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Abstract—Dimension reduction is a critical data preprocessing step for many database and data mining applications, such as efficient

storage and retrieval of high-dimensional data. In the literature, a well-known dimension reduction algorithm is Linear Discriminant

Analysis (LDA). The common aspect of previously proposed LDA-based algorithms is the use of Singular Value Decomposition (SVD).

Due to the difficulty of designing an incremental solution for the eigenvalue problem on the product of scatter matrices in LDA, there

has been little work on designing incremental LDA algorithms that can efficiently incorporate new data items as they become available.

In this paper, we propose an LDA-based incremental dimension reduction algorithm, called IDR/QR, which applies QR Decomposition

rather than SVD. Unlike other LDA-based algorithms, this algorithm does not require the whole data matrix in main memory. This is

desirable for large data sets. More importantly, with the insertion of new data items, the IDR/QR algorithm can constrain the

computational cost by applying efficient QR-updating techniques. Finally, we evaluate the effectiveness of the IDR/QR algorithm in

terms of classification error rate on the reduced dimensional space. Our experiments on several real-world data sets reveal that the

classification error rate achieved by the IDR/QR algorithm is very close to the best possible one achieved by other LDA-based

algorithms. However, the IDR/QR algorithm has much less computational cost, especially when new data items are inserted

dynamically.

Index Terms—Dimension reduction, linear discriminant analysis, incremental learning, QR Decomposition, Singular Value

Decomposition (SVD).
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1 INTRODUCTION

THE problem of dimension reduction has recently
received broad attention in areas such as databases,

data mining, machine learning, and information retrieval
[3], [5], [10], [11], [24]. Efficient storage and retrieval of high-
dimensional data is one of the central issues in database and
data mining research. In the literature, many efforts have
been made to design multidimensional index structures [4],
such as R-trees, R?-trees, X-trees, SR-tree, etc., for speeding
up query processing. However, the effectiveness of queries
using any indexing scheme deteriorates rapidly as the
dimension increases, which is the so-called curse of
dimensionality. A standard approach to overcome this
problem is dimension reduction, which transforms the
original high-dimensional data into a lower-dimensional
space with limited loss of information. Once the high-
dimensional data is mapped into a low-dimensional space,
indexing techniques can be effectively applied to organize
this low-dimensional space and facilitate efficient retrieval
of data [24]. A further advantage of such dimension
reduction is that it can improve data quality through the
removal of noise [1]. Thus, dimension reduction is an
important data preparation step for many data mining and
database applications.

The goal of dimension reduction can be either feature
transformation, which aims to find a linear combination of
the original features, or feature selection, which selects a
subset of features from the original features. The setting can
be unsupervised or supervised, depending on the avail-
ability of the class label. In this paper, we focus on
supervised dimension reduction by applying feature
transformation.

Linear Discriminant Analysis (LDA) is a well-known
algorithm for supervised dimension reduction [12], [17],
[21]. LDA computes a linear transformation by maximizing
the ratio of between-class distance to within-class distance,
thereby achieving maximal discrimination. A key problem
with LDA is that the scatter matrices used for between-class
and within-class distances can sometimes become singular.
In the past, many LDA extensions have been developed to
deal with this singularity problem. There are three major
extensions: regularized LDA, PCA+LDA, and LDA/GSVD.
The common aspect of these algorithms is the use of the
Singular Value Decomposition (SVD) or Generalized
Singular Value Decomposition (GSVD). The difference
among these LDA extensions is as follows: Regularized
LDA [16] increases the magnitude of the diagonal elements
of the scatter matrix by adding a scaled identity matrix;
PCA+LDA [2] first applies Principal Component Analysis
(PCA) on the raw data to get a more compact representation
so that the singularity of the scatter matrices is decreased;
LDA/GSVD [22], [36] solves a trace optimization problem
using GSVD.

The above LDA extensions have certain limitations. First,
SVD or GSVD requires that the whole data matrix be stored
in main memory. This requirement makes it difficult for
these LDA extensions to scale to large data sets. Also, the
computational cost of SVD or GSVD on large data matrices
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is very high and can significantly degrade the performance
of these algorithms when dealing with large data sets.
Finally, in many practical applications, an acquisition of a
representative training data is expensive and time-consum-
ing. It is thus common to have a small chunk of data
available over a period of time. In such settings, it is
necessary to develop an algorithm that can run in an
incremental fashion to accommodate the new data. How-
ever, since it is difficult to design an incremental solution of
the eigenvalue problem on the product of scatter matrices of
large size, little effort has been made to design LDA-like
algorithms that can be updated incrementally to incorporate
new data items as they become available.

The goal of this paper is to design an efficient and
incremental dimension reduction algorithm while preser-
ving competitive classification performance. More pre-
cisely, when we perform classification on the reduced
dimensional data generated by the proposed algorithm, the
achieved classification accuracy should be comparable to
the best possible classification accuracy achieved by other
LDA-based algorithms.

In this paper, we design an LDA-based, incremental
dimension reduction algorithm, called IDR/QR, which
applies QR Decomposition rather than SVD or GSVD. The
algorithm has two stages: The first stage maximizes the
separability between different classes. This is accomplished
by QR Decomposition. The distinct property of this stage is
its low time and space complexity. The second stage
incorporates both between-class and within-class informa-
tion by applying LDA on the “reduced” scatter matrices
resulting from the first stage. Unlike other LDA-based
algorithms, IDR/QR does not require that the whole data
matrix be in main memory, which allows our algorithm to
scale to very large data sets. Also, our theoretical analysis
indicates that the computational complexity of IDR/QR is
linear in the number of the data items in the training set as
well as the number of dimensions. More importantly, the
IDR/QR algorithm can work incrementally. When new data
items are inserted dynamically, the computational cost of
the IDR/QR algorithm can be kept low by applying efficient
QR-updating techniques.

Finally, we have conducted extensive experiments on
several well-known real-world data sets. The experimental
results show that the IDR/QR algorithm can be an order of
magnitude faster than SVD or GSVD-based LDA algo-
rithms, and that the classification error rate of IDR/QR is
very close to the best possible one achieved by other LDA-
based algorithms. Also, in the presence of dynamic
updating, IDR/QR can be an order of magnitude faster
than SVD or GSVD-based LDA algorithms, while still
achieving comparable accuracy.

Overview: The rest of the paper is organized as follows:
Section 2 introduces related work. In Section 3, we review
LDA. A batch implementation of the IDR/QR algorithm is
presented in Section 4. Section 5 describes the incremental
implementation of the IDR/QR algorithm. A comprehensive
empirical study of the performance of the proposed algo-
rithms is presented in Section 6. We conclude in Section 7
with a discussion of future work.

2 RELATED WORK

Principal Component Analysis (PCA) is one of the standard
and well-known methods for dimension reduction [23].
PCA transforms a number of (possibly) correlated variables
into a (smaller) number of uncorrelated variables called
principal components. The basic idea in PCA is that the first
few principal components account for most variances.
Because of its simplicity and ability to extract the highly
global structure of the whole data set, PCA is widely used
in computer vision [35]. Linear Discriminant Analysis
(LDA) is another well-known algorithm for dimension
reduction. LDA transforms the original data to a low-
dimensional space by maximizing the ratio of between-class
distance to within-class distance. It has been applied to
various domains including text retrieval [6], face recogni-
tion [2], [28], [34], and microarray data classification [13]. A
comparative study of PCA and LDA can be found in [2],
[34]. Previous studies show that LDA is competitive with
PCA in classification. The rationale behind this lies in the
fact that LDA makes use of the class label information,
while PCA is unsupervised. Note that when the class label
is not available, LDA is not applicable.

Most previous work on PCA and LDA require that all
the training data be available before the dimension
reduction step. This is known as the batch method. There is
some recent work in vision and numerical linear algebra
literature for computing PCA incrementally [7], [19].
Despite the popularity of LDA in the vision community,
there is little work for computing it incrementally. The main
difficulty is the involvement of the eigenvalue problem of
the product of scatter matrices, which is hard to maintain
incrementally. Although iterative algorithms have been
proposed for neural network-based LDA [8], [27], they
require Oðd2Þ time for one step updating, where d is the
dimension of the data. An improved algorithm was
proposed in [15]; it is mentioned there that the update time
of the algorithm is about half that of the previous
algorithms. This is, however, still Oðd2Þ, which can be
expensive, when the data has high dimension.

Maximum Margin Criterion (MMC) was recently pro-
posed in [26] for dimension reduction. The optimal
transformation is computed by maximizing the sum of all
interclass distances. MMC does not involve the inversion of
scatter matrices and, thus, avoids the singularity problem
implicitly. An incremental implementation of MMC can be
found in [14].

3 LINEAR DISCRIMINANT ANALYSIS

For convenience, we present in Table 1 the important
notations used in the paper.

This section gives a brief review of classical LDA, as well
as its three extensions: regularized LDA, PCA+LDA, and
LDA/GSVD.

Given a data matrix A 2 IRd�n, we consider finding a
linear transformation G 2 IRd�‘ that maps each column aj,
for 1 � j � n, of A in the d-dimensional space to a vector
yj ¼ GTaj in the ‘-dimensional space.

Classical LDA aims to find the transformation G such
that class structure of the original high-dimensional space is
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preserved in the reduced space. Let the data matrix A be
partitioned into c classes as A ¼ ½A1; A2; � � � ; Ak�, where
Ai 2 IRd�ni , and

Pc
i¼1 ni ¼ n.

Let Ii be the set of column indices that belong to the ith
class, i.e., aj, for j 2 Ii, belongs to the ith class.

In general, if each class is tightly grouped, but well-
separated from the other classes, the quality of the cluster is
considered to be high. In discriminant analysis, two scatter
matrices, within-class and between-class scatter matrices, are
defined to quantify the quality of the cluster, as follows [17]:

Sw ¼
Xc

i¼1

X
j2Ii

ðaj �miÞðaj �miÞT ;

Sb ¼
Xc

i¼1

X
j2Ii

ðmi �mÞðmi �mÞT ¼
Xc

i¼1

niðmi �mÞðmi �mÞT ;

where mi is the centroid of the ith class and m is the global
centroid.

Define the matrices

Hw ¼ ½A1 �m1 � eT1 ; � � � ; Ac �mc � eTc � 2 IRd�n; ð1Þ

Hb ¼ ½ ffiffiffiffiffi
n1

p ðm1 �mÞ; � � � ; ffiffiffiffiffi
nc

p ðmc �mÞ� 2 IRd�c; ð2Þ

where ei ¼ ð1; � � � ; 1ÞT 2 IRni .
Then, the scatter matrices Sw and Sb can be expressed as

Sw ¼ HwH
T
w , Sb ¼ HbH

T
b . The traces of the two scatter

matrices can be computed as follows:

trace ðSwÞ ¼
Xc

i¼1

X
j2Ii

jjaj �mijj2;

trace ðSbÞ ¼
Xc

i¼1

nijjmi �mjj2:

Hence, traceðSwÞ measures the closeness of the vectors
within classes, while traceðSbÞ measures the separation
between classes.

In the lower-dimensional space resulting from the linear
transformation G, the within-class and between-class scatter
matrices become

SL
w ¼ ðGTHwÞðGTHwÞT ¼ GTSwG;

SL
b ¼ ðGTHbÞðGTHbÞT ¼ GTSbG:

An optimal transformation G would maximize traceðSL
b Þ

and minimize traceðSL
wÞ. A common optimization in

classical LDA [17] is to compute

G ¼ arg max
gTi Swgj¼0;8i6¼j

trace ðGTSwGÞ�1ðGTSbGÞ
� �

; ð3Þ

where gi is the ith column of G.
The solution to the optimization in (3) can be obtained by

solving the eigenvalue problem on S�1
w Sb, if Sw is non-

singular, or on S�1
b Sw, if Sb is nonsingular. There are at most

c� 1 eigenvectors corresponding to nonzero eigenvalues
since the rank of the matrix Sb is bounded from above by
c� 1. Therefore, the reduced dimension by classical LDA is
at most c� 1. A stable way to solve this eigenvalue problem
is to apply SVD on the scatter matrices. Details on this can
be found in [34].

Classical LDA is equivalent to maximum likelihood
classification assuming normal distribution for each class
with the common covariance matrix [21]. When each class
has more complex structure, classical LDA may fail.
Generalization of LDA by fitting Gaussian mixtures to each
class has been studied in [20].

Classical LDA requires that one of the scatter matrices be
nonsingular. For many applications involving under-
sampled data, where the data dimension is much greater
than the number of data items, such as in text and image
retrieval, all scatter matrices are singular. Classical LDA is
thus not applicable. This is the so-called singularity or
undersampled problem. To cope with this probelm, several
methods, including two-stage PCA+LDA, regularized LDA,
and LDA/GSVD have been proposed in the past.

A common way to deal with the singularity problem is to
apply an intermediate dimension reduction stage, such as
PCA, to reduce the dimension of the original data before
classical LDA is applied. The algorithm is known as
PCA+LDA, or subspace LDA. In this two-stage PCA+LDA
algorithm, the discriminant stage is preceded by a dimen-
sion reduction stage using PCA. A limitation of this
approach is that the optimal value of the reduced dimen-
sion for PCA is difficult to determine.

Another common way to deal with the singularity
problem is to add some constant value to the diagonal
elements of Sw, as Sw þ �Id, for some � > 0, where Id is an
identity matrix [16]. It is easy to check that Sw þ �Id is
positive definite, hence, nonsingular. This approach is
called regularized LDA (RLDA). A limitation of RLDA is
that the optimal value of the parameter � is difficult to
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determine. Cross-validation is commonly applied for
estimating the optimal � [25].

The LDA/GSVD algorithm in [22], [36] is a more recent
approach. A new criterion for generalized LDA is presented
in [36]. The inversion of thematrix Sw is avoided by applying
the Generalized Singular Value Decomposition (GSVD).
LDA/GSVD computes the solution exactly without losing
any information. However, one limitation of this method is
the high computational cost of GSVD, which limits its
applicability for large data sets, such as image and text data.

4 BATCH IDR/QR

In this section, we present the batch implementation of the
IDR/QR algorithm. This algorithm has two stages: The first
stage maximizes the separation between different classes
via QR Decomposition [18]. The second stage addresses the
issue of minimizing the within-class distance, while keep-
ing low time/space complexity. Ignoring the issue of
minimizing within-class distance, the first stage can be
used independently as a dimension reduction algorithm.

The first stage of IDR/QR aims to solve the following
optimization problem:

G ¼ arg max
GTG¼I

traceðGTSbGÞ: ð4Þ

Note that this optimization only addresses the issue of
maximizing the between-class distance. The solution can be
obtained by solving the eigenvalue problem on Sb.

Theorem 1. Let Sb ¼ U�UT be the SVD of Sb, where U 2 IRd�q

has orthonormal columns, � ¼ diagð�1; � � � ; �qÞ 2 IRq�q is
diagonal, and q ¼ rankðSbÞ. Then, G� ¼ U solves the
optimization problem in (4).

Proof. By the property of the trace, we have

traceðGTSbGÞ � traceðSbÞ ¼ traceðU�UT Þ

¼ traceð�UTUÞ ¼
Xq
i¼1

�i;

where the first inequality follows from Lemma 1 in the
Appendix. Thus, the optimization in (4) is bounded from
above by

Pq
i¼1 �i.

On the other hand,

traceððG�ÞTSbG
�Þ ¼ traceðUTU�UTUÞ ¼ traceð�Þ ¼

Xq
i¼1

�i;

that is, the upper bound is achieved with G� ¼ U . This
completes the proof of the theorem. tu
The solution can also be obtained through QR Decom-

position on the centroid matrix C, which is the so-called
Orthogonal Centroid Method (OCM) [30], where

C ¼ ½m1;m2; � � � ;mc� ð5Þ

consists of the c centroids. The result is summarized as
follows:

Theorem 2. Let C ¼ QR be the QR Decomposition of C, where
Q 2 IRd�c has orthonormal columns and R 2 IRc�c is upper
triangular. Then,

G� ¼ QM; ð6Þ

for any orthogonal matrix M, solves the optimization problem
in (4).

Proof. It is easy to check that Hb ¼ CE, where E 2 IRc�c and
the ith column of E is

ffiffiffiffiffi
ni

p
0; � � � ; 0; 1; 0; � � � ; 0ð ÞTþ

ffiffiffiffiffi
ni

p

n
n1; n2; � � � ; ncð ÞT :

Let C ¼ QR be the QR Decomposition of C. Then,

Sb ¼ HbH
T
b ¼ CEETCT ¼ QðREETRT ÞQT ¼ QÊEQT ;

where ÊE ¼ REETRT .
For any G with orthonormal columns, it is clear that

trace GTSbG
� �

� trace Sbð Þ ¼ trace QÊEQT
� �

¼ trace ÊEQTQ
� �

¼ trace ÊE
� �

;

where the the first inequality follows from Lemma 1 in

the Appendix. Thus, trace ÊE
� �

is an upper bound for

the optimization in (4). Next, we show that the upper

bound is achieved by choosing G� ¼ QM for any

orthogonal M, as in (6).
By the property of the trace and the fact that Q has

orthonormal columns, we have

trace ðG�ÞTSbG
�

� �
¼ trace MTQTQÊEQTQM

� �
¼ trace MTÊEM

� �
¼ trace ÊEMMT

� �
¼ trace ÊE

� �
:

This completes the proof of the theorem. tu

Note the choice of orthogonal matrix M is arbitrary since
traceðGTSbGÞ ¼ traceðMTGTSbGMÞ, for any orthogonal
matrix M. In the OCM method [30], M is set to be the
identity matrix for simplicity.

Remark 1. Note that from Theorems 1 and 2, both the
matrix U based on the eigen-decomposition of Sb and the
matrix Q based on the QR Decomposition of C solve the
optimization problem in (4). In most applications, the
c centroids in the data set are linearly independent. In
this case, the column dimension of the matrix U in
Theorem 1 is q ¼ rankðSbÞ ¼ c� 1, which is one less than
the column dimension of the matrix Q in Theorem 2.
Experiments show that both solutions are comparable in
terms of classification accuracy. However, the solution
based on QR Decomposition of C is preferred, when
incremental updating is required. This is because of the
key observation that when a new data item is inserted, at
most one column of the centroid matrix C is modified,
which leads to the efficient updating of the QR
Decomposition of the centroid matrix. Details can be
found in Section 5.

The second stage of IDR/QR refines the first stage by
addressing the issue of minimizing the within-class
distance. It incorporates the within-class scatter informa-
tion by applying a relaxation scheme on M in (6) (relaxing
M from an orthogonal matrix to an arbitrary matrix). Note
that the trace value in (3) is the same for an arbitrary
nonsingular M; however, the constraints in (3) will not be
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satisfied for arbitrary M. In the second stage of IDR/QR,
we look for a transformation matrix G such that G ¼ QM,
for some M. Note that M is not required to be orthogonal.
The original problem on computing G is equivalent to
computing M. Since

GTSbG ¼ MT ðQTSbQÞM;

GTSwG ¼ MT ðQTSwQÞM;

the original optimization on finding optimal G is equivalent
to finding M, with B ¼ QTSbQ and W ¼ QTSwQ as the
reduced between-class and within-class scatter matrices,
respectively. Note that B has much smaller size than the
original scatter matrix Sb (similarly for W ).

The optimal M can be computed efficiently using many
existing LDA-based methods since we are dealing with
matrices B and W of much smaller size, i.e., c� c. A key
observation is that the singularity problem of W will not be
as severe as the original Sw since W has a much smaller size
than Sw. We can compute optimal M by simply applying
regularized LDA; that is, we compute M by solving a small
eigenvalue problem on ðW þ �IcÞ�1B, for some positive
constant �. Extensive experiments show that the solution is
insensitive to the choice of �, due to the small size ofW . The
pseudocode for this algorithm is given in Algorithm 1 as
shown in Fig. 1.

4.1 Time and Space Complexity

We close this section by analyzing the time and space
complexity of the batch IDR/QR algorithm.

It takesOðdnÞ for the formation of the centroidmatrixC in
Line 1 of Algorithm 1 (Fig. 1). The complexity of doing QR
Decomposition in Line 2 is Oðc2dÞ [18]. Lines 3 and 4 take

OðndcÞ and Oðdc2Þ, respectively, for matrix multiplications.
It then takes Oðc2nÞ and Oðc3Þ for matrix multiplications in
Lines 5 and 6, respectively. Line 7 computes the eigen-
decomposition of a c� cmatrix, hence, takes Oðc3Þ [18]. The
matrix multiplication in Line 8 takes Oðdc2Þ.

Note that the dimension, d, and the number, n, of points
are usually much larger than the number, c, of classes. Thus,
the most expensive step in Algorithm 1 (Fig. 1) is Line 3,
which takes OðndcÞ time. Therefore, the time complexity of
IDR/QR is linear in the number of points, linear in the
number of classes, and linear in the dimension of the data set.

It is clear that only the c centroids are required to reside
in the main memory; hence, the space complexity of IDR/
QR is OðdcÞ. Table 2 lists the time and space complexity of
several dimension reduction algorithms discussed in this
paper. It is clear from the table that IDR/QR is more
efficient than other LDA-based methods (except OCM).
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5 INCREMENTAL IDR/QR

The incremental implementation of the IDR/QR algorithm is

discussed indetail in this section.Wewill adopt the following

convention: For any variableX, its updated version after the

insertion of a new instance is denoted by ~XX. For example, the

number, ni, of elements in the ith class will be changed to ~nni,

while centroid mi will be changed to ~mmi.
With the insertion of a new instance, the centroid matrix

C, Hw, and Hb will change accordingly, as well as W and B.

The incremental updating in IDR/QR proceeds in three

steps:

1. QR-updating of centroid matrix C ¼ ½m1; � � � ;mk� in
Line 2 of Algorithm 1 (Fig. 1),

2. updating of reduced within-class scatter matrixW in
Line 5, and

3. updating of reduced between-class scatter matrix B
in Line 6.

Let x be a new instance inserted; let x belong to the ith

class. Without loss of generality, let us assume that we have

data from the first to the kth class, just before x is inserted.

In general, this can be done by switching the class labels

between different classes. In the rest of this section, we

consider the incremental updating in IDR/QR in two

distinct cases: 1) x belongs to an existing class, i.e., i � k;

2) x belongs to a new class, i.e., i > k. As will be seen later,

the techniques for these two cases are quite different.

5.1 Insertion of a New Instance from an Existing
Class (i � k)

Recall that we have data from the first to kth classes, when a

new instance x is being inserted. Since x belongs to the

ith class, with 1 � i � k, the insertion of x will not create a

new class. In this section, we show how to do the

incremental updating in three steps.

5.1.1 Step 1: QR-Updating of Centroid Matrix C

Since the new instance x belongs to the ith class,

~CC ¼ ½m1; � � � ;mi þ f; � � � ;mk�;

where f ¼ x�mi

~nni
, and ~nni ¼ ni þ 1. Hence, ~CC can be rewritten

as ~CC ¼ C þ f � gT , for g ¼ ð0; � � � ; 1; � � � ; 0ÞT , where the 1

appears at the ith position.

The problem of QR-updating of the centroid matrix C

can be formulated as follows: Given the QR Decomposition

of the centroid matrix C ¼ QR, for Q 2 IRd�k and R 2 IRk�k,

compute the QR Decomposition of ~CC.

Since ~CC ¼ C þ f � gT , the QR-updating of the centroid

matrix, C, can be formulated as a rank-one QR-updating.

However, the algorithm in [18] cannot be directly applied

since it requires the complete QR Decomposition, i.e., the

matrix Q is square, while in our case, we use the skinny

QR Decomposition, i.e., Q is rectangular. Instead, we apply

a small variation of the algorithm in [9] via the following

two-stage QR-updating: 1) A complete rank-one updating

as in [18] on a small matrix and 2) a QR-updating by an

insertion of a new row. Details are given below.

Partition f into two parts: the projection onto the
orthogonal basis Q and its orthogonal complement. Mathe-
matically, f can be partitioned into f ¼ QQTf þ ðI �QQT Þf .
It is easy to check that QT ðI �QQT Þf ¼ 0, i.e., ðI �QQT Þf is
orthogonal to, or lies in the orthogonal complement of, the
subspace spanned by the columns of Q. It follows that

~CC ¼ C þ f � gT

¼ QRþQQTf � gT þ ðI �QQT Þf � gT

¼ QðRþ f1 � gT Þ þ f2 � gT ;

where f1 ¼ QTf , f2 ¼ ðI �QQT Þf . Next, we show how to
compute the QR Decomposition of ~CC in two stages: The first
stage updates the QR Decomposition of QðRþ f1 � gT Þ. It
corresponds to a rank-one updating and can be done at
OðkdÞ [18]. This results in the updated QR Decomposition as
QðRþ f1 � gT Þ ¼ Q1R1, where Q1 ¼ QP1, and P1 2 IRk�k is
orthogonal.

Assume k f2 k6¼ 0. Denote q ¼ f2
kf2k . Since q is orthogonal

to the subspace spanned by the columns of Q, it is also
orthogonal to the subspace spanned by the columns of
Q1 ¼ QP1, i.e., ½Q1; q� has orthonormal columns.

The second stage computes QR-updating of

~CC ¼ ½Q1; q�
R1

jjf2jjgT
� �

;

which corresponds to the case that k f2 k gT is inserted as a
new row. This stage can be done at OðdkÞ [18]. The updated
QR Decomposition is

½Q1; q�
R1

k f2 k gT

� �
¼ ½ ~QQ; ~qq�

~RR
0

� �
¼ ~QQ ~RR;

where ½ ~QQ; ~qq� ¼ ½Q1; q�P2, for some orthogonal matrix P2.
Combining both stages, we have

~CC ¼ Q1R1þ k f2 k q � gT ¼ ½Q1; q�
R1

k f2 k gT

� �
¼ ~QQ ~RR

as the updated QR Decomposition of ~CC, assuming
k f2 k 6¼ 0. If k f2 k ¼ 0, then ~CC ¼ Q1R1 is the updated QR
Decomposition of ~CC. Note that f2 can be computed
efficiently as f2 ¼ f � ðQðQTfÞÞ by doing matrix-vector
multiplication twice. Hence, the total time complexity for
the QR-updating of the centroid matrix C is OðdkÞ.

5.1.2 Step 2: Updating of W

Next, we consider the updating of the reduced within-class
scatter matrix W ¼ QTHwH

T
wQ (Line 5 of Algorithm 1 in

Fig. 1). Let ~WW ¼ ~QQT ~HHw
~HHT
w
~QQ be its updated version.

Note that Hw ¼ ½A1 �m1 � eT1 ; � � � ; Ak �mk � eTk � 2 IRd�n.
Its updated version ~HHw differs from Hw in the ith block.
Let the ith block of Hw be Hi ¼ Ai �mi � eTi . Then, the ith
block of its updated version ~HHw is

~HHi ¼ ~AAi � ~mmi � ~eeTi ¼ ½Ai; x� � ~mmi � ~eeTi
¼ ½Ai �mi � eTi ; x�mi� � ð ~mmi �miÞ � ~eeTi
¼ ½Hi; u� � v � ~eeTi ;

ð7Þ

where u ¼ x�mi, v ¼ ~mmi �mi, and ~eei ¼
ei
1

� �
2 IRniþ1.
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The product ~HHi
~HHT
i can be computed as

~HHi
~HHT
i ¼ ð½Hi; u� � v � ~eeTi Þð½Hi; u� � v � ~eeTi Þ

T

¼ ½Hi; u�
HT

i

uT

� �
� v � ~eeTi

HT
i

uT

� �

� ½Hi; u�~eei � vT þ ðv � ~eeTi Þð~eei � vT Þ
¼ HiH

T
i þ u � uT � v � uT � u � vT þ ðni þ 1Þv � vT

¼ HiH
T
i þ ðu� vÞ � ðu� vÞT þ niv � vT ;

ð8Þ

where the third equality follows, since ðHi; uÞ~eei ¼
P

j2Iiðaj �
miÞ þ u ¼ u and ðv � ~eeTi Þð~eei � vT Þ ¼ vvT ð~eeTi � ~eeiÞ ¼ ðni þ 1ÞvvT .

Since HwH
T
w ¼

Pk
j¼1 HjH

T
j , we have

~HHw
~HHT
w ¼

Xk
j¼1

~HHj
~HHT
j

¼
X

1�j�k;j6¼i

~HHj
~HHT
j þ ~HHi

~HHT
i

¼
Xk
j¼1

HjH
T
j þ ðu� vÞ � ðu� vÞT þ niv � vT :

It follows that

~WW ¼ ~QQT ~HHw
~HHT
w
~QQ

¼ ~QQTHwH
T
w
~QQþ ~QQT ðu� vÞ � ðu� vÞT ~QQþ ni

~QQTv � vT ~QQ

¼ ~QQTHwH
T
w
~QQþ ð~uu� ~vvÞ � ð~uu� ~vvÞT þ ni~vv � ~vvT

� QHwH
T
wQþ ð~uu� ~vvÞ � ð~uu� ~vvÞT þ ni~vv � ~vvT

¼ W þ ð~uu� ~vvÞ � ð~uu� ~vvÞT þ ni~vv � ~vvT ;
ð9Þ

where ~uu ¼ ~QQTu and ~vv ¼ ~QQTv. The assumption of the

approximation in (9) is that the updated ~QQ with the

insertion of a new instance is close to Q.

The computation of ~uu and ~vv takes OðdkÞ time. Thus, the

computation for updating W takes OðdkÞ.

5.1.3 Step 3: Updating of B

Finally, let us consider the updating of the reduced between-

class scatter matrix B ¼ QTHbH
T
b Q (Line 6 ofAlgorithm 1 in

Fig. 1). Its updated version is B ¼ ~QQT ~HHb
~HHT
b
~QQ.

The key observation for efficient updating of B is that

~HHb ¼ ½
ffiffiffiffiffi
~nn1

p
ð ~mm1 � ~mmÞ; � � � ;

ffiffiffiffiffi
~nnk

p
ð ~mmk � ~mmÞ�

can be rewritten as

~HHb ¼ ½ ~mm1; ~mm2; � � � ; ~mmk; ~mm�F ¼ ½ ~CC; ~mm�F;

where

F ¼ D
�hT

� �
;

D ¼ diagð
ffiffiffiffiffi
~nn1

p
; � � � ;

ffiffiffiffiffi
~nnk

p
Þ, and h ¼ ½

ffiffiffiffiffi
~nn1

p
; � � � ;

ffiffiffiffiffi
~nnk

p
�T .

By the updated QR Decomposition ~CC ¼ ~QQ ~RR, we have

~QQT ~HHb ¼ ½ ~QQT ~CC; ~QQT ~mm�F ¼ ½ ~RR; ~QQT ~mm�F ¼ ~RRD� ~QQT ~mm � hT :

It is easy to check that ~mm ¼ 1
~nn
~CC � r, where r ¼ ~nn1; � � � ; ~nnkð ÞT .

Hence, ~QQT ~mm ¼ ~QQT 1
~nn
~CC � r ¼ 1

~nn
~RR � r. It follows that

~BB ¼ ~QQT ~HHb
~HHT
b
~QQ ¼ ð ~RRD� ~QQT ~mm � hT Þ � ð ~RRD� ~QQT ~mm � hT ÞT

¼ ~RRD� 1

~nn
~RR � r

� �
� hT

� �
~RRD� 1

~nn
~RR � r

� �
� hT

� �T

:

Therefore, it takes Oðk3Þ time for updating B.
Overall, the total time for QR-updating of C and

updating of W and B with the insertion of a new instance

from an existing class is Oðdkþ k3Þ. The pseudocode is

given in Algorithm 2 in Fig. 2.

5.2 Insertion of a New Instance from a New Class
(i > k)

Recall that we have data from the first to kth classes,

upon the insertion of x. Since x belongs to ith class, with

i > k, the insertion of x will result in a new class. Without

loss of generality, let us assume i ¼ kþ 1. Hence, the ðkþ
1Þth centroid ~mmkþ1 ¼ x. Then, the updated centroid matrix
~CC ¼ ½m1;m2; � � � ;mk; x� ¼ ½C; x�. In the following, we focus

on the case when x does not lie in the space spanned by

the k centroids fmigki¼1.

5.2.1 Step 1: QR-Updating of Centroid Matrix C

Given the QR Decomposition C ¼ QR, it is straightforward

to compute the QR Decomposition of ~CC as ~CC ¼ ~QQ ~RR by the

Gram-Schmidt procedure [18], where ~QQ ¼ ½Q; q�, for some q.

The time complexity for this step is OðdkÞ.

5.2.2 Step 2: Updating of W

With the insertion of x from a new class (kþ 1), the ðkþ
1Þth block ~HHkþ1 is created, while Hj, for j ¼ 1; � � � ; k keep

unchanged. It is easy to check that ~HHkþ1 ¼ 0. It follows that
~HHw

~HHT
w ¼ HwH

T
w . Hence,

~WW ¼ ~QQT ~HHw
~HHT
w
~QQ ¼ ~QQTHwH

T
w
~QQ ¼ ½Q; q�THwH

T
w ½Q; q�

� QTHwH
T
wQ 0

0 0

� �
¼

W 0

0 0

� �
:

The assumption in the above approximation is that W is the

dominant part in ~WW .

5.2.3 Step 3: Updating of B

The updating of B follows the same idea as in the previous

case. Note that

~HHb ¼
ffiffiffiffiffi
~nn1

p
ð ~mm1 � ~mmÞ; � � � ;

ffiffiffiffiffiffiffiffiffiffi
~nnkþ1

p
ð ~mmkþ1 � ~mmÞ

h i

can be rewritten as

~HHb ¼ ½ ~mm1; ~mm2; � � � ; ~mmkþ1; ~mm�F;

where the matrix

F ¼ D
�hT

� �

and D is an diagonal matrix D ¼ diagð ffiffiffiffiffi
n1

p
; � � � ; ffiffiffiffiffiffiffiffiffi

nkþ1
p Þ and

h ¼ ½ ffiffiffiffiffi
n1

p
; � � � ; ffiffiffiffiffiffiffiffiffiffi

nkþ1
p �T .

By the updated QR Decomposition ~CC ¼ ~QQ ~RR, we have

~QQT ~HHb ¼ ~QQT ½ ~CC; ~mm�F ¼ ½ ~QQT ~CC; ~QQT ~mm�F
¼ ½ ~RR; ~QQT ~mm�F ¼ ~RRD� ~QQT ~mm � hT :
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It is easy to check that ~mm ¼ 1
~nn
~CC � r where

r ¼ ~nn1; � � � ; ~nnkþ1ð ÞT :

Hence, ~QQT ~mm ¼ ~QQT 1
~nn
~CC � r ¼ 1

~nn
~RR � r.

Then, ~BB can be computed by similar arguments as in the

previous case. Therefore, it takes Oðk3Þ time for updating B.
Thus, the time for QR-updating of C and updating of W

and B with the insertion of a new instance from a new class

is Oðdkþ k3Þ. The pseudocode is given in Algorithm 3 as

shown in Fig. 3.

5.3 Main Algorithm

With the above two incremental updating schemes, the

incremental IDR/QR works as follows: For a given new

instance x, determine whether it is from an existing class or
belongs to a new class. If it is from an existing class, update
the QR Decomposition of the centroid matrix C and W and
B by applying Algorithm 2 in Fig. 2; otherwise, update the
QR Decomposition of the centroid matrix C and W and B

by applying Algorithm 3 in Fig. 3. The above procedure is
repeated until all points are considered. With the final
updated ~WW and ~BB, we can compute the c eigenvectors
f�igci¼1 of ð ~WW þ �IcÞ�1 ~BB, and assign ½�1; � � � ; �c� to M. Then,
the transformation G ¼ ~QQM, assuming ~CC ¼ ~QQ ~RR is the
updated QR Decomposition.

The incremental IDR/QR proposed obeys the following
general criteria for an incremental learning algorithm [31]:

1. It is able to learn new information from new data.
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2. It does not require access to the original data.
3. It preserves previously acquired knowledge.
4. It is able to accommodate new classes that may be

introduced with new data.

6 EMPIRICAL EVALUATION

In this section, we evaluate both the batch version and the
incremental version of the IDR/QR algorithm. The perfor-
mance is mainly measured in terms of the classification
error rate and execution time. In the experiment, we applied
the K-Nearest Neighbor (K-NN) method [12] as the
classification algorithm and classification error rates are
estimated by 10-fold cross validation.

Experimental Platform.All experiments were performed

on a PC with a P4 1.8GHz CPU and 1GB main memory

running the Linux operating system.
Experimental Data Sets. Our experiments were per-

formed on the following four real-world data sets, which

are from two different application domains, including face

recognition and text retrieval. Some characteristics of these

data sets are shown in Table 3:

1. AR1 is a popular face image data set [29]. The face
images in AR contain a large area of occlusion, due
to the presence of sun glasses and scarves, which
leads to a relatively large within-class variance in the
data set. In our experiments, we use a subset of the
AR data set. This subset contains 1,638 face images
of entire face identities (126). The image size of this
subset is 768� 576. We first crop the image from
row 100 to 500, column 200 to 550, and then
subsample the cropped images down to a size of
101� 88 ¼ 8; 888.

2. ORL2 is another popular face image data set, which
includes 40 face individuals, i.e., 40 classes. The face

images in ORL only contain pose variation, and are
perfectly centralized/localized. The image size of
ORL is 92� 112 ¼ 10; 304. All dimensions (10,304 in
number) are used to test our dimension reduction
algorithms.

3. tr41 document data set is derived from the TREC-5,
TREC-6, and TREC-7 collections.3

4. re1 document data set is derived from Reuters-21578
text categorization test collection Distribution 1.0.4

Both document data sets are from [37], where a stop-list
is used to remove common words, and the words are
stemmed using Porter’s suffix-stripping algorithm [32].
Moreover, any term that occurs in fewer than two
documents was eliminated. Finally, the tf-idf weighting
scheme [33] is used for encoding the document collection
with a term-document matrix.

6.1 The Effect of Regularization Parameter � on
Batch IDR/QR

In this experiment, we study the effect of the regularization
parameter � on IDR/QR. Note that � is used in the second
stage of IDR/QR as the regularization term (See Line 7 of
Algorithm 1 in Fig. 1). The result is summarized in Fig. 4,
where the horizontal axis denotes the value of the
regularization parameter � and the vertical axis denotes
the classification error rate of batch IDR/QR. 1-NN is used
to compute the classification error rate. It is clear from Fig. 4
that the performance of batch IDR/QR is insensitive to the
choice of �. This is likely due to the fact that the reduced
within-class and between-class scatter matrices in Lines 5
and 6 of Algorithm 1 in Fig. 1 are of small size (k� k). In the
following experiment, we simply set � ¼ 0:5.

6.2 The Performance of Batch IDR/QR

In this experiment, we compare the performance of the batch

IDR/QR with several other dimension reduction algorithms
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including PCA+LDA, LDA/GSVD, OCM, and PCA. Note

that IDR/QR applies regularization to the reduced within-

class scatter, i.e., W þ �Ic. We chose � ¼ 0:5 in our experi-

ments, since it produced good overall results.

6.2.1 Classification Performance

Figs. 5 and 6 show the classification error rates on image

and text document data sets, respectively, using five

different dimension reduction algorithms. The main ob-

servations are as follows:

. The most interesting result is from the AR data set.
We can observe that batch IDR/QR, PCA+LDA, and

LDA/GSVD significantly outperform the other two
dimension reduction algorithms, PCA and OCM, in
terms of the classification error rate. Recall that the
face images in the AR data set contain a large area of
occlusion, which results in the large within-class
variance in each class. The effort of minimizing of
the within-class variance achieves distinct success in
this situation. However, neither PCA nor OCM has
the effort in minimizing the within-class variance.
This explains why they have a poor classification
performance on AR.

. Another interesting observation is that OCM per-
forms well on text data sets. This observation is
likely due to the fact that text data sets tend to have
relatively small within-class variances. This observa-
tion suggests that OCM is a good choice, in practice,
if the data is known to have small within-class
variances.

6.2.2 Efficiency in Computing the Transformation

Fig. 7 shows the execution time (on a log-scale) of different

tested methods for computing the transformation. Even

with the log-scale presentation, we can still observe that the

execution time for computing the transformation by IDR/

QR or OCM is significantly smaller than that by PCA+LDA,

LDA/GSVD, and PCA.

6.2.3 The Effect of Small Reduced Dimension

Here, we evaluate the effect of small reduced dimension on

the classification error rate using the AR data set. Recall that

the reduced dimension by the IDR/QR algorithm is c,

where c is the number of classes in the data set. If the value c

is large (such as AR, which contains 126 classes), the

reduced representation may not be suitable for efficient

indexing and retrieval. Since the reduced dimensions from

IDR/QR are ordered by their discriminant power (see Line 7

of Algorithm 1 in Fig. 1), an intuitive solution is to choose

the first few dimensions in the reduced subspace from IDR/

QR. The experimental results are shown in Fig. 8. As can be

seen, the accuracy achieved by keeping the first 20 dimen-

sions only is still sufficiently high.
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6.3 The Performance of Incremental IDR/QR

In this experiment, we compare the performance of
incremental IDR/QR with that of batch IDR/QR in terms
of classification error rate and the computational cost. We
randomly order the data items in the data set and insert
them into the training set one by one incrementally with the
given order. The remaining data is used as the test set.
Initially, we select the first 30 percent data items as the
training set. Incremental updating is then performed with
the remaining data items inserted one at a time.

Fig. 9 shows the achieved classification error rates by
batch IDR/QR and incremental IDR/QR on four data sets.
In the figure, the horizontal axis shows the portion of
training data items and the vertical axis indicates the
classification error rate (as a percentage). We observe a
trend that the error rate decreases when more and more
training data items are involved. Another observation is
that the error rate by incremental IDR/QR is quite close to
that by batch IDR/QR. Indeed, on four data sets, the
maximal error rate deviation between incremental IDR/QR

and batch IDR/QR is within 4 percent. We use the paired
t-test and the p-values for the four data sets: AR, ORL, tr41,
and re1 are 0.0067, 0.0014, 0.0054, and 0.0045, respectively.
The results quantify the above claim on the significance
levels of the differences.

Recall that incremental IDR/QR is carried through QR
Decomposition in three steps:

1. QR-updating of the centroid matrix C,
2. updating of the reduced within-class scatter W , and
3. updating of the reduced between-class scatter B.

The first and third steps are based on the exact scheme,
while the second step involves approximation. Note that the
main rationale behind our approximation scheme in
updating W is that the change of Q matrix is relatively
small and can be neglected for each single updating, where
C ¼ QR is the QR Decomposition of C.

To give a concrete idea of the benefit of using
incremental IDR/QR from the perspective of efficiency,
we give a comparison of the compuational cost between
batch IDR/QR and incremental IDR/QR. The experimental
results are given in Fig. 10. As can be seen, the execution
time of incremental IDR/QR is significantly smaller than
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that of batch IDR/QR. Indeed, for a single updating,
incremental IDR/QR takes Oðdkþ k3Þ, while batch IDR/QR
takes OðndkÞ, where k is the number of classes in the current
training set and n is the size of the current training set. The
time for a single updating in incremental IDR/QR is almost
a constant Oðdcþ c3Þ, when all classes appear in the current
training set and the speed-up of incremental IDR/QR over
batch IDR/QR keeps increasing when more points are
inserted into the training set. Note that we only count the
time for Lines 1-6 in Algorithm 1 in Fig. 1 since each
updating in incremental IDR/QR only involves the updat-
ing of the QR Decomposition (Line 2), W (Line 5), and B
(Line 6).

7 CONCLUSIONS

In this paper, we have proposed an LDA-based incremental
dimension reduction algorithm, called IDR/QR, which
applies QR Decomposition rather than SVD. The IDR/QR
algorithm does not require the whole data matrix in main
memory. This is desirable for large data sets. More
importantly, the IDR/QR algorithm can work incremen-
tally. In other words, when new data items are dynamically
inserted, the computational cost of the IDR/QR algorithm
can be kept small by applying efficient QR-updating
techniques. In addition, our theoretical analysis indicates
that the computational complexity of the IDR/QR algo-
rithm is linear in the number of the data items in the
training data set as well as the number of classes and the

number of dimensions. Finally, our experimental results
show that the accuracy achieved by the IDR/QR algorithm
is very close to the best possible accuracy achieved by other
LDA-based algorithms. However, the IDR/QR algorithm
can be an order of magnitude faster. When dealing with
dynamic updating, the computational advantage of
IDR/QR over SVD or GSVD-based LDA algorithms
becomes more dramatic while still achieving the compar-
able accuracy.

As for future research, we plan to investigate the
applications of the IDR/QR algorithm for searching ex-
tremely high-dimenional multimedia data, such as video.

APPENDIX

Lemma 1. Let A 2 IRn�n be positive semidefinite and G 2 IRn�q

have orthogonal columns, where q � n. The following inequal-

ity holds

traceðGTAGÞ � traceðAÞ:

Proof. Let ~GG 2 IRn�ðn�qÞ be the matrix such that ½G; ~GG� is
orthogonal. That is,

½G; ~GG� � ½G; ~GG�T ¼ GGT þ ~GG ~GGT ¼ In;

where In 2 IRn�n is the identity matrix.
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It follows that

traceðGTAGÞ ¼ traceðAGGT Þ ¼ traceðAÞ � traceðA ~GG ~GGT Þ
¼ traceðAÞ � traceð ~GGTA ~GGÞ � traceðAÞ;

where the last inequality follows since ~GGTA ~GG is positive

semidefinite. This completes the proof of the lemma. tu
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