 We admit that it is a bit strange to use the phrase, overlapping partitional, but in this case,
we use patitional to mean un-nested.

6 H. Xiong et al

vide more understandable clustering results. Viewed in this light, co-clustering
is relevant to our pattern preserving clustering approach. However, our approach
starts from a set of strong local patterns (hypercliques). Co-clustering schemes
have to examine data in a global level and have no built in knowledge of these
strong local patterns.

Our pattern preserving clustering technique is based on an association pat-
tern, the hyperclique pattern, but there have been other clustering approaches
that have used frequent patterns or other patterns derived from them (Beil,
Ester and Xu, 2002; Fung, Wang and Ester, 2003; Wang, Xu and Liu, 1999; Oz-
dal and Aykanat, 2004). Specifically, Wang et al. (Wang et al., 1999) proposed
a clustering approach based on the intuition that intra-cluster members should
share many frequent items, while inter-cluster members should have little overlap
in terms of frequent items. Beil et al. (Beil et al., 2002) proposed Hierarchical
Frequent Term-based clustering (HFTC) for clustering documents. This tech-
nique uses a greedy approach to pick a set of frequent terms that has minimum
overlap in terms of their document coverage. To improve HFTC, Fung et al.
(Fung et al., 2003) proposed the Frequent Itemset-based Hierarchical Clustering
(FIHC) method for document clustering. FIHC finds frequent terms and uses the
documents covered by these frequent terms to create the initial clusters. Then,
hierarchical clustering is performed using an intercluster similarity measure de-
fined in terms of frequent patterns. However, these techniques are not designed
for pattern preserving clustering. Finally, the hypergraph clustering approach
in (Han, Karypis, Kumar and Mobasher, 1998) creates a hypergraph based on
frequent itemsets and association rules, and then uses a hypergraph partitioning
technique for finding clusters. Although hypergraph clustering inspired the clus-
tering approach in the original hyperclique paper, this approach is not towards
pattern preserving.

3. Basic Concepts of Association Patterns

The hyperclique pattern was the inspiration for pattern preserving clustering,
and thus, the pattern that we use to explore this idea. In this section, we describe
the concept of hyperclique patterns (Xiong et al., 2003), after first introducing
the concepts on which it is based: the frequent itemset and the association rule
(Agrawal et al., 1993).

3.1. Frequent Itemsets and Association Rules

We quickly review some standard definitions related to association rule mining,
which is an important technique for mining market basket data (Agrawal et al.,
1993).

Let I = {i1, i2, . . . , im} be a set of items. Let T be a set of transactions, where
each transaction t is a set of items such that t ⊆ I. An itemset is a set of items
X ⊆ I. The support of X , supp(X), is the fraction of transactions containing X.
If the support of X is above a user-specified minimum, i.e., supp(X) > minsup,
then we say that X is a frequent itemset.

An association rule captures the fact that the presence of one set of items
may imply the presence of another set of items, and is of the form X → Y , where
X ⊆ I, Y ⊆ I, and X ∩ Y = φ. The confidence of the rule X → Y is written

Characterizing Pattern Preserving Clustering 7

as conf(X → Y) and is defined as conf(X → Y) = supp(X ∪ Y)/supp(X),
where supp(X ∪ Y) is the support of the rule. For example, suppose 70% of all
transactions contain bread and milk, while 50% of the transactions contain bread,
milk, and cookies. Then, the support of the rule {bread, milk} → {cookies} is
50% and its confidence is 50%/70% = 71%.

3.2. Hyperclique Patterns

A hyperclique pattern (Xiong et al., 2003) is a new type of association pattern
that contains items that are highly affiliated with each other.3 By high affiliation,
we mean that the presence of an item in a transaction strongly implies the
presence of every other item that belongs to the same hyperclique pattern. The
h-confidence measure (Xiong et al., 2003) is specifically designed to measure the
strength of this association.

Definition 1. The h-confidence of an itemset P = {i1, i2, · · · , im}, denoted
as hconf(P), is a measure that reflects the overall affinity among items within
the itemset. This measure is defined as min{conf{i1 → i2, . . . , im}, conf{i2 →
i1, i3, . . . , im}, . . . , conf{im → i1, . . . , im−1}}, where conf follows from the
conventional definition of association rule confidence as given above.

For instance, consider an itemset P = {A, B, C}. Assume that supp({A})
= 0.1, supp({B}) = 0.1, supp({C}) = 0.06, and supp({A, B, C}) = 0.06, where
supp is the support of an itemset. Then

conf{A→ B, C} = supp({A, B, C})/supp({A}) = 0.6

conf{B → A, C} = supp({A, B, C})/supp({B}) = 0.6

conf{C → A, B} = supp({A, B, C})/supp({C}) = 1

Hence, hconf(P) = min{conf{B → A, C}, conf{A → B, C}, conf {C →
A, B}} = 0.6.

Definition 2. Given a transaction database and the set of all items I = {I1, I2,
. . . , In}, an itemset P is a hyperclique pattern if and only if

1. P ⊆ I and |P | > 0.
2. hconf(P) ≥ hc, where hc is a user-specified minimum h-confidence thresh-

old.

Table 1 shows some hyperclique patterns identified from words of the LA1
dataset, which is part of the TREC-5 collection (TREC, 1996) and includes ar-
ticles from various news categories such as ‘financial,’ ‘foreign,’ ‘metro,’ ‘sports,’
and ‘entertainment.’ One hyperclique pattern in that table is {mikhai, gor-
bachev}, who is the ex-president of the former Soviet Union. Certainly, the pres-
ence of mikhai in one document strongly implies the presence of gorbachev in
the same document and vice-versa.

Definition 3. A hyperclique pattern is a maximal hyperclique pattern if
no superset of this hyperclique pattern is also a hyperclique pattern.

In this paper, we use maximal hyperclique patterns as the patterns that we
wish to preserve during the clustering process. Therefore, the study scope of this
paper is on binary data.

3 The hyperclique pattern is also known as the all-confidence pattern (Omiecinski, 2003).

8 H. Xiong et al

Table 1. Examples of Hyperclique Patterns from words of the LA1 Data set

LA1 Dataset

Hyperclique patterns Support H-confidence

{gorbachev, mikhail} 1.4% 93.6%

{photo, graphic, writer} 14.5% 42.1%

{sentence, convict, prison} 1.4% 32.4%

{rebound, score, basketball} 3.8% 40.2%

{season, team, game, play} 7.1% 31.4%

3.3. Properties of the H-confidence measure

The h-confidence measure has three important properties, namely the anti-
monotone property, the cross-support property, and the strong affinity property.
Detailed descriptions of these three properties were provided in our earlier paper
(Xiong et al., 2003). Here, we provide only the following brief summaries.

The anti-monotone property guarantees that if an itemset {i1, . . . , im}
has an h-confidence value greater or equal to hc, then every subset of size m− 1
also has an h-confidence value greater or equal to hc. This property is analogous
to the anti-monotone property of the support measure in association-rule mining
(Agrawal et al., 1993) and allows us to use h-confidence-based pruning to speed
the search for hyperclique patterns in the same way that support-based pruning
is used to speed the search for frequent itemsets.

The cross-support property provides an upper bound for the h-confidence
of itemsets that contain items from different levels of support. The computation
of this upper bound is much cheaper than the computation of the exact h-
confidence, since it only relies on the support values of individual items in the
itemset. Using this property, we can design a partition-based approach that al-
lows us to efficiently prune patterns involving items with different support levels.

The strong affinity property guarantees that if a hyperclique pattern has
an h-confidence value above the minimum h-confidence threshold, hc, then ev-
ery pair of items within the hyperclique pattern must have a cosine similarity
(Rijsbergen, 1979) greater than or equal to hc. As a result, the overall affinity of
hyperclique patterns can be controlled by setting an h-confidence threshold.

As demonstrated in our previous paper (Xiong et al., 2003), the anti-monotone
and cross-support properties allow the design of an efficient hyperclique mining
algorithm that has much better performance than frequent itemset mining al-
gorithms, particularly at low levels of support. Also, the number of hyperclique
patterns is significantly less than the number of frequent itemsets.

4. Algorithm Descriptions

In this section, we first discuss why hyperclique patterns are better than frequent
itemsets for pattern preserving clustering. Then, we present the details of the
HIerarchical Clustering with the pAttern Preservation (HICAP) algorithm
and the bisecting K-means Clustering with pAttern Preservation (K-CAP)
algorithm.

Characterizing Pattern Preserving Clustering 9

0.001

0.01

0.1

1

10

0 0.05 0.1 0.15 0.2 0.25 0.3

E
nt

ro
py

Minimum H-Confidence Thresholds

LA1

min_supp = 0.15%
min_supp = 0.12%
min_supp = 0.10%
min_supp = 0.08%

Fig. 1. Illustration of the high-affinity property of hyperclique patterns on the LA1 data set.

4.1. Association Pattern Selection

Here, we discuss the choice of an association pattern for pattern preserving clus-
tering. Specifically, we present the results of an experiment that illustrates why
the hyperclique pattern is a good pattern to use for pattern preserving cluster-
ing, but frequent itemsets are not. In this experiment, we employed entropy, a
commonly used measure of purity. A formal definition of entropy is given below.

Entropy. To compute the entropy of a set of clusters, we first calculate the
class distribution of the objects in each cluster, i.e., for each cluster j we compute
pij , the probability that a member of cluster j belongs to class i. Given this class
distribution, the entropy, Ej , of cluster j is calculated using the standard entropy
formula as follows.

Ej = −
∑

i

pij log(pij),

where the sum is taken over all classes and the log is log base 2. The total entropy
for a set of clusters is computed as the weighted sum of the entropies of each
cluster

E =
m∑

j=1

nj

n
Ej ,

where nj is the size of cluster j, m is the number of clusters, and n is the total
number of data points.

Figure 1 shows, for the LA1 data set (a document data set containing news
articles from the Los Angeles Times), the entropy of the discovered hyperclique
patterns for different minimum h-confidence and support thresholds. Note that
when the minimum h-confidence threshold is zero, we actually have frequent
itemsets instead of hyperclique patterns. Figure 1 shows that the entropy of hy-
perclique patterns decreases dramatically as the minimum h-confidence thresh-
old increases. For instance, when the h-confidence threshold is higher than 0.25,
the entropy of hyperclique patterns is less than 0.1 for all the given minimum
support thresholds. This indicates that hyperclique patterns are very pure pat-
terns for certain h-confidence thresholds. In other words, a hyperclique pattern
includes objects that are naturally from the same class category. In contrast,

10 H. Xiong et al

HICAP Algorithm
Input: D: a document data set.

θ: a minimum h-confidence threshold.
α: a minimum support threshold.

Output: CR: the hierarchical clustering result.
Variables: S: the hyperclique pattern set.

MS: the maximal hyperclique pattern set.
LS: a set of objects that are not covered by maximal hyperclique

patterns
CS: a set containing target clustering objects

Method
Phase I: Maximum Hyperclique Pattern Discovery
1. S = hyperclique miner(θ, α, DT) /* DT is the transpose of D */
2. MS = maximal hyperclique pattern(S)

Phase II: Hierarchical Clustering
3. LS = uncovered objects(MS, D)
4. CS = LS ∪ {objects in MS}
5. for (i=1; i < |CS|; i++)
6. Find the pair of elements with max group average cosine value

from the set CS;
7. merge the identified pair, and update CS and CR accordingly;
8. endfor
9. OUTPUT CR
10. End

Fig. 2. The HICAP Algorithm

the entropy of frequent patterns is high—close to 1—for all the given minimum
support thresholds. This means that frequent patterns include objects from dif-
ferent classes. Thus, with respect to purity as measured by entropy, the hyper-
clique pattern is a better candidate than frequent itemsets for pattern-preserving
clustering.

Another trend that we can observe in Figure 1 is that, as the minimum sup-
port threshold decreases, the entropy of hyperclique patterns from the LA1 data
set trends downward. This indicates that high affinity patterns can appear at
very low levels of support. As mentioned, frequent itemset mining algorithms
have difficulties at identifying frequent itemsets at low levels of support. In con-
trast, the hyperclique pattern mining algorithm has much better computational
performance at low levels of support (Xiong et al., 2003).

4.2. HICAP: Hierarchical Clustering With Pattern
Preservation

HICAP is based on the Group Average agglomerative hierarchical clustering
technique, which is also known as UPGMA (Jain and Dubes, 1988). However,
unlike the traditional version of UPGMA, which starts from clusters consisting of
individual objects or attributes, HICAP uses hyperclique patterns to define the
initial clusters, i.e., the objects or attributes of each hyperclique pattern become
an initial cluster.

Figure 2 shows the pseudocode of the HICAP algorithm. This algorithm con-
sists of two phases. In phase I, HICAP finds maximal hyperclique patterns, which

Characterizing Pattern Preserving Clustering 11

K-CAP Algorithm
Input: A data set D

A minimum h-confidence threshold θ
A minimum support threshold α
A target number of clusters k

Output: Clustering Result CR
Method
/* Phase I */
1. S←hyperclique miner(θ, α, DT) /* DT is the transpose of D */
2. MS←maximal hypercliques(S)
3. DMS←disjoint maximal hypercliques(MS)
/* Phase II */
4. MD← D
5. for i = 1 to nDMS

6. C ← Centroid(DMS[i]) /*Compute the centroid of the
objects in the pattern DMS[i]*/

7. RemoveObjects(DMS[i],MD) /*Remove the objects in the
pattern DMS[i] from MD*/

8. InsertCentroid(C,MD) /*Insert the centroid C into MD*/
9. CR ← Cluto(MD,k) /*Run CLUTO Bisecting K-means on the

modified data set MD*/
10. for i = 1 to nDMS

11. RemoveCentroid(DMS[i],MD) /*Remove the centroid of the
objects in the pattern DMS[i] from MD*/

12. InsertObjects(DMS[i],MD) /*Insert the objects in the
pattern DMS[i] into the cluster of their centroid*/

13. return CR

Fig. 3. Bisecting K-means Clustering with Pattern Preserving (K-CAP)

are the patterns we want to preserve in the HICAP algorithm. We use only max-
imal hyperclique patterns since any non-maximal hyperclique will, during the
clustering process, tend to be absorbed by its corresponding maximal hyper-
clique pattern and will, therefore, not affect the clustering process significantly.
Indeed, the use of non-maximal hypercliques would add complexity without pro-
viding any compensating benefits.

In phase II, HICAP conducts hierarchical clustering and outputs the clus-
tering results. We highlight several important points. First, since hyperclique
patterns can be overlapping, some of the resulting clusters will be overlapping.
Second, identified maximal hyperclique patterns typically cover (contain) only
10 to 20% of all objects, and thus, HICAP also includes each uncovered object
as a separate initial cluster, i.e., the hierarchial clustering starts with maximal
hyperclique patterns and uncovered objects. Finally, the similarity between clus-
ters is calculated using the average of the pairwise similarities between objects,
where the similarity between objects is computed using the cosine measure.

4.3. K-CAP: bisecting K-means Clustering with pAttern
Preservation

In this subsection, we describe the details of the bisecting K-means Clustering
with pAttern Preservation (K-CAP) algorithm. First, Figure 3 shows the pseu-
docode for K-CAP.

12 H. Xiong et al

Table 2. Some Characteristics of Experimental Data Sets.
Data set Source #docs #terms #classes Minsize Maxsize Min/Max

size
re0 Reuters-

21578
1504 2886 13 11 608 0.018

re1 Reuters-
21578

1657 3758 25 10 371 0.027

west5 West 311 1156 10 24 38 0.632
wap WebACE 1560 8460 20 5 341 0.015
oh8 TREC 839 2836 10 48 175 0.274
la1 TREC 3204 31472 6 273 943 0.290
hitech TREC 2301 126373 6 116 603 0.192
tr12 TREC 313 5804 8 9 93 0.097
tr32 TREC 516 7998 9 8 131 0.061
fbis TREC 2463 2000 17 38 506 0.075

K-CAP consists of two phases. In the first phase, K-CAP computes the dis-
joint maximal hyperclique patterns. There are several implementation details.
First, we use only maximal hyperclique patterns that contain at least three
objects. A hyperclique pattern with three or more objects is less likely to be
spurious, because, by definition, the cosine similarity of each pair of objects in
the pattern must be greater than the minimum h-confidence threshold. When
finding disjoint hyperclique patterns, the K-CAP algorithm gives higher priority
to the hyperclique patterns containing more objects. For maximal hyperclique
patterns that contain the same number of objects, the K-CAP algorithm gives
higher priority to the patterns with higher h-confidence values. In case of ties, an
arbitrary pattern is selected by the algorithm. The resulting hyperclique patterns
are disjoint sets of highly correlated objects and these patterns are the input for
the second phase of K-CAP.

In the second phase, the K-CAP algorithm removes the objects in each dis-
joint maximal hyperclique pattern from the data set and inserts the centroid
vector of all objects in the pattern. Because multiple object vectors of the hy-
perclique are replaced by their centroid, the size of the data set is reduced. The
modified data is clustered using bisecting K-means. Once the clustering results
are produced by bisecting K-means, K-CAP assigns all the objects in a maximal
hyperclique pattern to the cluster containing their corresponding centroid.

Note that non-overlapping maximal hyperclique patterns are used in order
to preserve independent strong concepts. Also, the K-CAP algorithm uses max-
imal hyperclique patterns because non-maximal hyperclique patterns tend to be
absorbed by their corresponding maximal hyperclique patterns during the clus-
tering phase. Furthermore, fewer hyperclique patterns result in less computation.
Finally, the CLUTO implementation of bisecting K-means (Karypis, 2006) has
been used for the K-CAP algorithm.

Computation Analysis. K-CAP is a very efficient pattern based clustering
algorithm. First, the computation of hyperclique patterns is much cheaper than
that of frequent patterns, specially at low levels of support (Xiong et al., 2003).
Second, the number of data objects for bisecting K-means clustering can be
significantly reduced when the objects in each pattern are replaced by their
centroid. The computation cost is reduced accordingly. Because of this and the
efficiency with which hyperclique patterns can be found, K-CAP retains the
computational efficiency of bisecting K-means (Steinbach et al., 2000).

Characterizing Pattern Preserving Clustering 13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

50 100 150 200 250 300 350 400 450 500

R
at

io

Number of Clusters

RE0

CLUTO
UPGMA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

R
at

io

Number of Clusters

LA1

CLUTO
UPGMA

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350 400 450 500

R
at

io

Number of Clusters

WAP

CLUTO
UPGMA

Fig. 4. The ratio of hyperclique patterns being split by UPGMA and CLUTO bisecting K-
means.

5. Experimental Evaluation

In this section, we present an experimental evaluation of the HICAP and K-
CAP algorithms. After a brief description of our document data sets, we first
illustrate the poor behavior of traditional clustering approaches in terms of pat-
tern preservation, and show how hyperclique patterns can be used to interpret
the clustering results produced by pattern preserving clustering. In addition, we
evaluate the clustering performance of HICAP, K-CAP, UPGMA, and K-means
with respect to the entropy. Finally, we show how K-CAP can reduce the skew-
ness of the class distribution.

Experimental Data Sets. For our experiments, we used various real-world data
sets that are widely used in document clustering research. Some characteristics
of these data sets are shown in Table 2. The data sets RE0 and RE1 are from the
Reuters-21578 text categorization test collection Distribution 1.0 (Lewis, 2004).
The WEST5 data set came from the Thompson Publishing Group and was de-
rived from legal documents. The data set WAP is from the WebACE project
(WAP) (Han, Boley, Gini, Gross, Hastings, Karypis, Kumar, Mobasher and
Moore, 1998); each document corresponds to a web page listed in the subject
hierarchy of Yahoo!. The OH8 data set was derived from the TREC-5 collection
(TREC, 1996); the LA1 data set is part of the TREC-5 collection (TREC, 1996)
and contains news articles from the Los Angeles Times. Datasets TR12 and TR32

were derived from the TREC-5 (TREC, 1996), TREC-6 (TREC, 1996), and
TREC-7 (TREC, 1996) collections. The HITECH data set contains documents
about computers, electronics, health, medical, research, and technology. Finally,
the FBIS data set is from the Foreign Broadcast Information Service data of the
TREC-5 collection (TREC, 1996). For all data sets, we used a stop-list to remove
common words, and the words were stemmed using Porter’s suffix-stripping al-
gorithm (Porter, n.d.).

Evaluation. To evaluate the quality of the clusters produced by the different
clustering techniques, we employed entropy, which was introduced in Section 4.
Entropy is an ‘external’ criterion; i.e., it uses external information—class labels
in this case. Specifically, entropy measures the purity of the clusters with respect
to the given class labels. Thus, if all clusters consist of objects with only a single
class label, the entropy is 0. However, as the class labels of objects in a cluster
become more varied, the entropy increases.

14 H. Xiong et al

(money money money money money)
302 569 617 798 857

money money money money)
(money money money money money

40 490 569 617 674 798 857 1274 1341

1403 1407 1467 1470
1280 1284 1341 1350 1364 1371 1387 1394 1396
1175 1200 1203 1209 1215 1219 1222 1274 1276
987 1000 1022 1027 1076 1086 1103 1149 1160
811 816 824 857 875 887 891 941 942 946 950
641 674 685 686 695 697 735 738 747 759 798
516 519 569 581 586 588 591 617 619 629 638
380 428 431 439 444 447 450 490 492 505 508
206 207 240 249 253 302 323 326 364 365 371
40 45 47 50 74 83 84 89 90 123 151 155 165 170

Fig. 5. Cluster Interpretation I

Table 3. Classes of Documents in an Example Cluster from the RE0 data set.

money money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money interest money money in-
terest money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money money money money money
money money money money money money

5.1. Preserving Patterns

By design, HICAP and KCAP preserve all hyperclique patterns throughout the
clustering process. However, as we show in this experiment, traditional clus-
tering algorithms—UPGMA and bisecting K-means—tend to break hyperclique
patterns. Figure 4 shows, for different number of clusters, the ratio of hyperclique
patterns being split by the UPGMA and bisecting K-means algorithms. For ev-
ery data set, the minimum number of clusters is specified as the original number
of classes in that data set. In the figure, we observe that the ratio of patterns
being split for both algorithms increases as the number of clusters increases.
Furthermore, even when the number of clusters equals the number of classes,
UPGMA and bisecting K-means still break patterns. Finally, bisecting K-means
breaks more patterns than UPGMA, because its preference for relatively uniform
cluster sizes tends to break long hyperclique patterns.

Characterizing Pattern Preserving Clustering 15

(Film Film Film Film Film)
Television Television)

(Television Television Television
354 391 424 704 1460586 710 859 982 1195

1195 1216 1217 1218 1231 1243 1247 1264
1126 1130 1147 1176 1177 1178 1182 1193
1031 1036 1053 1062 1067 1093 1113 1125
918 920 941 964 977 981 982 1004 1019 1029
792 798 814 824 839 851 859 877 884 888 907
721 723 733 735 747 752 774 782 787 788 790
611 616 634 643 645 650 672 676 681 704 710
537 555 557 560 565 571585 586 587 591 598
381 386 391 406 424 453 477 491 492 502 535
201202 210 224 235 286 317 347 352 354 372
2 3 12 39 54 61 71 85 95 106 114 154 167 192

1267 1277 1279 1284 1296 1313 1315 1319
1374 1377 1390 1394 1427 1434 1435 1460
1468 1491 1511 1512 1516 1517 1518 1523 1524

Fig. 6. Cluster Interpretation II

5.2. Interpretation of Clusters Using Hyperclique Patterns

In this experiment, we provide two types of evidence to illustrate the usefulness
of patterns for interpreting clustering results: specific examples and an analysis of
the clusters on one level of the cluster hierarchy. For the first example, we picked
two clusters at random from the hierarchical clustering generated by HICAP,
and then looked at the hyperclique patterns that they contained to see if the
nature of these hypercliques, which include only a fraction of the documents or
words in the cluster, are useful for understanding the nature of the cluster. As
we show below, this was indeed the case.

Cluster Contains Hypercliques of the Same Class Figure 5 shows a
cluster randomly selected from the HICAP clustering results on the RE0 data
set. One cluster with document IDs is presented. On further analysis, we found
that two hyperclique patterns are in this cluster, and, as shown in the figure,
both hyperclique patterns belong to the ‘money’ category. Since HICAP is based
on the Group Average agglomerative clustering approach, it is natural to expect
that other documents in the given cluster should have a significant level of simi-
larity to the documents in two hyperclique patterns. In other words, if these two
hyperclique patterns act as a ‘kernel,’ the documents merged into this cluster
are likely to have the same class label as the documents in these two hyperclique
patterns. As a result, we might expect that a large population of documents in
this cluster would have the class, ‘money.’ To verify this, we show the class labels
of the cluster objects in Table 3. As suggested by the two hyperclique patterns,
all of the documents, except two, belong to the class, ‘money.’

Cluster Contains Hypercliques of Different Classes Figure 6 shows
another cluster randomly picked from the HICAP clustering of the WAP data set.
This cluster contains two hyperclique patterns with documents from two different
categories: ‘Film’ and ‘Television.’ As a result, we would expect that this cluster
should be a hybrid cluster with documents mainly from two categories: ’Film’

16 H. Xiong et al

Table 4. Classes of Documents in an Example Cluster from the WAP data set.

Television Television Television Film Film Television
Stage Television Television Television Film Cable Tele-
vision Television Television Variety Film Television Film
Television Stage Television Film Television Film Televi-
sion Film Television Film Television Television Film Ca-
ble Television Stage Film Television People Television
Film People Television Cable Film Television Television
Media Stage Television Film Television Film Television
Television Stage Film Television Film Television Tele-
vision Stage Film Television Film Television Television
Film Film Television Television Cable Television Tele-
vision People Television Film Television Film Television
Television Film Television Variety Variety Television Film
Film Cable Film Television Television Film Television
Television Film Television Television Television Film Film
Television Film Film Television Television Television Film
Television Television Television Film Television Film Tele-
vision Film Television Film Television Film Variety Film
Television Film Industry Television Film Television Art
Television Television Film Media Industry Stage Televi-
sion Television Television Television Television

Table 5. Statistics of interpretable clusters.
CNo size #unmatch #hyperclique Classes of hypercliques

1 49 5 16 People/Online
2 66 0 9 Sports
3 169 59 10 Business/Tech/Politics
4 313 2 49 Health
5 33 3 4 Film
6 61 9 9 Politics
7 18 0 7 Culture
8 44 2 1 Television
9 25 0 7 Sports
10 22 4 1 People
11 8 0 2 Television/Stage

Total 808 84 115

and ’Television.’ Table 4 shows the class labels of the cluster objects in this
cluster. Once again, the interpretation based on hyperclique patterns matches
the classes found in the cluster.

Analyzing Clusters on one Level of the Cluster Hierarchy To further
validate the hypothesis that the nature of the hyperclique patterns contained in
a cluster tells us something about the nature of the cluster, we decided to look

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 100 150 200 250

E
nt

ro
py

Number of Clusters

RE0

UPGMA
HICAP

CLUTO

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

20 40 60 80 100 120

E
nt

ro
py

Number of Clusters

LA1

UPGMA
HICAP

CLUTO

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 100 150 200 250

E
nt

ro
py

Number of Clusters

WAP

UPGMA
HICAP

CLUTO

Fig. 7. Entropy Comparison on the LA1, RE0, and WAP data sets.

Characterizing Pattern Preserving Clustering 17

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

F
re

qu
en

cy

Class

RE0 (original)

variance=0.0817

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

RE0 (minSup=0.002, mean=1.4281)

KCAP
KCAP Average

Cluto

(a) (b)

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

RE0 (minSup=0.0025, mean=1.4195)

KCAP
KCAP Average

Cluto

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

RE0 (minSup=0.003, mean=1.4248)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 8. (a) The original RE0 class distribution. (b), (c), and (d) show the entropy values of K-
CAP and the CLUTO implementation of bisecting K-means at minimum support thresholds:
0.002, 0.0025, and 0.003 respectively (the natural number of classes = 13).

at the clusters on one level of the cluster hierarchy. We first identified the class
of each of the hyperclique patterns—there were 115 of these patterns in the WAP

data set, which together covered 265 out of 1560 documents. Finding the class of
each hyperclique was an easy task since the hypercliques almost always consisted
of objects of a single class, and if not, were predominantly of one class. Then,
we found which of the 128 clusters contained hypercliques—there were 11 such
clusters, which covered 808 of the 1560 documents (The skewed distribution of
cluster sizes is a result of the skewed distribution of class sizes.). We further
analyzed each cluster with respect to the classes of documents that it contained
and whether the classes of the documents in the cluster matched the classes
of the hypercliques in the cluster. The results of this analysis are contained in
Table 5. (‘CNo’ is cluster number, ‘size’ is the number of objects in the cluster,
‘#unmatch’ is the number of objects in the cluster that do not match a class of
the hypercliques in the cluster, ‘# hyperclique’ is the number of hypercliques in
the cluster, and ‘Classes of hypercliques’ is the classes of the hypercliques.)

The results confirm the observations suggested by the previous two examples.
If the hypercliques in a cluster are of one class, then the objects in that cluster
are predominantly of the same class. On the other hand, if the hypercliques
in a cluster are of mixed classes, then the objects in the cluster are also of
mixed class, although they tend to be very heavily composed of the classes of
the hypercliques. The worst case in the table is cluster 3, which has hyperclique
patterns from three classes, and has 59 out of 169 documents that are not of
these three classes. The documents in the other clusters almost always match
the labels of the corresponding hyperclique patterns.

18 H. Xiong et al

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25

F
re

qu
en

cy

Class

RE1 (original)

variance=0.0612

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

RE1 (minSup=0.001, mean=1.3739)

KCAP
KCAP Average

Cluto

(a) (b)

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

RE1 (minSup=0.002, mean=1.3418)

KCAP
KCAP Average

Cluto

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

RE1 (minSup=0.003, mean=1.324)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 9. (a) The original RE1 class distribution. (b), (c), and (d) show the entropy values of K-
CAP and the CLUTO implementation of bisecting K-means at minimum support thresholds:
0.001, 0.002, and 0.003 respectively (the natural number of classes = 25).

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16 18 20

F
re

qu
en

cy

Class

WAP (original)

variance=0.0566

 1.25

 1.3

 1.35

 1.4

 1.45

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

WAP (minSup=0.003, mean=1.3578)

KCAP
KCAP Average

Cluto

(a) (b)

 1.25

 1.3

 1.35

 1.4

 1.45

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

WAP (minSup=0.004, mean=1.347)

KCAP
KCAP Average

Cluto

 1.25

 1.3

 1.35

 1.4

 1.45

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

WAP (minSup=0.005, mean=1.3586)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 10. (a) The original WAP class distribution. (b), (c), and (d) show the entropy values of
K-CAP and the CLUTO implementation of bisecting K-means at minimum support thresholds:
0.002, 0.0025, and 0.003 respectively (the natural number of classes = 20).

Characterizing Pattern Preserving Clustering 19

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Class

OH8 (original)

variance=0.0509

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.002, mean=0.8702)

KCAP
KCAP Average

Cluto

(a) (b)

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.0025, mean=0.8655)

KCAP
KCAP Average

Cluto

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.003, mean=0.852)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 11. (a) The original OH8 class distribution. (b), (c), and (d) show the entropy values of
K-CAP and the CLUTO implementation of bisecting K-means at minimum support thresholds:
0.002, 0.0025, and 0.003 respectively (the natural number of classes = 10).

5.3. The Clustering Evaluation of HICAP using Entropy

Figure 7 shows the entropy values of the clustering results from HICAP, UPGMA,
and bisecting K-means at different user-specified numbers of clusters. Bisecting
K-means yields significantly better entropy values than HICAP and UPGMA
for all three data sets. This is due to the fact that the entropy measure favors
clustering algorithms, such as bisecting K-means, that produce clusters that have
relatively uniform cluster size. Also, for all three clustering algorithms, entropy
values tend to decrease as the number of clusters increases. The reason for this is
that, when the number of clusters is increased, the resulting clusters tend to be
more pure. Thus, the difference in entropy among the three algorithms decreases
as we increase the number of clusters.

Another observation from Figure 7 is that HICAP performs slightly better
than UPGMA in most cases for the given data sets. However, the performance
difference between HICAP and UPGMA is tiny. This is not surprising since
UPGMA starts from individual objects, while HICAP starts from hyperclique
patterns (and the uncovered objects).

5.4. The Clustering Effect of K-CAP

Here, we compare clustering results of K-CAP and bisecting K-means on data
sets with a skewed class distribution. Figures 8, 9, 10, and 11 show the entropy
values of K-CAP and the CLUTO implementation of bisecting K-means at differ-
ent minimum h-confidence settings for the data sets RE0, RE1, WAP, and OH8.

20 H. Xiong et al

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Class

OH8 (modified)

variance=0.0

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.002, mean=0.884)

KCAP
KCAP Average

Cluto

(a) (b)

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.0025, mean=0.8815)

KCAP
KCAP Average

Cluto

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.003, mean=0.8645)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 12. Modified OH8 distribution and the corresponding K-CAP entropy (cluster=10).

All these data sets have very skewed class distributions as shown in Figures 8(a),
Figures 9(a),10(a), and 11(a). For RE0, Figures 8 (b), (c), and (d) show the en-
tropy values at different support thresholds. For all cases, the average entropy
values achieved by K-CAP at different h-confidence thresholds is lower than the
entropy value of CLUTO. In other words, the K-CAP algorithm can improve the
clustering quality of bisecting K-means. Similar trends can also be observed for
RE1, WAP, and OH8, as shown in Figures 9, 10, and 11, respectively.

To show the effect of skewness of class distribution on the clustering results
of K-CAP, we present an additional experiment in which we take equal sized
samples of each of the OH8 classes. Figure 12 shows the clustering results for
this case. As shown in the figure, for the data set with uniform class distribution,
the clustering quality of K-CAP is only comparable to that of K-means. However,
if we sample the classes so that the class distribution becomes even more skewed
than it was originally, the K-CAP algorithm tends to do a much better job than
bisecting K-means, as illustrated in Figures 13 and 14. Note that all sample data
sets have equal numbers of documents and there are multiple iterations for each
test case.

5.5. Performance Comparison of Different Clustering
Algorithms

In the previous subsection, we have showed that K-CAP can have better cluster-
ing quality than bisecting K-means on data sets with a skewed class distribution.
In the literature, there are several clustering methods that are generally believed
to perform well on data sets with a skewed class distribution, such as the un-
weighted pair-group average algorithm (UPGMA) (Jain and Dubes, 1988), biased

Characterizing Pattern Preserving Clustering 21

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Class

OH8 (modified)

variance=0.06

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.002, mean=0.866)

KCAP
KCAP Average

Cluto

(a) (b)

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.0025, mean=0.8626)

KCAP
KCAP Average

Cluto

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.003, mean=0.867)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 13. Modified OH8 distribution and the corresponding K-CAP entropy (cluster=10).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

F
re

qu
en

cy

Class

OH8 (modified)

variance=0.12

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.002, mean=0.7382)

KCAP
KCAP Average

Cluto

(a) (b)

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.0025, mean=0.7362)

KCAP
KCAP Average

Cluto

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ro
py

H-Confidence

OH8 (minSup=0.003, mean=0.7345)

KCAP
KCAP Average

Cluto

(c) (d)

Fig. 14. Modified OH8 distribution and the corresponding K-CAP entropy (cluster=10).

22 H. Xiong et al

Table 6. A Comparison of Different Clustering Algorithms on Data Sets with a Skewed Class
Distribution

Entropy DBSCAN Entropy DBSCAN Information
Data #Clu BAgglo Bisecting noise w/o noise Pts Noise EPS min

UPGMA UPGMA K-means noise reassign Pts Pts
re0 13 2.244 1.593 1.461 2.520 2.542 2.556 1335 169 0.32 4
re0 30 1.510 1.204 1.087 2.277 2.249 2.279 1162 342 0.38 4
re0 60 1.352 1.125 0.884 1.932 1.598 1.794 968 536 0.46 3
re1 25 1.877 1.487 1.384 3.441 3.409 3.444 1503 154 0.28 3
oh8 10 1.519 0.756 0.885 2.973 2.957 2.987 643 196 0.24 4
oh8 30 1.256 0.660 0.617 2.512 2.190 2.372 533 306 0.29 3
oh8 60 1.096 0.578 0.520 2.618 0.106 1.261 153 686 0.48 2

west5 10 1.126 0.993 0.785 1.802 1.583 1.767 264 47 0.3 3
la1 6 2.426 1.031 0.990 2.432 2.433 2.437 3136 68 0.11 2

hitech 6 2.383 1.664 1.571 2.403 2.406 2.405 2234 67 0.11 2
wap 20 1.942 1.367 1.372 3.494 3.569 3.602 1441 119 0.19 2
tr12 8 1.797 0.832 0.812 2.280 2.307 2.341 287 26 0.21 2
tr32 9 1.743 1.065 1.149 2.519 2.546 2.609 462 54 0.21 2
fbis 17 1.746 1.387 1.413 2.658 2.312 2.618 1715 748 0.45 7

agglomerative UPGMA (BAgglo-UPGMA)(Zhao and Karypis, 2004), and DB-
SCAN (Sander, Ester, Kriegel and Xu, 1998). Here, we compare the performance
of bisecting K-means, UPGMA, DBSCAN, and BAgglo-UPGMA on data sets
with a skewed class distribution.

Table 6 shows the entropy values of these algorithms on various different data
sets for different parameter settings. In the table, we can observe that DBSCAN
generally had poor clustering quality in most cases, regardless of whether noise
objects were removed or not. This is not surprising since DBSCAN is a density-
based clustering algorithm and does not perform well for data sets with high
dimensionality. Although UPGMA has better performance than DBSCAN, it
is still worse than BAgglo-UPGMA and Bisecting K-means. The reason is that
UPGMA is a hierarchical clustering method that is sensitive to the choice of
objects for initial clustering creation. If two objects are erroneously put in the
same cluster at a lower level of hierarchy, this error cannot be corrected at a
higher level. Finally, BAgglo-UPGMA is a hybrid approach that first applies
K-means to form small groups and then uses hierarchical clustering to obtain
the final set of clusters. This approach can alleviate problems due to erroneous
merges during the initial stages and tends to produce a better quality clusters in
terms of entropy. Nonetheless, in most cases, the clustering quality of BAgglo-
UPGMA is still worse than bisecting K-means.

From the above, we know that bisecting K-means performs best among all
these clustering algorithm, even when data sets have skewed class distributions.

5.6. Pattern Preservation for Reducing Skewness of the Class
Distribution

The previous experiments reveal that a pattern preserving approach to clustering
based on the hyperclique pattern can improve K-means clustering quality for data
sets with a skewed class distribution. In this section, we provide an explanation
for why K-CAP improves clustering quality for these cases. Specifically, larger
classes tend to have a greater reduction in size than smaller classes when the
objects in a hyperclique are replaced by the centroid of the hyperclique. Since
it is well-known that K-means has trouble when clusters are of widely varying
sizes, we hypothesize that this reduction in the skewness of the class distribution
results in an improvement in K-means performance.

To illustrate the reduction of skewness of the class distribution, we performed
two experiments. Figures 15 and Figure 16 show the change of class distributions

Characterizing Pattern Preserving Clustering 23

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

fr
eq

ue
nc

y

class

RE0 (original, Cluster=13)

slope=-33.758

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

fr
eq

ue
nc

y

class

RE0 (minSup=0.0025, minHConf=0.75, Cluster=13, patterns=30)

slope=-30.769

(a) (b)

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

fr
eq

ue
nc

y

class

RE0 (minSup=0.0025, minHConf=0.5, Cluster=13, patterns=43)

slope=-28.901

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14

fr
eq

ue
nc

y

class

RE0 (minSup=0.0025, minHConf=0.25, Cluster=13, patterns=120)

slope=-23.110

(c) (d)

Fig. 15. The evolving class distribution with More patterns being preserved for the REO data
set

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

fr
eq

ue
nc

y

class

OH8 (original, Cluster=10)

slope=-11.267

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

fr
eq

ue
nc

y

class

OH8 (minSup=0.003, minHConf=0.3, Cluster=10, patterns=3)

slope=-11.279

(a) (b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

fr
eq

ue
nc

y

class

OH8 (minSup=0.003, minHConf=0.2, Cluster=10, patterns=21)

slope=-10.127

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

fr
eq

ue
nc

y

class

OH8 (minSup=0.003, minHConf=0.1, Cluster=10, patterns=85)

slope=-6.879

(c) (d)

Fig. 16. The evolving class distribution with more patterns being preserved for the OH8 data
set.

24 H. Xiong et al

with the increase in the number of hyperclique patterns for the RE0 and OH8
data sets, respectively. To better show the skewness of class distribution, we have
added a linear regression line to each of the figures. For both data sets, the slope
of this line decreases. In other words, the skewness of the class distribution is
reduced as the number of hyperclique patterns increases. For instance, when there
are 85 hyperclique patterns for the OH8 data set, the slope of class distribution
becomes -6.879. The original distribution had a slope of -11.267.

6. Conclusions

In this paper, we have introduced a new goal for clustering algorithms, namely,
the preservation of patterns, such as hyperclique patterns, that capture strong
connections between groups of objects. Without such an explicit goal, clustering
algorithms tend to find clusters that split the objects or attributes in these
patterns between different clusters. However, keeping these patterns together
has the potential to greatly aid cluster interpretation.

To that end, we presented two pattern preserving clustering algorithms:
HIerarchical Clustering with pAttern Preservation (HICAP) and bisecting
K-means Clustering with pAttern Preservation (K-CAP). HICAP is based
on the Group Average (UPGMA) agglomerative clustering technique and uses
maximal hyperclique patterns to define the initial clusters. In contrast, K-CAP
exploits the best properties of the hyperclique pattern and bisecting K-means.
As demonstrated by our experimental results, HICAP can produce overlapping
clusters (thus, not splitting patterns), and has a better interpretation on the
clustering results. However, the cluster quality of HICAP is worse than bisecting
K-means with respect to entropy (Xiong et al., 2004) and HICAP is computa-
tionally expensive. In contrast, our experimental results showed that K-CAP,
which also preserves hyperclique patterns, produces better quality clustering re-
sults than bisecting K-means for data with widely differing clusters sizes, and
retains the computational efficiency of bisecting K-means.

There are several potential directions for future research. We plan to further
quantify the performance gains of K-CAP with respect to bisecting K-means
by performing analysis for data with different types of class distributions. We
also plan to further investigate why K-CAP reduces the skewness of the class
distributions. Specifically, why are larger classes reduced by a larger factor than
smaller classes? Finally, we propose to extend our methodology to handle data
sets with continuous variables by using the continuous hyperclique approach we
developed in (Steinbach, Tan, Xiong and Kumar, 2004).

7. Acknowledgments

We thank the editor and three anonymous reviewers for their very useful com-
ments and suggestions. This work was partially supported by NSF ITR grant
ACI-0325949, NSF grant # IIS-0308264, the Center for Information Man-
agement, Integration and Connectivity (CIMIC) at Rutgers University, and the
Wireless Information Network Laboratory (WINLAB) at Rutgers University.
Also, this research was supported in part by the Rutgers Seed Funding for Col-
laborative Computing Research and a Faculty Research Grant from Rutgers
Business School- Newark and New Brunswick. The content of this work does

Characterizing Pattern Preserving Clustering 25

not necessarily reflect the position or policy of the government and no official
endorsement should be inferred.

References

Agrawal, R., Imielinski, T. and Swami, A. (1993), Mining association rules between sets of items
in large databases, in ‘Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data’, pp. 207–216.

Anderberg, M. R. (1973), Cluster Analysis for Applications, Academic Press, New York.
Beil, F., Ester, M. and Xu, X. (2002), Frequent term-based text clustering, in ‘Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining’, ACM Press, pp. 436–442.

Berkhin, P. (2002), Survey of clustering data mining techniques, Technical report, Accrue
Software, CA.

Brecheisen, S., Kriegel, H.-P. and Pfeifle, M. (2006), ‘Multi-step density-based clustering’,
Knowl. Inf. Syst. 9(3), 284–308.

Fung, B., Wang, K. and Ester, M. (2003), Hierarchical document clustering using frequent
itemsets, in ‘Proceedings of the Third SIAM International Conference on Data Mining’,
SIAM.

Gondek, D. and Hofmann, T. (2007), ‘Non-redundant data clustering’, Knowl. Inf. Syst.
12(1), 1–24.

Han, E.-H., Boley, D., Gini, M., Gross, R., Hastings, K., Karypis, G., Kumar, V., Mobasher, B.
and Moore, J. (1998), Webace: A web agent for document categorization and exploration,
in ‘Proceedings of the second International Conference on Autonomous Agents’.

Han, E.-H. S., Karypis, G., Kumar, V. and Mobasher, B. (1998), ‘Hypergraph based clustering
in high-dimensional data sets: A summary of results’, Bulletin of the Technical Committee
on Data Engineering 21(1).

Hinneburg, A. and Keim, D. A. (2003), ‘A general approach to clustering in large databases
with noise’, Knowl. Inf. Syst. 5(4), 387–415.

Jain, A. K. and Dubes, R. C. (1988), Algorithms for Clustering Data, Prentice Hall Advanced
Reference Series, Prentice Hall, Englewood Cliffs, New Jersey.

Jain, A. K., Murty, M. N. and Flynn, P. J. (1999), ‘Data clustering: A review’, ACM Computing
Surveys (3).

Karypis, G. (2006), ‘Cluto: Software for clustering high-dimensional datasets’,
http://www.cs.umn.edu/∼karypis.

Kaufman, L. and Rousseeuw, P. J. (1990), Finding Groups in Data: An Introduction to Cluster
Analysis, Wiley Series in Probability and Statistics, John Wiley and Sons, New York.

Koga, H., Ishibashi, T. and Watanabe, T. (2007), ‘Fast agglomerative hierarchical clustering
algorithm using locality-sensitive hashing’, Knowl. Inf. Syst. 12(1), 25–53.

Lewis, D. (2004), Reuters-21578 text categorization text collection 1.0., in
‘http://www.daviddlewis.com/resources/testcollections/reuters21578/’.

MacQueen, J. (1967), Some methods for classification and analysis of multivariate observations,
in L. M. L. Cam and J. Neyman, eds, ‘Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, Volume I, Statistics’, University of California
Press.

Madeira, S. C. and Oliveira, A. L. (2004), ‘Biclustering algorithms for biological data analysis:
A survey’, IEEE/ACM Trans. Comput. Biology Bioinform. 1(1), 24–45.

Omiecinski, E. (2003), ‘Alternative interest measures for mining associations in databases’,
IEEE Trans. Knowl. Data Eng. 15(1), 57–69.

Ozdal, M. M. and Aykanat, C. (2004), ‘Hypergraph models and algorithms for data-pattern
based clustering’, Data Mining and Knowledge Discovery 9(1), 29–57.

Porter, M. F. (n.d.), An algorithm for suffix stripping, in ‘Program, 14(3)’.
Rijsbergen, C. J. V. (1979), Information Retrieval (2nd Edition), Butterworths, London.
Sander, J., Ester, M., Kriegel, H.-P. and Xu, X. (1998), ‘Density-based clustering in spatial

databases: The algorithm gdbscan and its applications’, Data Mining and Knowledge Dis-
covery 2(2), 169–194.

Steinbach, M., Karypis, G. and Kumar, V. (2000), A comparison of document clustering tech-
niques, in ‘KDD Workshop on Text Mining’.

Steinbach, M., Tan, P.-N., Xiong, H. and Kumar, V. (2004), Generalizing the notion of sup-

26 H. Xiong et al

port, in ‘KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining’, ACM Press, New York, NY, USA, pp. 689–694.

Strehl, A., Ghosh, J. and Mooney, R. (2000), Impact of similarity measures on web-page
clustering, in ‘Proc. of AAAI: Workshop of Artificial Intelligence for Web Search’, AAAI,
pp. 58–64.
URL: citeseer.nj.nec.com/strehl00impact.html

TREC (1996), in ‘http://trec.nist.gov’.
Tung, A. K. H., Ng, R. T., Lakshmanan, L. V. S. and Han, J. (2001), Constraint-based cluster-

ing in large databases, in J. V. den Bussche and V. Vianu, eds, ‘Database Theory - ICDT
2001, 8th International Conference’, pp. 405–419.

Wang, K., Xu, C. and Liu, B. (1999), Clustering transactions using large items, in ‘Proceed-
ings of the 1999 ACM CIKM International Conference on Information and Knowledge
Management’, pp. 483–490.

Xiong, H., He, X., Ding, C., Zhang, Y., Kumar, V. and Holbrook, S. (2005), Identification of
functional modules in protein complexes via hyperclique pattern discovery, in ‘Proc. of the
Pacific Symposium on Biocomputing’.

Xiong, H., Steinbach, M., Tan, P.-N. and Kumpar, V. (2004), HICAP: Hierarchial Clustering
with Pattern Preservation, in ‘Proceedings of 2004 SIAM International Conference on Data
Mining (SDM)’, pp. 279–290.

Xiong, H., Tan, P. and Kumar, V. (2003), Mining strong affinity association patterns in data
sets with skewed support distribution, in ‘Proceedings of the third IEEE International
Conference on Data Mining (ICDM)’, pp. 387–394.

Xiong, H., Tan, P.-N. and Kumar, V. (2006), ‘Hyperclique pattern discovery.’, Data Mining
and Knowledge Discovery Journal 13(2), 219–242.

Zhao, Y. and Karypis, G. (2002), Evaluation of hierarchical clustering algorithms for document
datasets, in ‘Proceedings of the 2002 ACM CIKM International Conference on Information
and Knowledge Management’, ACM Press, pp. 515–524.

Zhao, Y. and Karypis, G. (2004), ‘Criterion functions for document clustering: Experiments
and analysis’, Machine Learning 55(3), Pages: 311–331.

Zhong, S. and Ghosh, J. (2005), ‘Generative model-based document clustering: a comparative
study’, Knowl. Inf. Syst. 8(3), 374–384.

Author Biographies

Hui Xiong is currently an Assistant Professor in the Management
Science and Information Systems department at Rutgers, the State
University of New Jersey. He received the B.E. degree in Automation
from the University of Science and Technology of China, China, the
M.S. degree in Computer Science from the National University of Sin-
gapore, Singapore, and the Ph.D. degree in Computer Science from
the University of Minnesota, USA. His general area of research is data
and knowledge engineering, with a focus on developing effective and
efficient data analysis techniques for emerging data intensive appli-
cations. He has published over 50 technical papers in peer-reviewed
journals and conference proceedings. He is the co-editor of Clustering
and Information Retrieval (Kluwer Academic Publishers, 2003) and
the co-Editor-in-Chief of Encyclopedia of GIS (Springer, 2008). He is
an associate editor of the Knowledge and Information Systems journal
and has served regularly in the organization committees and the pro-

gram committees of a number of international conferences and workshops, and has also been
a reviewer for the leading academic journals in his fields. He is a senior member of the IEEE,
and a member of the ACM, the ACM SIGKDD, and Sigma Xi.

Characterizing Pattern Preserving Clustering 27

Michael Steinbach earned his B.S. degree in Mathematics, a M.S.
degree in Statistics, and M.S. and Ph.D. degrees in Computer Science
from the University of Minnesota. He is currently a research asso-
ciate in the Department of Computer Science and Engineering at the
University of Minnesota, Twin Cities. Previously, he held a variety of
software engineering, analysis, and design positions in industry at Sil-
icon Biology, Racotek, and NCR. His research interests are in the area
of data mining, bioinformatics, and statistics. He has authored over
20 research articles, and is a co-author of the data mining textbook,
Introduction to Data Mining, published by Addison-Wesley. He is a
member of the IEEE Computer Society and the ACM.

Arifin Ruslim received his M.S. degree in Computer Science from
University of Minnesota in 2005, and the B.S. degree in Computer Sci-
ence from University of Minnesota. He is currently a Senior Consultant
in the Infrastructure Solutions practice of BearingPoint, with a focus
on IT Services Management. He is the team leader for BearingPoint’s
Service Delivery Management solution which helps corporations to run
IT as a business by improving the way they deliver and manage IT Ser-
vices. Prior to full-time graduate study, Mr. Ruslim was a Principal
Consultant at Computer Associates International (CA), focusing on
Enterprise System Management technologies. Mr. Ruslim has an ex-
tensive experience in leading process and technology implementations
in medium to large corporations to achieve IT operational excellence
through data-driven continuous process improvement.

Vipin Kumar is currently William Norris Professor and Head of
the Computer Science and Engineering Department at the University
of Minnesota. Kumar’s current research interests include data mining,
bioinformatics and high-performance computing. He has authored over
200 research articles, and has coedited or coauthored 9 books includ-
ing widely used text books “Introduction to Parallel Computing” and
“Introduction to Data Mining”, both published by Addison Wesley.
Kumar has served as chair/co-chair for many conferences/workshops
in the area of data mining and parallel computing, including IEEE
International Conference on Data Mining (2002), International Par-
allel and Distributed Processing Symposium (2001), and SIAM In-
ternational Conference on Data Mining (2001). Kumar is a founding
co-editor-in-chief of Journal of Statistical Analysis and Data Mining,
editor-in-chief of IEEE Intelligent Informatics Bulletin, and editor of

Data Mining and Knowledge Discovery Book Series published by CRC Press/Chapman Hall.
Kumar serves as co-chair of the steering committee of the SIAM International Conference on
Data Mining, and is a member of the steering committee of the IEEE International Conference
on Data Mining and the IEEE International Conference on Bioinformatics and Biomedicine.
He is a Fellow of the ACM, IEEE and AAAS, and a member of SIAM. Kumar received the
2005 IEEE Computer Society’s Technical Achievement Award for contributions to the design
and analysis of parallel algorithms, graph-partitioning, and data mining.

Correspondence and offprint requests to: Hui Xiong, Management Science and Information

Systems Department, Rutgers University, Newark, NJ 07102, USA. Email: hxiong@rutgers.edu

