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Abstract. Given its importance, the problem of object discovery in High-Resolution
Remote-Sensing (HRRS) imagery has received a lot of attention in the literature. De-
spite the vast amount of expert endeavor spent on this problem, more efforts have been
expected to discover and utilize hidden semantics of images for object detection. To
that end, in this paper, we address this problem from two semantic perspectives. First,
we propose a semantic-aware two-stage image segmentation approach, which preserves
the semantics of real-world objects during the segmentation process. Second, to better
capture semantic features for object discovery, we exploit a hyperclique pattern discov-
ery method to find complex objects that consist of several co-existing individual objects
that usually form a unique semantic concept. We consider the identified groups of co-
existing objects as new feature sets and feed them into the learning model for better
performance of image retrieval. Experiments with real-world datasets show that, with
reliable segmentation and new semantic features as starting points, we can improve the
performance of object discovery in terms of various external criteria.

1. Introduction

With the advance of remote sensing technology and the increase of the public
interest, the remote-sensing imagery has been drawing the attention of peo-
ple beyond the traditional scientific user community. Large collections of High-
Resolution Remote-Sensing (HRRS) images are becoming available to the pub-
lic, from satellite images to aerial photos. More than 10 different proposed Earth
observing satellite systems are orbiting in space, such as IKONOS, QuickBird,
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Fig. 1. Information Extracted from Remote-Sensing Images

and AISA, whose spatial resolutions are from 0.8 to 5 meters in the panchro-
matic bands. Different agencies, such as U.S. Geographic Survey (USGS) and
New Jersey Meadowlands Commission (NJMC), provide aerial photos with in-
creasing resolutions from as early as 1980s. The global and repetitive nature of
these HRRS systems opens up unlimited opportunities for new products and
new information derivable from imagery.

To date, the remote sensing image databases are only for browsing and fetch-
ing images according to metadata rather than retrieving images according to
users’ interest. Users are expected to have extensive domain knowledge. There-
fore, the major user communities of remote-sensing images are military and the
Earth scientists To make the HRRS image retrieval more user friendly, we have
to allow the users to access image databases through semantic-based queries in
addition to metadata-based queries. However, it remains a challenging task to
identify semantic-objects in HRRS images. While HRRS images share some com-
mon features with traditional images, they possess some special characteristics
that make object discovery more complex. This motivates our research work.

Motivating Examples. Users are interested in different types of objects
on the Earth as well as groups of objects with various spatial relationships.
For example, let us consider Emergency Response Officers who are trying to
find shelters to accommodate a large number of people. However, shelters are
not distinguishable in Remote Sensing (RS) images. Instead, the officers could
search for baseball fields, because most probably, a baseball field is connected to
a school and the school could be used as a temporary shelter in emergency. In
addition, qualified shelters should not be far away from water sources. Therefore,
a query might be “select all the baseball fields in Newark within 1 mile from any
water body”. Another interesting application domain would be urban planning.
With HRRS image retrieval, we may have the task to find out “the disinvestment
area in the industrial area of Hudson county”. This task indicates that we need to
identify the industrial areas with a lot of empty lots. While traditional Content
Based Image Retrieval (CBIR) techniques discover objects such as buildings
and water bodies, these two examples demonstrate that one needs to discover
semantic objects such as schools and urban areas from RS or HRRS images.

Based on the above observation, we categorize the target objects that can be
recognized in RS or HRRS images into three levels of concepts: (1) Basic Terrain
Types; (2) Individual Objects; and (3) Composite Objects. The first concept
level is to distinguish the basic terrain type of the area covered by the images.
There are several basic ground layouts: bare land, mountain, water, residential
area, forest, etc. The second type of objects includes individual objects that
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are recognizable in images, such as individual buildings, road segments, road
intersections, cars, etc. Objects in the third concept level are composite objects
that consist of several individual objects that form a new semantics concept.
If we organize and represent all the information, we can retrieve objects from
HRRS images, as shown in Figure 1.

While some promising work has been developed by researchers from different
aspects (Duygulu, Barnard, de Freitas and Dorsyth, 2002; Fung and Stoeckel,
2007; Gupta, Weymouth and R.Jain, 1991; Mori, Takahashi and Oka, 1999; Feng,
Manmatha and Lavrenko, 2004; Wang, Khan, Liu and Wu, 2004), our research
focus is on identifying semantic-objects is composed of individual objects that
form a new semantic concept. To fulfill our goal, we need to investigate the
following two issues that specifically relate to HRRS images:

– How can we segment HRRS images appropriately?

– Can we identify semantic-objects by selecting semantic features?

Along this line, this paper addresses the problem of automatically annotating
images using a relevance-based statistical model on HRRS images. Specifically,
to answer the questions listed above, we propose a two-stage object-based se-
mantic image segmentation approach that extends the hierarchical HRRS image
segmentation algorithm (Guo, Atluri and Adam, 2005), as well as exploits the
hyperclique pattern discovery method (Xiong, Tan and Kumar, 2003) to cre-
ate new semantic features and feeds them into the relevance-based statistical
learning model. The extended two-stage semantic segmentation approach avoids
a general pitfall for image segmentation: using a single algorithm to solve the
universal problem. The proposed approach takes the image semantics into consid-
eration and segments images accordingly. In addition, hyperclique patterns have
the ability to capture a strong connection between the overall similarity of a set
of objects and can be naturally extended to identify co-existing objects in HRRS
images. Traditionally, by using a training set of annotated images, the relevance-
model (Jeon, Lavrenko and Manmatha, 2003) can learn the joint distribution
of the blobs and words. Here, the blobs are image segments acquired directly
from the image segmentation procedure. Our approach extends the meaning of
blobs by identifying the co-existing objects/segments as new blobs. The proposed
approach has been tested using the USGIS high-resolution orthology aerial im-
ages. Our experimental results show that, with reliable segmentation and new
semantic features as starting points, the performance of learning model can be
improved according to several external criteria.

Overview. The remainder of this paper is organized as follows: In Section 2,
we describe the problems and challenges for object discovery in HRRS imagery.
Section 3 reviews previous related research work. In Section 4, we introduce a
two-stage image segmentation method and propose a semantic feature selection
method. Section 5 provides experimental results. Finally, we draw conclusions
and suggest future work in Section 6.

2. Domain Challenges

In this section, we identify some domain challenges for object discovery in HRRS
images. Foremost, we should investigate HRRS data. We notice that, in addi-
tion to the challenges faced by the scenery digital image understanding systems,
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HRRS images have some special characteristics, which pose additional challenges
to image object discovery. These are discussed below.

– HRRS imagery is big. Here the word “big” has a two-fold meaning. First,
every image is bigger than before since it captures more detail and has finer
resolutions. Second, for HRRS image archive, the database is always getting
bigger as users acquire new images. Thus, it is a challenging task to build a
computationally efficient system.

– HRRS images contain tremendous details compared to low-resolution RS im-
ages. This increases the computational burden. A more difficult problem is
how to distinguish useful details from trivial details.

– HRRS images often contain heavy salt-and-pepper noises. Indeed, existing
object discovery algorithms often do not work well in noisy environments as
they are initially designed for scenery images. Thus, there is a need to develop
a new method that works well for noisy images.

– Spatial relationships among objects are critical to the semantics of HRRS
images. Therefore, a semantic-based HRRS image retrieval system should take
spatial relationships as image features in addition to regular color, texture, and
shape features.

Based on the above characteristics of HRRS images, we summarize the domain
challenges for object discovery in HRRS images as follows.

– First, it is nontrivial to do feature selection for image retrieval in HRRS images.
In (Wang et al., 2004), researchers developed a mechanism to automatically
assign different weights to different features according to the relevance of a
feature to clusters in the Corel images. However, unlike Corel Image, HRRS
images are severely affected by the noise such as shadow and the surface ma-
terials of HRRS images are limited. This makes the primitive features, such as
color, texture and shape, not good enough for identifying objects in HRRS im-
ages. As a result, in addition to the primitive features, the derivative features,
such as geometric features and semantic features, are required for better ob-
ject discovery in HRRS images. In this research, we add semantic features that
capture the spatial relationships among objects to image annotation model.

– Also, HRRS images usually lack salient regions and carry a lot of noise (Guo
et al., 2005). This problem has been largely ignored by existing approaches,
which makes them not suitable for object discovery in HRRS images. Indeed,
existing methods often use segmentation techniques that may not work well in
noisy environments. The grid technology (Feng et al., 2004), a substitute for
segmentation, often assumes that each grid only contains one salient object.
To satisfy this assumption, we have to cut the image into very small grids.
However, according to our observation, both traditional segmentation algo-
rithms and grid technology will generate 40-120 segments/grids for a 512×512
1-foot resolution aerial image, which makes the performance of annotation
model deteriorate dramatically compared to 10-20 segments/grids per image.
Therefore, we propose a two-stage segmentation algorithm to accommodate
the uniqueness of HRRS images.

– Finally, another challenge faced by the HRRS image annotation is the impor-
tance of measuring spatial relationships among objects. In the HRRS images,
individual objects cannot determine the semantics of the entire scene by it-
self. Rather, the repeated occurrence of certain object in the scene or the
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co-occurrence of objects reflect high-level semantic concepts. For instance, if
there is a remote sensing image about a city or urban area, instead of roof
of an individual house, people may be more interested in identifying a park,
which is the composition of grass land, pond, and curvy road. People would
not be interested in large building roof alone. Nevertheless, if we identify that
large building roofs have large parking lot and major road nearby, this would
also be interesting, as we can annotate the image as shopping mall.

3. Preliminary and Related Work

In this section, we describe some basic concepts related to image retrieval and
present the related work.

3.1. Three Query Levels

Accessing a desired image from a repository might involve a search for images
that depict specific types of objects or scenes, evoke a particular mood, or simply
contain a specific texture or pattern. Generally speaking, the user query could
be as the following:

– The presence of a particular combination of color, texture or shape features
(e.g. red cross)

– The presence or arrangement of a specific type of objects (e.g. a vase on a
table)

– The depiction of a particular type of events (e.g. a baseball game)

– The presence of a named individual, location, or event (e.g. the Empire State
Building)

– A subjective emotion expressed by an image (e.g. leisure)

According to (Eakins and Graham, 1999), a query can be categorized into
three levels with increasing complexity.

The first level comprises of retrieval by primitive features such as color, tex-
ture and shape or the spatial location of image elements. Examples of such
queries might include ”find pictures with round yellow objects on top” and ”find
images with two objects next to each other”. This level of retrieval uses features
that are both objective and directly derivable from the images themselves, with-
out the need to refer to any external knowledge bases. The first level has severe
limitations, because it is hard to ask the common users to specify the low level
features as a specialist.

The second level comprises of retrieval by derived features, involving some
degree of semantic inference about the image. To answer queries at this level,
some outside knowledge is required.

The third level of queries refers to image retrieval by abstract attributes.
This involves a significant amount of high-level reasoning about the meaning
and purpose of the objects or scenes depicted. We can divide these queries into
two sub-directories. One is retrieval of named events or types of activity, such
as “find the image of a Jazz Performance”. Another is retrieval of images with
emotional or religious significance, such as “find an image depicting anxiety”. To
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achieve this level of searching, complex reasoning and subjective judgment may
be required.

Most of the pioneer content-based image retrieval systems, such as Query
by Image Content(QBIC), VisualSEEk and Photobook, do a very good job in
retrieving and analyzing the visual features. However, there is a significant gap
between the first and the second level, not to mention satisfying the third level
queries. To bridge the gap between the low-concept-level features and the se-
mantic meanings of the images is the main purpose of this research.

3.2. High Resolution Remote Sensing Image Retrieval

Three major research fields are related to HRRS image retrieval:

– In photogrammetry community, most of the research has been focusing on
individual object detection (Dial, L.Gibson and Poulsen, 2001; G.Sohn and
Dowman, 2001; E.P.Baltsavias, 2004; Muller and Segl, 1999; Mayer, 1999).
The research is so specific that the proposed building/road detection method
cannot be applied for other objects detection.

– Remote-sensing image retrieval approach focuses on terrain type recognition
(Datcu, Daschiel, Pelizzari, Quartulli, Galoppo, Colapicchioni, Pastori, Seidel,
Marchetti and D’Elia, 2003; Castelli, Bergman, Kontoyiannis, Li, Robinson
and Turek, 1998; Datcu, Pelizzari, Daschiel, Quartulli and Seidel, 2002). For
example, to determine any given image by semantic labels, such as water,
cloud, or mountain.

– There is other research that concentrates on problems of semantic-based image
retrieval.

> The first is scene recognition. Scene recognition is important, both because
the overall type scene depicted by an image is an important filter when
used for search, and because it can help in identifying specific objects
present. Similar to the systems that support retrieval by terrain types,
these research efforts did not consider individual objects.

> The second focus of research activity is object recognition, an area of in-
terest to the computer vision community for decades. The best known is
human face and human body recognition (Eakins and Graham, 1999). All
such techniques are based on the idea of developing a model of each class
of object to be recognized, identifying image regions, which might contain
examples of the object and building up evidence to confirm or rule out the
object’s presence. Nevertheless, most of the models are not designed for
regions with rich details that are typical of natural ground truth captured
by HRRS images.

3.3. A Multi-level Image Retrieval Model

Most of the image retrieval approaches use multilevel abstraction mechanisms
to support content-based image retrieval. As depicted in Figure 2, the top three
levels, which correspond to the three user query levels, are the three key func-
tionalities as well: feature extraction, object recognition, and domain-specific
spatial reasoning and semantic modeling. This figure provides the essentials of
content-based image retrieval.
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Recently, researchers proposed several statistical models (Jeon et al., 2003;
Barnard, Duygulu, de Freitas, Forsyth, Blei and Jordan, 2003; Wang et al.,
2004; Duygulu et al., 2002; Feng et al., 2004; Mori et al., 1999) for analyzing the
statistical relations between visual features and keywords. These methods can
discover some hidden semantics of images. However, these methods annotate
scenery images according to the presence of individual objects in each image.
Spatial relations among objects are not taken into consideration.

The co-occurance model (Mori et al., 1999) investigates the co-occurrence
of words with image regions created using a regular grid. Each divided part
inherits all words from its original image. (Mori et al., 1999) makes clusters
from all divided images using vector quantization, accumulates the frequencies
of words of all partial images in each cluster, and then calculates the likelihood
for every word. It tends to require large number of training samples to estimate
the correct probability and also tends to map frequent words to every blob. Also,
Zhou et al. (Zhou and Zhang, 2006) proposed an elegant MIMLSVM algorithm
for image classification. In this work, each image is also represented by a number
of blobs which are clustered into representative patterns for images.

Under keyblock model (Zhu, Zhang, Rao and Shihari, 2000), images are par-
titioned into equal-sized blocks and then each image is represented as a code
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matrix in which the elements are the indices of the keyblocks in a codebook.
Based on this image representation, information retrieval and database analysis
techniques developed in the text domain are transformed to image retrieval. The
codebook, using keyblocks as vocabulary, is generated by applying generalized
Lloyd algorithm (GLA) and pair wise nearest neighbor algorithm (PNNA) to
the segmented grids in a training set. For each image in the database as well as
the query, decompose it into block. Then, for each of the blocks, find the closest
entry in the codebook and store the index correspondingly. Each image is then a
matrix of indices, which can be treated as one-dimensional codes of the keyblocks
in the codebook. After converting image features into properties that are similar
to text document, they build the n-block model after the n-gram model used
for statistical language modeling. This seems to be an application independent
approach. However, this approach has an underlying assumption, which assume
that objects in the image are usually salient enough so that they occupy more
than one blocks. Otherwise, the segmented blocks will not be significant enough
to be identified as keyblock. Moreover, all the above approaches do not take the
context of image regions into consideration. Also, this approach did not use any
textual annotation for images. For each keyblock, the semantic meaning of block
is not considered either.

(Duygulu et al., 2002; Feng et al., 2004; Wang et al., 2004) all tried to map
between segmented regions or grids and keywords supplied with the images using
a method based around statistical algorithm. The variations are the details of
the models. For example, Multiple Bernoulli relevance model (Feng et al., 2004)
make sure that the annotating keywords are independent and not affected by
other words. Also, in (Wang et al., 2004), researchers assign weight for different
features based on their histogram distribution.

3.4. Representing Spatial Relationships

As presented in section 1, our goal is to discover composite objects. For example,
parks, airports, and baseball fields are all composite objects. In the motivating
examples, both shelter and disinvestment area are composite objects. As one can
notice, the spatial relationships among objects play a critical role in identifying
composite objects and interpreting the semantics of HRRS images.

Those spatial relationships are critical and cannot be ignored in HRRS im-
ages. Hence, in HRRS images, users pay more attention on composite objects
than on individual objects. This suggests that we have to examine the spatial
relationships among objects when we try to identify objects in HRRS images.

General approaches for modeling spatial semantics are based on identify-
ing spatial relationships among objects once they are recognized and marked
by the lower layer using bounding boxes or volumes. Several techniques have
been proposed to formally represent spatial knowledge at this layer. These in-
clude: semantic networks, mathematical logic, constraints, inclusion hierarchies,
and frames (A.Yoshitaka, Kishida, Hirakawa and Ichikawa, 1994). Semantic net-
works is a graph-based approach to represent spatial concepts and relationships.
Constraints-based methodology uses constraints, which are the relationships be-
tween two or more objects need to satisfy in knowledge base. Mathematical logic
projects the spatial relationships in the form of 2D strings to form a partial or-
dering of object projections in 2D. Another category of spatial representation is
inclusion hierarchies which group together semantically related objects. Frames
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are used to represent knowledge relevant to particular objects, situations, or
concepts. A frame usually consists of a name and a list of attribute-value pairs.
However, none of the above approaches can be integrated with CBIR systems.
Most of the CBIR systems need quantified features as input. How to integrate
these representations with other quantitative input is a research challenge.

In HRRS image retrieval, the observed domain knowledge regarding spatial
relationships is that the topological relations (Egenhofer, 1997), such as disjoint,
meet, overlap, contains, covers, inside, etc., can be simplified as exist and not-
exist in the definition of some composite objects. For example, with the repetitive
appearance of single house roof, we can roughly conclude that the image capture
the ground truth of the residential area. If we utilize this co-existence pattern,
next time when we observe a large number of similar unlabeled rectangular
shaped objects in an image, it will have a high probability that the image covers
a residential area. Another example is that the co-existence of parking lot and
large building roofs implies that it could be a shopping mall. It is not important
to know whether the parking lot is left or right to the roof. This observation
encouraged us to explore new approach to represent the spatial relationships
among individual objects.

4. Object Discovery with Semantic Feature Selection

In this section, we introduce a method for Object disCovery with semantiC
featUre sElection (OCCUE). Figure 3 shows an overview of the OCCUE method.
A detailed discussion of each step of OCCUE is given in the following subsections.

4.1. Two-Stage Object-based Semantic Image Segmentation

As the first step of the OCCUE method, image segmentation divides an im-
age into separated regions. In a large-scale HRRS image database, the images
naturally belong to different semantic clusters. For example, most of HRRS im-
ages can be categorized into four main semantic clusters at the land cover level
including grass, water, residence and agriculture (Sheikholeslami, Chang, and
Zhang, 2002). These land-cover level semantic clusters can also be divided into
semantic subclusters at an object level. For these subclusters, the distinguishing
primitive features are different. Moreover, the objects in each land-cover clus-
ter are very different. For example, the objects in urban areas are usually road
segments, single house roofs, or small vegetated areas. In contrast, woods and
grass are dominant in suburban areas. Likewise, different composite objects also
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appear in different land-cover clusters. For instance, a park is always a large
contiguous vegetated area. This different scale distinguishes parks from gardens.

Given the special characteristics of HRRS imagery, in this paper, we propose
a two-stage object-based approach to increase segmentation reliability as well
as take the image semantics into consideration. In the first stage, we segment
the HRSS images resolution according to their land cover. In the second stage,
we segment labeled images under different land cover using different parameters.
The outcomes of the second step are individual objects or components of an indi-
vidual object. Our segmentation approach satisfies the uniqueness of RS images
by considering and preserving the differences of images with different seman-
tic context. Another major advantage of using proposed approach is that this
segmentation approach can reflect the hierarchies that exist in the structure of
the real-world objects which we are detecting. By abstracting houses, buildings,
roads and other objects, people can identify residential areas and the aggregation
of several residential areas yields a town.

Figure 4 illustrates the image process procedure which each image has to go
through. To segment image at the land cover level, the segmentation method
consists of three steps (Guo et al., 2005):

1. Hierarchical Splitting. Algorithm 1 shows the process of hierarchical split-
ting, which recursively splits the original image into children blocks by com-
paring texture features of blocks. As can be seen, this is a quad-tree based
splitting process. For each image, we divide it into four square sub-blocks
recursively until each individual sub-block is uniform in texture, which is de-
termined by comparing the uniformity test metric Gmax

Gmin
with the pre-defined

threshold X. To reduce the computational cost, we choose the enhanced Local
Binary Pattern (LBP) approach to process the texture features.

2. Optimizing. This step adjusts the splitting result, if the results of the reduced
resolution images have dramatically reduced number of segments.

3. Merging. Algorithm 2 shows the merging step, in which the adjacent blocks
with similar texture are merged until a stopping criterion is satisfied. The input
of algorithm 2 is the output of the optimizing step. The merging procedure
works from bottom up. For a pair of adjacent segments, if they have the same
parent and the ratio of G measure small than the given threshold X, we merge
the two segments and update the LBP/C measure. Otherwise, if they have
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Algorithm 1 Hierarchical Splitting
Require: input image, Level L
{
Variables
L: splitting level from original image
H(x,y,L): Homogeneity indicator, by default, it is one if no need to split
LBP: Local Binary Pattern as invariant to monotonic transform
C: a contrast measure
G: a metric used to measure the distance between two blocks LBP/C distributions
X: a homogeneous threshold
}
divide input image into four blocks
L← L + 1
for each subblock do

compute LBP and C
construct 2D Histogram

end for
for each subblock i do

for each subblock j, i <> j do
compute Gi,j

end for
end for
Gmax ← max(Gi,j), Gmin ← min(Gi,j)
X ← compute threshold

if Gmax

Gmin

> X then

H(x, y, L)← 0
its parent (X, Y )(x,y,L) ← null

else
H(x, y, L)← 1
its parent (X, Y )(x,y,L) ← (x, y)

end if
if size(input image) > 16 x 16 then

for each subblock do
Quadtree-split(block,L)

end for
L ← L −1

end if

different parents, we merge the two segments if their G measure smaller than
the adjusted threshold Xω, where ω is a weighted factor.

After the land-cover level segmentation, images are segmented into small
regions using eCognition along with different input parameters according to land-
cover type (http://www.definiens imaging.com/, 2004). For example, if the land-
cover of an image is categorized as woods, shape features should have much less
weight compare to images of residence land-cover. Each segment is represented by
the traditional features, e.g. colors, textures and shapes, as well as the geometric
features. eCognition utilizes a bottom-up-region-merging technique starting with
one-pixel. In subsequent steps, smaller image segments are merged into bigger
ones (http://www.definiens imaging.com/, 2004). We believe that this is one
of the easy-to-use and reliable segmentation tools for HRRS images, given the
characteristics of the HRRS images: 1)with salt and pepper noises; 2) affected
by the atmosphere and the reflective conditions.

The following extracted features represent major visual properties of each
image segment.

– Layer Values are features concerning the pixel channel values of an image
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Algorithm 2 Merging
Require: totallevel, split result, X
{
Variables
L: splitting level from original image
H(x,y,L): Homogeneity indicator, by default, it is one if no need to split
ω: a weighted factor
G: metric used to measure the distance between two blocks LBP/C distributions
X: a homogeneous threshold
}

1: L← totallevel
2: for each level l do
3: calculate weight factor ω
4: for each block(x,y) at level l do
5: if (X, Y )(x,y,l) is null then

6: for each neighbor(x’,y’) at level l do
7: G← histograms distance
8: if H(x, y, l) = 1 ∪H(x′, y′, l) = 1 ∪G < Xω then
9: Merge the two blocks

10: change the histograms
11: end if
12: end for
13: for each neighbor(x’,y’) at level l-1 do
14: G← histograms distance
15: if H(x, y, l) = 1 ∪H(x′, y′, l− 1) = 1 ∪G < Xω then
16: Merge the two blocks
17: change the histograms
18: end if
19: end for
20: end if
21: end for

22: end for

segment, mainly the spectral features, including mean, brightness, max differ-
ence, standard deviation, the ratio of mean value of an image segment over the
mean of entire image, minimum pixel value, maximum pixel value, the mean
difference to neighboring segment, the mean difference to brighter neighboring
segment, mean difference to darker neighboring object.

– Shape Features include area (measured by pixel), length/width ratio which
is the eigenvalues of the covariance matrix with the larger eigenvalue being
the numerator of the factor, length, width, border length, density expressed
by the area covered by the image segment divided by its radius, main direction,
asymmetry, compactness (the product of the length m and the width n of the
corresponding segment and divided by the number of its inner pixels), elliptic
fit and rectangular fit.

– Texture Features evaluate the texture of an image segment based on the
gray level co-occurrence matrix (GLCM) and the grey level difference vector
(GLDV) of the segments pixel (http://www.definiens imaging.com/, 2004).
The grey level co-occurrence matrix (GLCM) is a tabulation of how often
different combinations of pixel grey level occur in an image. A different co-
occurrence matrix exists for each spatial relationship. Therefore, we have to
consider all four directions (0 45, 90, 135) are summed before texture cal-
culation. An angle of 0 represents the vertical direction, an angle of 90 the
horizontal direction. Every GLCM is normalized, which guarantee the GLCM
is symmetrical. The more distant to the diagonal, the greater the difference
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between the pixels grey level is. The GLCM matrices can be further broken
down to measure the homogeneity, contrast, dissimilarity (contrast increases
linearly), entropy (distributed evenly), mean, standard deviation, and corre-
lation. GLDV is the sum of diagonals of GLCM. It counts the occurrence
of references to the neighbor pixels. Similarly to GLCM matrices, GLDV can
measure the angular second moment (high if some elements are large), entropy
(high if all similar), mean, and contrast.

– Position Features refer to the positions of segments within an image.

4.2. Fuzzy Classification

After we segment the images into relatively homogeneous regions, the next step
is to group similar image segments into a reasonable number of classes, referred
as blob tokens in (Wang et al., 2004). Segments in each class are similar even
though they are not spatially connected. In the literature (Wang et al., 2004),
unsupervised classification algorithms is employed using the primitive features
or weighted features. Using the weighted features would successfully reduce the
dimensionality compared with using all primitive features as clustering algo-
rithm input. However, we used supervised classification method that is efficient
in grouping image segments into semantic meaningful blobs.

Specifically, fuzzy logic based supervised classification is applied to gener-
ate blobs. Starting with an empty class hierarchy, we manually insert sample
classes and using the features description as definition of a certain class. While
nearest neighbor and membership functions are used to translate feature values
of arbitrary range into a value between 0 (no membership) and 1 (full mem-
bership), logical operators summarize these return values under an overall class
evaluation value between 0 and 1. The advantages of fuzzy classification are
(http://www.definiens imaging.com/, 2004)

– Translating feature values into fuzzy values standardizes features and allows
to combine features, even of very different ranges and dimensions.

– It enables the formulation of complex feature descriptions by means of logical
operations and hierarchical class descriptions.

Finally, fuzzy classification also helps to merge the neighboring segments that
belong to the same class and get a new semantic meaningful image blob which
truly represents the feature and not just a part of it.

4.3. Hyperclique patterns

As we argued in the previous section, the next challenge is to find the co-existence
objects. In this paper, hyperclique patterns (Xiong et al., 2003) are what we used
for capturing co-existence of spatial objects. The concept of hyperclique patterns
is based on frequent itemsets. Association rule mining can take two approaches in
mining images (Teredesai, Ahmad, Kanodia and Gaborski, 2006; Shyu, Chen and
Kashyap, 2001). The first one involves mining image visual features only while
the second one involves mining both visual and textual data. In this research,
we take the first approach.

In this subsection, we first briefly review the concepts on frequent itemsets,
then describe the concept of hyperclique patterns.
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Let I = {i1, i2, ..., im} be a set of items. Each transaction T in database D is a
subset of I. We call X ⊆ I an itemset. The support of X supp(X) is the fraction
of transactions containing X. If supp(X) is no less than a user-specified minimum
support, X is called a frequent itemset. The confidence of association rule X1 →
X2 is defined as conf(X1 → X2) = supp(X1 ∪ X2)/supp(X1). It estimates the
likelihood that the presence of a subset X1 ⊆ X implies the presence of the other
items X2 = X − X1.

If the minimum support threshold is low, we may extract too many spuri-
ous patterns involving items with substantially different support levels, such as
(caviar, milk). If the minimum support threshold is high, we may miss many
interesting patterns occurring at low levels of support, such as (caviar, vodka).
To measure the overall affinity among items within an itemset, the h-confidence
was proposed in (Xiong et al., 2003). Formally, the h-confidence of an itemset
P = {i1, i2, ...im} is defined as hconf(P ) = mink{conf(ik → P − ik)}. Given a
set of items I and a minimum h-confidence threshold hc, an itemset P ⊆ I is a
hyperclique pattern if and only if hconf(P ) ≥ hc. A hyperclique pattern P can
be interpreted as that the presence of any item i ∈ P in a transaction implies
the presence of all other items P − {i} in the same transaction with probability
at least hc. This suggests that h-confidence is useful for capturing patterns con-
taining items which are strongly related with each other. A hyperclique pattern
is a maximal hyperclique pattern if no superset of this pattern is a hyperclique
pattern.

4.4. Converting Spatial Relationship into Feature
Representation.

Approaches for modeling spatial relationships can be grouped into three cate-
gories: graph-based approaches, rule based approaches, and mathematical logic
using 2D strings as the projections of the spatial relationships. However, none
of this can be used as input for statistical Cross Relevance Model (CRM). In
addition, we concentrate on the presence of the objects in the image rather than
the complex geometric or topological spatial relationships. For example, consider
a golf course, we are interested in the appearance of the well textured grassland,
sand, non-rectangle water-body in a relatively small region. Whether the sand
is left or right to the water-body is not important. In OCCUE, we apply hy-
perclique pattern discovery algorithm (Xiong et al., 2003) to detect co-existing
objects.

Example 2.1 After segmentation, images are represented by the blob ID as
shown in Table 1, let us consider a pattern X={b3, b7, b24}, which implies that
blob (#3 roof type II, #7 shade type II , #24 grass type IV) usually appears
together. We have supp(b3) = 82%, supp(b7) = 91%, supp(b24) = 73%, and
supp(b3, b7, b24) = 55%. Then, conf(b3 → b7, b24) = supp(b3, b7, b24)/supp(b3) =
67%; conf(b7 → b3, b24) = supp(b3, b7, b24)/supp(b7) = 60% ; conf(b24 →
b3, b7) = supp(b3, b7, b24)/supp(b24) = 75%. Therefore, hconf(X) = min(conf(b3

→ b7, b24), conf(b7 → b3, b24), conf(b24 → b3, b7)) = 60%. According to the def-
inition of hyperclique pattern, pattern {b3, b7, b24} is a hyperclique pattern at
the threshold 0.6. Therefore, we treat the set of these three blobs as a new seman-
tic feature. We treated these newly discovered hyperclique pattern as new blobs in
additional to the existing blobs. Meanwhile, the original blobs #3, #7, and #24
are deleted from the original table. Table 1 will be converted to Table2. The new
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Image Blobs
in1 3,7,11,12,19,22,23,24,25
in2 3,7,6,12,13,15,18,20,23,24
in3 3,7,6,11,16,18,20,24,26
in5 7,6,10,11,12,20
in6 3,7,6,19,20,23,24,25
in7 3,7,12,19,20,23
in8 3,6,7,10,11,12,19,20,23
in9 3,6,15,11,12,20,24,26
in10 6,7,11,12,23,24
in11 3,6,7,11,12,19,22,23,24
in12 3,7,12,19,20,23,24

Table 1. A Sample Image-Blob Data Set

Image Blobs

in1 11,12,19,22,23,25,105

in2 6,12,13,15,18,20,23,105

in3 11,16,18,20,26,105

in5 7,6,10,11,12,20

in6 6,19,20,23,25,105

in7 3,7,12,19,20,23

in8 3,6,7,10,11,12,19,20,23

in9 3,6,15,11,12,20,24,26

in10 6,7,11,12,23,24

in11 6,11,12,19,22,23 105

in12 12,19,20,23,105

Table 2. A Sample Image Represented by New Blobs

blobs are represented using 3 digits number in order to distinguish from the orig-
inal blobs. We convert the spatial relationship into a measurable representation,
so that we can apply statistical model in the next step.

4.5. A Model of Image Annotation

Suppose we are given an un-annotated image in image collection I ∈ C. We have
the object representation of that image I = {o1 . . . om}, and want to automati-
cally select a set of words {w1 . . . wn} that reflect the content of the image.

The general approach is widely accepted by statistical modeling approach.
Assume that for each image I there exists some underlying probability distribu-
tion P (·|I) for all words. We refer to this distribution as the relevance model of
I (Lavrenko and Croft, 2001; Lavrenko, Choquette and Croft, 2002). The rele-
vance model can be thought of as an urn that contains all possible objects that
could appear in image I as well as all words that could appear in the annotation
of I. We assume that the observed image representation {o1 . . . om} is the result
of m random samples from P (·|I).

P (w|I) ≈ P (w|o1 . . . om) (1)

Equation (1) explains that the probability of any given word w appears in image
I can be represented by the probability of word w appears given the blobs that
image I contains.

In order to annotate an image with the top relevance words, we need to
know the probability of observing any given word w when sampling from P (·|I).
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Therefore, we need to estimate the probability P (w|I) for every word w in the
vocabulary. Given that P (·|I) itself is unknown, the probability of drawing the
word w can be approximated by training set T of annotated images, as shown
in equation (2), in which J represents every image in training set T .

P (w, o1, . . . , om) =
∑

J∈T

P (J)P (w, o1, . . . , om|J) (2)

Assuming that observing w and blobs are mutually independent for any
given image, and identically distributed according to the underlying distribu-
tion P (·|J). This assumption guarantees we can rewrite equation (2) as follows:

P (w, o1, . . . , om) =
∑

J∈T

P (J)P (w|J)
m∏

i=1

P (oi|J) (3)

We assume the prior probability P (J) follows uniform over all images in
training set T . We follow (Jeon et al., 2003) and use smoothed maximum like-
lihood estimates for the probabilities in equation (3). The estimations of the
probabilities of blob and word given image J are obtained by:

P (w|J) = (1 − αJ)
Num(w, J)

|J |
+ αJ

Num(w, T )

|T |
(4)

P (o|J) = (1 − βJ)
Num(o, J)

|J |
+ αJ

Num(o, T )

|T |
(5)

Here, Num(w, J) and Num(o, J) represents the actual number of times the word
w or blob o occurs in the annotation of image J . Num(w, T ) and Num(o, T )
is the total number of times w or o occurs in all annotation in the training set
T .|J | denotes for the aggregate count of all words and blobs appearing in image
J, and |T | denotes the total size of the training set. The smoothing parameter
αJ and βJ determine the interpolation degree between the maximum likelihood
estimates and the background probabilities. Due to the different occurrence pat-
terns between words (Zipfian distribution) and blobs (uniform distribution) in
images, we separate the two smoothing parameter as αJ and βJ .

Finally, Equation (1) - (5) provide the mechanism for approximating the
probability distribution P (w|I) for an underlying image I. We annotate images
by first estimating the probability distribution P (w|I) and then select the highest
ranking n words for the image. Note that the value of n is generally user-specified.

5. Experimental Evaluation

In this section, we present experiments to evaluate the performance of object
discovery with semantic feature selection using real-world HRRS image data sets.
Specifically, we show: (1) an example set of identified semantic spatial features,
(2) the comparison results of our object-based semantic image segmentation
with the segmentation function provided by in commercial tool ENVI, and (3)
a performance comparison between our OCCUE model and a state-of-the-art
Cross-media Relevance Model (CRM) model (Jeon et al., 2003).
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Group Sample Keywords
Land Cover Suburban, Grassland, Sand, Pavement, water body
Individual Object roof, road segment
Composite Object golf course, industrial building, baseball field

Table 3. Examples of Keywords

5.1. The Experimental Setup

Experimental Data Sets. Since our focus in this paper is on HRRS images
rather than regular scenery images, we will not adopt the popular image dataset
Corel, which is considered as a benchmark for evaluating the performance of
image retrieval algorithms. Instead, we use the high resolution orthoimagery
of the major metropolitan areas. This data set is distributed by United States
Geological Survey (USGS - http://www.usgs.gov/). The imagery is available as
Universal Transverse Mercator (UTM) projection and referenced to North Amer-
ican Datum of 1983. For example, the New Jersey orthoimagery is available as
New Jersey State Plane NAD83. The file format is Georeferenced Tagged Im-
age File Format(GeoTIFF). Since we are not interested in the GIS information,
we treat the GeoTIFF images as 3-bands color images. We choose metropolitan
areas, such as New Jersey, and Washington D.C., since we believe that most
composite objects users may be interested in are located in urban area. When
we build our image data set, we intentionally include different landscapes.

Data Preprocessing. We downloaded the images of 1-foot resolution in
the New York metro area, Boston and Springfield MA and Washington DC.
Each raw image is about 80MB, which is then be processed using the Remote
Sensing Exploitation Platform (ENVI - http://www.ittvis.com/envi/). Images
with blurred scene or with no major interesting objects, such as square miles
of woods, are discarded. For images that contain objects we are interested in,
we grid the image into small pieces (2048 × 2048 pixels). Finally, we have 800
images in our experimental data set and there are 32 features: 10 color features,
10 shape features and 12 texture features.

Keywords. The keywords used to annotate the semantics of the HRRS im-
ages are also different from the traditional scenery images. First of all, they are
not attainable directly from the data seta as those of Corel images. Rather, it is
manually assigned by domain experts. These keywords can be divided into three
groups: keywords regard land cover, individual objects, and composite objects.
Table 3 lists some sample keywords.

Validation. In our experiments, we divided the data set into 10 subsets with
equal number of images. We performed 10-cross validation. For each experiment,
8 randomly selected sub-dataset are used as training set, a validation set of 80
images and a test set of 80 images. The validation set is used to select the
model parameters. Every images in the data set is segmented into comparatively
uniform regions. The number of segments in each image, and the size of each
segment (measured by the number of pixels) are empirically selected using the
training and validating sets.

Blobs. Image Blobs are basic units to form semantic features. A fuzzy clas-
sification algorithm is first applied to generate image blobs. In our experiment,
we generated 30 image blobs. Table 4 shows some examples of image blobs. Also,
Figure 5 shows a small sample image and its blob representation. The more ob-
jects an image contains, the more complex it blob representation is. On average,
a test image contains approximately 12-15 different blobs.
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ID Description size color shape texture
1 house I (0,1200) (150,180) rectangle smooth
2 house II (1200,3000) (150, 180) rectangle smooth
3 house III (0,1200) (180, 255) rectangle smooth
4 grass I (0,2000) (140, 160) irregular smooth
5 grass II (0,2000) (140, 180) irregular rough
30 sand (0,5000) (190,210) round rough

Table 4. Examples of Blobs

Blob ID
1, 2
3, 4
11, 12
28

Fig. 5. An Image and Its Blob Representation

Evaluation Metrics. To evaluate the annotation performance, we apply
some external metrics including Precision, Recall, and F-measure. Specifically,
we judge the relevance of the retrieved images by looking at the manual annota-
tions of the images. A Recall measure is defined as the number of the correctly
retrieved images divided by the number of relevant images in the test data set.
The Precision measure is defined as the number of correctly retrieved images di-
vided by the number of retrieved images. In order to make a balance between the
recall and precision measures, we also compute the F-measure which is defined
as 2∗Recall∗Precision

Recall+Precsion
.

5.2. Semantic Features

All images with identified image blobs are used to identify the co-occurrence of
image blobs. Specifically, we exploited a hyperclique pattern discovery method to
find complex objects that consist of co-existing image blobs, which usually form a
unique high-level semantic concept and are treated as spatial semantic features.
For instance, Table 5 shows some example semantic features and composite-
objects they represent. In addition, as the extension of our previous work, we
also identify the semantic features as a concept hierarchy for better knowledge
representation. As shown in figure 6, in both images we identify hyperclique
pattern [3,4,24] which is assigned as industrial building according to Table 5. If
we explore one more step, we find that it also contains composite object lawn
[8,18]. We define a new composite object: office building, which provides better
environment to employees, to distinguish it from industrial building whose main
purpose is large storage and better transportation.
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blobID Comp-Object
17, 8 Golf Course
3, 20 Industrial Building
3, 4, 24 Industrial Building
1, 2, 5 Residential Building
1, 2, 9, 10 Residential Building
2, 12, 22 Baseball Field

Table 5. An Example of Semantic Features

Fig. 6. Image blobs and concept hierarchy. Left: blob [3,4,24] (industrial building) and [8,
18] (lawn) represent new concept - office building; Right: blob [3,4,24](industrial building) and
[3,20] (industrial building) represent concept - warehouse

5.3. Results of Parameter Selection

The hyperclique pattern discovery algorithm has two parameters: support and h-
confidence. We examine the impact of these two parameters on the performance
of object annotation. The minimum support and the h-confidence thresholds
would affect object discovery. For example, the set of blobs (1, 2, 5, 9, 10) can be
identified as co-existing objects with minimum support 0.05 and h-confidence 0.4,
while it could not be identified when we change the minimum support to 0.15.
Figure 7 shows the F-measure values with the change of minimum support and
h-confidence thresholds. As can be seen, the F-measure values vary at different
support and h-confidence thresholds. However, we can observe a general trend is
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measures word class Avg. Prec. Avg. Recall F-Measure
CRM land use 0.6801 0.5923 0.6332

OCCUE land use 0.7512 0.7229 0.7368
CRM object level 0.3013 0.1827 0.2274

OCCUE object level 0.4682 0.3677 0.4119

Table 6. A Performance Comparison.
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Fig. 8. A Performance Evaluation of Segmentation Methods.

that the F-measure values increase with the increase of H-confidence. Also, the
maximum F-measure value is achieved when the support threshold is relatively
high. This is reasonable, since a relatively high support threshold can guarantee
statistical significance and provide a better coverage of objects. For this reason,
in our experiments, we set relatively high support and h-confidence thresholds.

5.4. OCCUE versus CRM

We compared the annotation performance of the two models, the CRM model
and the OCCUE model. We annotate each test image with 1 word from the
land-cover level, 3 words from the composite object level.

Table 6 shows the comparison results. In the table, we can observe that, for
both land-cover level and composite-object level, the performance of OCCUE is
much better than that of CRM in terms of Precision, Recall, and F-measure. For
instance, for the composite-object level, the F-measure value is improved from
0.2274 (CRM) to 0.4119 (OCCUE). This improvement is quite significant.

5.5. The Effect of the Semantic Segmentation

By exploiting different segmentation algorithms on HRRS images, we would have
different image blobs, which can make a huge impact on the performance of the
semantic feature selection. Therefore, in this subsection, we evaluate the per-
formance of our segmentation results with those from the commercial system
ENVI. We chose ENVI since it is widely used in processing remote sensing im-
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Fig. 9. The Robustness of identified Semantic Features at Different Atmosphere Condition.

ages. With ENVI, each raw image was segmented into smaller regions (blobs)
which were fed into our OCCUE model. By using the tools available in ENVI
for image segmentation, we can identify fewer semantic-features than we can get
from our proposed segmentation approach. Figure 8 shows the final comparison
results. As can be seen, our two-stage object-based semantic image segmenta-
tion algorithm can lead to much better performance of object discovery than the
traditional segmentation method provided in ENVI.

5.6. The Robustness of our Semantic Feature Selection

Here, we evaluate whether our semantic feature method is robust in terms of
dealing with different atmosphere conditions. Ideally, our approach should get
similar annotation for the images which are taken under different air conditions.
Aerial images of different areas usually were taken on different days, we manually
selected a group of test images, which cover the New York area and were taken
under the same air condition. Then, we compare the result on this selected group
with other random selected test groups. The average F-measure values, given h-
confidence as 0.6, are shown in Figure 9. As can be seen, the F-measure values
from the New York images are consistent with those from the random groups.
This result implies that the semantic features extracted by our method are robust
enough to tolerant different air conditions.

6. Conclusions and Future Work

In this paper, we studied the problem of object discovery in High-Resolution
Remote-Sensing (HRRS) imagery. Specifically, we first proposed a semantic-
aware two-stage image segmentation approach, which preserves the semantics
of real-world objects during the segmentation process. Then, we exploited a
hyperclique pattern discovery technique to capture groups of co-existing individ-
ual objects, which usually form high-level semantic concepts. We treated these
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groups of co-existing objects as new semantic features and fed them into the
learning model. As demonstrated by our experimental results, with more reli-
able segmentation and new semantic feature sets, the learning performance can
be significantly improved.

There are several potential directions for future research on this topic. For
example, we plan to adapt Spatial Auto-Regression (SAR) model (Shekhar and
Chawla, 2003) for object discovery in HRRS images. The SAR model has the
ability in measuring spatial dependency, and thus is expected to have a better
prediction accuracy for spatial data.
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