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Abstract

K-means is a widely used partitional clustering method.
A large amount of effort has been made on finding better
proximity (distance) functions for K-means. However, the
common characteristics of proximity functions remain un-
known. To this end, in this paper, we show that all proxim-
ity functions that fit K-means clustering can be generalized
as K-means distance, which can be derived by a differen-
tiable convex function. A general proof of sufficient and
necessary conditions for K-means distance functions is also
provided. In addition, we reveal that K-means has a gen-
eral uniformization effect; that is, K-means tends to pro-
duce clusters with relatively balanced cluster sizes. This
uniformization effect of K-means exists regardless of prox-
imity functions. Finally, we have conducted extensive ex-
periments on various real-world data sets, and the results
show the evidence of the uniformization effect. Also, we ob-
served that external clustering validation measures, such as
Entropy and Variance of Information (VI), have difficulty in
measuring clustering quality if data have skewed distribu-
tions on class sizes.

1. Introduction

K-means [18] is a widely-used prototype-based cluster-
ing algorithm. A key design issue of K-means clustering
is the use of proximity functions. Intuitively, one can eas-
ily understand that different choices of proximity functions
for K-means can lead to quite different clustering results.
In the literature, while a large amount of research work has
been proposed on finding better proximity (distance) func-
tions which can lead to a quick convergence, the common
characteristics of proximity functions that fit K-means clus-
tering (i.e. quickly converge to a solution) remain unknown.

Along this line, in this paper, we present a concept of “K-
means distance”, which can be used to guide the choices of

proximity functions that can fit K-means clustering. Indeed,
we show that all proximity functions that fit K-means clus-
tering can be generalized as K-means distance, which can
be derived by a differentiable convex function. A general
proof of sufficient and necessary conditions for K-means
distance functions is also provided.

While K-means clustering can be used for a wide vari-
ety of data types, it cannot be used for all the data types.
For instance, Xiong et al. [25] revealed K-means has trou-
bles in dealing with the case that the distributions of “true”
cluster sizes of the data are skewed. In particular, they
showed that, if Euclidean distance is used as the proximity
function, K-means tends to produce clusters with relatively
balanced cluster sizes (this is also called the uniformiza-
tion effect of K-means). However, this paper highlights
that this uniformization effect exists regardless of proxim-
ity functions used in K-means as long as these proximity
functions are K-means distances. Specifically, we show that
some well-known proximity functions of K-means, such as
the cosine similarity, the coefficient of correlation [7], and
the Bregman divergence [6], are K-means distances. When
these proximity functions are used for K-means clustering,
the uniformization effect cannot be avoided for data with
skewed class distributions.

In addition, we have conducted extensive experiments
on a number of real-world data sets from different applica-
tion domains. Our experimental results show that K-means
tends to produce the clusters in which the variation of the
cluster sizes is smaller. This data variation is measured by
the Coefficient of Variation (CV) [7]. The CV, described in
more detail later, is a measure of dispersion of a data distri-
bution and is a dimensionless number that allows compar-
ison of the variation of populations that have significantly
different mean values. In general, the larger the CV value
is, the greater the variability is in the data.

Finally, as shown in our experimental results, after K-
means clustering, the distributions of the resultant cluster
sizes are in a much narrower interval compared to the dis-
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tributions of the “true” cluster sizes. Indeed, the CV values
of resultant cluster sizes are normally distributed and the
95% confidence interval is [0.09, 0.85]. The significance
of the normal distribution is tested by the χ2 statistic and
the Shapiro-Wilk W statistic [22]. Also, we observed that
some external clustering validation measures, such as En-
tropy and Variance of Information (VI) [20], have difficulty
in measuring clustering quality if data have skewed distri-
butions on class sizes. When dealing with data sets with
skewed distributions on the class sizes, both Entropy and VI
have the favor on clustering algorithms, such as K-means,
which tend to reduce high variation on the cluster sizes.

2. The K-means Distance

In this section, we characterize the distance (proximity)
functions that fit K-means. We prove that, under certain
assumptions, any distance function which can be used for
K-means clustering must take some specific expression de-
rived from a differentiable convex function. We call the
family of such functions: The K-means distance. For in-
stance, the Bregman divergence as well as the cosine simi-
larity are two different cases of the K-means distance.

K-means [18] is a prototype-based, simple partitional
clustering technique which attempts to find the user-
specified K clusters. These clusters are represented by their
centroids (a cluster centroid is typically the mean of the
points in the cluster). K-means has an objective function:
min

∑K
i=1

∑
x∈Ci

dist(ci, x), where Ci denotes cluster i,
and ci is its centroid. The clustering process of K-means
is as follows. First, K initial centroids are selected. Then
the two-phase iterations are launched. That is, in the first
phase, every point in the data is assigned to the closest cen-
troid, and each collection of points assigned to a centroid
forms a cluster; then in the second phase, the centroid of
each cluster is updated based on the points assigned to it.
This process is repeated until no point changes clusters.

Note that there are several types of centroids can be used,
e.g., the mean, the median, or the medroid. Since the mean
has the unique advantage of high computational efficiency
among other types of centroids, and can adapt to most of
the existed distance functions, we restrict our analysis on
the traditional K-means algorithm which takes the mean of
the instances in each cluster as the centroid of the cluster.

Definition 1 We say that a distance function F fits K-
means, if the value of the K-means objective function us-
ing F can be continuously (not strictly) decreased by the
two-phase iterations.

Apparently, the distance functions that fit K-means must
have the ability to facilitate the convergence of the two-
phase iterations. Next, we give a lemma as follows.

Lemma 1 A distance function F (x, y): Rd ×Rd → R fits
K-means, if and only if ∀C = {x1, x2, · · · , xn} ⊂ Rd,

x =
∑n

i=1 xi

n
∈ {y| arg min

y∈Rd

n∑

i=1

F (xi, y)}

Proof : If we can prove that by using the distance func-
tion and the mean as the centroid, the value of the objective
function of K-means can decrease continuously, then the
sufficient condition holds.

Let D(Ak, Uk) denote the value of the objective func-
tion after k iterations, where A denotes the phase of assign-
ing instances to the nearest centroids, and U denotes the
phase of updating the centroids. Then, in the next itera-
tion, D(Ak+1, Uk) ≤ D(Ak, Uk), for each instance finds
its closest centroid after the reassignment. Furthermore, the
updated centroid, i.e., the new mean of each cluster, is the
minimizer of the sum of the distances in that cluster, which
implies that D(Ak+1, Uk+1) ≤ D(Ak+1, Uk). Therefore
D(Ak+1, Uk+1) ≤ D(Ak, Uk), and the equality holds if
and only if there is no re-assignment in the k + 1 iteration.
Thus the sufficient condition holds.

On the contrary, if x is not one of the minimizers of∑n
i=1 F (xi, y), then D(Ak+1, Uk+1) may be larger than

D(Ak+1, Uk). In other words, the update of the centroid
for {x1, · · · , xn} may inversely increase the value of the
objective function. So the necessary condition holds. �

Lemma 2 A differentiable function φ : Rd → R is convex
if and only if ∀x, y ∈ Rd, φ(x)−φ(y)−(x−y)t∇φ(y) ≥ 0.
Further, if the equality holds if and only if x = y, then φ is
strictly convex.

The proof of Lemma 2 can be found on page 70 in [5].
This lemma often serves as the sufficient and necessary con-
ditions for a function being a (strictly) convex function.

Now the question is: How to characterize all the distance
functions that fit K-means? To this end, we have the follow-
ing theorem on one dimensional data.

Theorem 1 Assume that F : R×R → R is a non-negative
function such that: (1) F (x, x) = 0, ∀x ∈ R, (2) F and
Fx are continuous, and (3) Fy is continuously differentiable
on x, then F fits K-means if and only if there exists some
differentiable convex function φ : R → R such that

F (x, y) = φ(x) − φ(y) − (x − y)φ′(y).

Proof : Note that Fx and Fy here denote the partial
derivatives of F on x and y, respectively. We first prove
the sufficient condition. For any cluster {x1, · · · , xn}, let
c∗ =

∑n
i=1 xi/n, then ∀y ∈ R
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∆ =

n
X

i=1

F (xi, y) −
n

X

i=1

F (xi, c
∗
)

= −nφ(y) −
n

X

i=1

(xi − y)φ′(y) + nφ(c
∗
) +

n
X

i=1

(xi − c
∗
)φ′(c∗).

Furthermore, since
∑n

i=1(xi − c∗) = 0, and
∑n

i=1(xi −
y) = n(c∗ − y), we have

∆ = n(φ(c∗) − φ(y) − (c∗ − y)φ′(y)) = nF (c∗, y) ≥ 0.

Thus c∗ =
∑n

i=1 xi/n is one of the minimizers of∑n
i=1 F (xi, y), so the sufficient condition follows from

Lemma 1.
Then we prove the necessary condition. For each clus-

ter {x1, · · · , xn}, since c∗ is one of the minimizers of∑n
i=1 F (xi, y), we can have

n∑

i=1

Fy(xi, c
∗) = 0. (1)

Without loss of generality, let x′
1 = x1 + δ, x′

2 = x2− δ,
δ > 0, we still have c∗ = (x′

1 + x′
2 + x3 + · · · + xn)/n

which means

Fy(x′
1, c

∗) + Fy(x′
2, c

∗) +
n∑

i=3

Fy(xi, c
∗) = 0. (2)

Subtracting Equation (2) by Equation (1), we have

Fy(x1+δ, c∗)−Fy(x1, c
∗) = −(Fy(x2−δ, c∗)−Fy(x2, c

∗)).
(3)

Dividing both sides of Equation (3) by δ and let δ → 0,
we have Fyx(x1, c

∗) = Fyx(x2, c
∗). Similarly we have

Fyx(x1, c
∗) = · · · = Fyx(xn, c∗).

Therefore it must be Fyx(x, y) = −H(y). So

Fy(x, y) = −H(y)x + I(y). (4)

We know that for n = 2, Fy(x1, c
∗) + Fy(x2, c

∗) =
0. If we replace Fy(x, y) by Equation (4), then we have
I(c∗) = H(c∗)c∗, which implies I(y) = H(y)y. There-
fore, we have

Fy(x, y) = (y − x)H(y).

Let φ′(y) =
∫

H(y)dy, then

F (x, y) =

Z y

x

Fy(x, y)dy =

Z y

x

(y − x)H(y)dy

=

Z y

x

(y − x)dφ
′
(y) = φ(x) − φ(y) − (x − y)φ

′
(y).

Since ∀x, y ∈ R, F (x, y) ≥ 0, φ(·) is a convex function,
which follows from Lemma 2. Thus the necessary condi-
tion holds. So we complete the proof. �

It is valuable to extend Theorem 1 to the multi-
dimensional data case.

Theorem 2 Assume that F : Rd × Rd → R is a non-
negative function such that: (1) F (x, x) ≥ 0, ∀x ∈ Rd,
(2) F and Fx are continuous, and (3) Fy is continuously
differentiable on x, then F fits K-means if and only if there
exists some differentiable convex function φ : Rd → R such
that

F (x, y) = φ(x) − φ(y) − (x − y)t∇φ(y).

Due to the page limitation, we have to omit the proof
of Theorem 2, which is similar to the proof of Theorem 1.
Based on Theorem 2, we can have the precise definition of
the K-means distance as follows.

Definition 2 We say that a distance function F is a K-
means distance, if there exists some differentiable convex
function φ : Rd → R such that

F (x, y) = φ(x) − φ(y) − (x − y)t∇φ(y).

According to Theorem 2, the K-means distance fits the
K-means clustering. And under certain acceptable assump-
tions, the K-means distance is the only distance that fits K-
means when the centroid type is the mean. Furthermore,
please note that the K-means distance is a family of dis-
tance functions with different φ. Finally, we must point out
that a K-means distance is not necessary to be a metric; that
is, a K-means distance may not have symmetry and triangle
inequality properties.

Theorem 3 Given a differentiable function φ : Rd → R,
let F (x, y) = φ(x) − φ(y) − (x − y)t∇φ(y), then φ is
strictly convex if and only if ∀C = {x1, x2, · · · , xn} ⊂ Rd,

x =
∑n

i=1 xi

n
= arg min

y∈Rd

n∑

i=1

F (xi, y).

Proof : For any cluster {x1, · · · , xn} ⊂ Rd, ∀y ∈ Rd,
∆ =

∑n
i=1 F (xi, y) −

∑n
i=1 F (xi, x) = nF (x, y).

Therefore, according to Lemma 2, that φ is strictly convex
is equivalent to that ∆ ≥ 0 and the equality holds if and
only if y = x. And the latter equivalent condition implies
that x is the unique minimizer of

∑n
i=1 F (xi, y). So both

the sufficient and necessary conditions hold. �

Remark: Theorem 3 can help us further divide the family
of the K-means distances into two types. Type I are de-
rived from strictly convex functions φ, which implies that
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the mean is the unique minimizer of the sum of the distances
in each cluster. On the contrary, type II K-means distances
are derived from convex but not strictly convex functions
φ, which means the sum of the distances in each cluster has
more than one minimizers. Next, we would like to introduce
some widely used K-means distances of different types.

Example 1 Let φ(x) = ‖x‖2, then we can have a familiar
K-means distance: F (x, y) = ‖x − y‖2, i.e., the squared
Euclidean distance.

Example 2 Let φ(x) = −H(x), where x is a discrete prob-
abilistic distribution, and H(x) is the entropy of x. Then
we produce a K-means distance: F (p, q) = D(p‖q), where
D(p‖q) is the relative entropy of distributions p and q.

Remark: We can proved that both ‖x‖2 and −H(x) are
strictly convex. That means the squared Euclidean distance
and the relative entropy are type I K-means distances. Ac-
tually, type I K-means distance has another name: Bregman
divergence, first introduced by Bregman [6], and recently
studied by Banerjee et al. [3]. Therefore, the Bregman di-
vergence is not the K-means distance itself but just one type
of it. �

Example 3 Let φ(x) = ‖x‖, then we can induce a K-
means distance

F (x, y) = ‖x‖ − ‖y‖ − (x − y)t∇y(‖y‖) = ‖x‖ − xty

‖y‖ .

Remark: Since xty/‖y‖ = ‖x‖ cos(θ) ≤ ‖x‖, thus
F (x, y) ≥ 0, which implies φ is convex. Furthermore,
∀C = {x1, · · · , xn} ⊂ Rd with ‖xi‖ = 1, k

∑n
i=1 xi is the

minimizer of
∑n

i=1 F (xi, y), where k can be any positive
real number. Thus according to Theorem 3, this distance is
a type II K-means distance. Finally, we can show

min
y

n∑

i=1

(1− xt
iy

‖y‖ ) ⇔ max
y

n∑

i=1

xt
iy

‖y‖ = max
y

n∑

i=1

cos(xi, y).

Therefore F (x, y) is equivalent to the cosine similarity in
K-means clustering. In other words, the cosine similarity
can be transformed into a type II K-means distance. A sim-
ilar measure, i.e., the coefficient of correlation , can also be
equivalently transformed into a type II K-means distance,
if the instances have been centralized and standardized to
be x′ = (x − µx)/‖x − µx‖. �

In summary, under the generalized framework of the K-
means distance, we can unify the type I and type II dis-
tances. Specifically, it is interesting to show that the cosine
similarity, which has long been regarded as a directional
measure compared with the Bregman divergence, can be
also equivalently transformed into a K-means distance.

3. The Uniformization Effect

In this section, we describe the uniformization effect of
K-means. First, we provide the definition of the uniformiza-
tion effect of K-means as follows.

Definition 3 We say that the K-means clustering shows the
uniformization effect, if the distribution of the cluster sizes
by K-means is more uniform than the distribution of the
class sizes.

3.1 The Uniformization Effect of K-means

Here we illustrate the existence of the uniformization ef-
fect of K-means. As we know, the proximity function that
fits K-means is the K-means distance, so the objective func-
tion of K-means can be rewritten as follows.

obj =
k∑

i=1

ni∑

j=1

kd(x(i)
j , x(i)),

where kd(x, y) is the K-means distance, ni and x(i) are the
size and the centroid (mean) of cluster i respectively. If we
substitute kd(x, y) by φ(x) − φ(y) − (x − y)t∇φ(y), we
have

obj =
k∑

i=1

ni∑

j=1

φ(x(i)
j ) −

k∑

i=1

niφ(x(i)). (5)

So to minimize obj is to maximize

obj′ =
k∑

i=1

niφ(x(i)). (6)

Let x =
∑k

i=1 nix
(i)/n, where n =

∑k
i=1 ni. Appar-

ently x is the mean of all instances. Here, we consider the
case that the cluster number k = 2 and illustrate the uni-
formization effect of K-means.

First, we use the Taylor’s expansion on φ with the expan-
sion point being x:

φ(x
(i)

) � φ(x)+∇φ(x)
t
(x

(i)−x)+
1

2!
(x

(i)−x)
t∇2

φ(x)(x
(i)−x). (7)

We assume that the higher order infinitesimal items are
small enough to be ignored. Also, it’s trivial to show that,
given n = n1 + n2, when cluster number k = 2

x(1)−x =
n2

n
(x(1)−x(2)), x(2)−x =

n1

n
(x(2)−x(1)). (8)

Therefore, if we substitute φ(x(i)) in Equation (6) by
Equation (7) and use Equation (8), we can get

355355355364364



obj′ � nφ(x) +
n1n2

n
(x(1) − x(2))t∇2φ(x)(x(1) − x(2)). (9)

Since φ is convex, ∇2φ is semi-positive definite, i.e.,

(x(1) − x(2))t∇2φ(x)(x(1) − x(2)) ≥ 0.

Therefore, if we isolate the effect of x(1)−x(2), the max-
imization of obj′ implies the maximization of n1n2, which
leads to n1 = n2 = n/2.

In the case of k > 2, i.e., the cluster number is greater
than two, the situation is much more complicated. So we
leave it to the experimental part.

3.2 The Uniformization Effect and the
Centroid Distance

Here, we explore the relationship of the uniformiza-
tion effect and the centroid distances between the pairs of
classes. Please note that the distance function used here is
also the K-means distance.

Assume D is a data set with two classes C1 = {xi}m
i=1

and C2 = {yj}n
j=1. Let x =

∑m
i=1 xi/m and y =∑n

j=1 yj/n denote their centroids respectively. Similar to
the proof of Theorem 1, we can have

�1−2 =
m

X

i=1

kd(xi, y) −
m

X

i=1

kd(xi, x) = m × kd(x, y),

�2−1 =
n

X

j=1

kd(yj , x) −
n

X

j=1

kd(yj , y) = n × kd(y, x).

That means on average the distance between the in-
stances of class C1 (C2) and the centroid of class C2 (C1)
is larger than the distance between the same instances and
their own centroid, and the gap is right the distance of the
two centroids. In other words, the closer the two centroids
can get, the closer the instances of one class and the centroid
of the other class can be. Under such condition, we can ex-
pect statistically that more instances from the larger class
can be assigned to the centroid of the smaller class, which
may result in a relatively balanced distribution — that is
what we called the uniformization effect. By contrast, if the
centroid distance is large, the uniformization effect can be
ignorable even if the two classes are highly imbalanced.

Therefore, in general, the uniformization effect of K-
means is strongly related to the centroid distances between
the classes. Specifically, small centroid distances tend to
induce a significant uniformization effect.

4. Experimental Evaluation

In this section, we present experimental results to
demonstrate the uniformization effect of K-means cluster-
ing. We also empirically study the cluster validation issues
related to the uniformization effect.

Table 2. Some Notations.
CV0: the CV value of the class sizes
CV1: the CV value of the cluster sizes after clustering
DCV: CV1−CV0

4.1 Experimental Measurements

In this subsection, we first introduce some important
measures used in our experiments.
Proximity Measures. We used three kinds of K-means dis-
tances as shown in Table 1. In general, cosine distance
shows merits on clustering high-dimensional data such as
the document data and the gene expression data, and Eu-
clidean distance prefers data sets with normal dimensional-
ity. KL-divergence has information theoretical meanings on
clustering words in document data sets [9].
Cluster Validity Measures. We used two external clustering
validation measures: Entropy and Variation of Information
(VI), which are based on the information theory. Entropy
measures the purity of the clusters with respect to the given
class labels. It has been widely used in data mining commu-
nity, and the details can be found in [25, 26, 23]. VI, a new
measure introduced by an axiomatic view [20], measures
the amount of information that is lost or gained in changing
from the class set to the cluster set. In particular, VI is a true
metric that satisfies some important axioms uniquely [20].
Details of VI can be found in [19]. In general, the lower the
Entropy or the VI value is, the better the clustering perfor-
mances.
A Measure of Dispersion Degree. Here we introduce the
Coefficient of Variation (CV) [7], which measures the dis-
persion degree of a data set. The CV is defined as the ratio
of the standard deviation to the mean. Given a set of data
objects X = {x1, x2, . . . , xn}, we have CV = s/x̄ where
x̄ =

∑n
i=1 xi/n and s =

√∑n
i=1(xi − x̄)2/(n − 1).

Note that there are some other statistics, such as standard
deviation and skewness [7], which can also be used to
characterize the dispersion of a data distribution. However,
the standard deviation has no scalability; that is, the
dispersion of the original data and stratified sample data
is not equal if the standard deviation is used. Indeed, this
does not agree with our intuition. Meanwhile, skewness
cannot catch the dispersion in the situation that the data
is symmetric but has high variance. In contrast, the CV
is a dimensionless number that allows comparison of the
variation of populations that have significantly different
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Table 1. Various K-means Distances.
K-means Distance φ(x) Kd(x, y)

squared Euclidean distance ‖x‖2 ‖x − y‖2

KL-divergence (relative entropy)
∑d

i=1 pi log2 pi

∑d
i=1 pi log2(pi/qi)

cosine distance† ‖x‖ ‖x‖ − xty
‖y‖

†: Actually we use equivalent cosine similarity instead of cosine distance in the experiments.

Table 3. Experimental Data Sets.
Data set Source #objects #features #classes Min class size Max class size CV0

Document Data Sets
hitech TREC 2301 126373 6 116 603 0.495
sports TREC 8580 126373 7 122 3412 1.022
tr11 TREC 414 6429 9 6 132 0.882
tr12 TREC 313 5804 8 9 93 0.638
tr23 TREC 204 5832 6 6 91 0.935
tr31 TREC 927 10128 7 2 352 0.936
tr41 TREC 878 7454 10 9 243 0.913
tr45 TREC 690 8261 10 14 160 0.669
la2 TREC 3075 31472 6 248 905 0.516

ohscal OHSUMED-233445 11162 11465 10 709 1621 0.266
re0 Reuters-21578 1504 2886 13 11 608 1.502
re1 Reuters-21578 1657 3758 25 10 371 1.385
k1a WebACE 2340 21839 20 9 494 1.004
wap WebACE 1560 8460 20 5 341 1.040

Biomedical Data Sets
LungCancer KRBDSR 203 12600 5 6 139 1.363
Leukemia KRBDSR 325 12558 7 15 79 0.584

Other Data Sets
ecoli UCI 336 7 8 2 143 1.160

optdigits UCI 5620 64 10 554 572 0.012
pendigits UCI 10992 16 10 1055 1144 0.042
segment UCI 2310 19 7 330 330 0.000

a1a LIBSVM 1605 123 2 395 1210 0.718
fourclass LIBSVM 862 2 2 307 555 0.407

diabetes scale LIBSVM 768 8 2 268 500 0.427
dna.scale LIBSVM 2000 180 3 464 1051 0.500

german.numer LIBSVM 1000 24 2 300 700 0.566
ijcnn1 LIBSVM 49990 22 2 4853 45137 1.140

ionosphere scale LIBSVM 351 34 2 126 225 0.399
satimage.scale LIBSVM 4435 36 6 415 1072 0.425

mean values. In general, the larger the CV value is, the
greater the variability is in the data.

4.2 The Experimental Setup

Experimental Tools. In our experiments, we used the MAT-
LAB 7.1 [1] and CLUTO 2.1.1 [14] implementations of K-
means. The MATLAB version is suitable for dense data
sets, and we modified it so as to incorporate more K-means
distances, such as KL-divergence. CLUTO is used to han-
dle sparse data sets; that is, all and only the experimental
results with cosine similarity as the proximity measure were
produced by CLUTO. Note that the parameters of K-means
in CLUTO were set to match the ones in MATLAB for the
comparison purpose, and the cluster number K was set to
match the class number of each data set.
Experimental Data Sets. For our experiments, we used a
number of real-world data sets that were obtained from dif-
ferent application domains. Some characteristics of these
data sets are shown in Table 3. The relevant notations can
be found in Table 2.

Document Data Sets. The hitech and sports data
sets were derived from the San Jose Mercury newspaper
articles that were distributed as part of the TREC collec-
tion (TIPSTER Vol. 3). The hitech data set contains
documents about computers, electronics, health, medical,
research, and technology; and the sports data set con-
tains documents about baseball, basket-ball, bicycling, box-
ing, football, golfing, and hockey. Data sets tr11, tr12,
tr23, tr31, tr41 and tr45 were derived from the
TREC-5[24], TREC-6 [24], and TREC-7 [24] collections.
The classes of these data sets correspond to the documents
that were judged relevant to particular queries. The la2
data set is part of the TREC-5 collection [24] and contains
news articles from the Los Angeles Times. The ohscal
data set was obtained from the OHSUMED collection [11],
which contains documents from the antibodies, carcinoma,
DNA, in-vitro, molecular sequence data, pregnancy, prog-
nosis, receptors, risk factors, and tomography categories.
The data sets re0 and re1 were from Reuters-21578 text
categorization test collection Distribution 1.0 [15]. The data
sets k1a and wap were from the WebACE project (WAP)
[10]; each document corresponds to a web page listed in
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Figure 1. The Uniformization Effect of K-means.

the subject hierarchy of Yahoo!. For all document cluster-
ing data sets, we used a stop-list to remove common words,
and the words were stemmed using Porter’s suffix-stripping
algorithm [21].

Biomedical Data Sets. LungCancer and Leukemia
data sets are from the Kent Ridge Biomedical Data Set
Repository (KRBDSR) [16]. The LungCancer data set
consists of samples of lung adenocarcinomas, squamous
cell lung carcinomas, pulmonary carcinoid, small-cell lung
carcinomas and normal lung described by 12600 genes. The
Leukemia data set contains six subtypes of pediatric acute
lymphoblastic leukemia samples and one group of samples
that do not fit in any of the above 6 subtypes, and each sub-
type is described by 12558 genes.

Other Data Sets. Besides the above high-dimensional
data sets, we also used some data sets with normal di-
mension sizes. Among them, the ecoli, optdigits,
pendigits and segment data sets are from the well-
known UCI repository, which have been widely used in data
mining community. The rest eight data sets are from LIB-
SVM repository [2], which contains data sets for the clas-
sification purpose originally. Note that some of these data
sets are right from the UCI repository which have been stan-
dardized by LIBSVM for the classification task.

4.3 The Uniformization Effect of K-means

In this subsection, we demonstrate the existence of the
uniformization effect of K-means. We first applied K-
means with different types of distances on different types
of data sets, then computed the CV1 values for the resul-
tant distributions of the cluster sizes. Thus we can compute
the corresponding DCV values, which indicate the effect of
K-means on the data distributions. Finally, we evaluated
the clustering performances by two widely used measures:
Entropy and VI.

Specifically, for cosine similarity, each document in-
stance x was standardized to have unit length before ap-
plying clustering, i.e., ‖x‖ = 1. For KL-divergence, we
used the so-called co-clustering scheme; that is, we viewed

the document data set as a “word-document” matrix, and
employed K-means with KL-divergence on the words first
so as to get 100 word clusters, then reduced the features ac-
cording to the word clusters, and finally employed K-means
with KL-divergence again on the modified data set to get
the final document clusters. The reason of co-clustering can
be found in [9]. Also note that in practice we standardized
each instance x to make

∑d
i=1 xi = 1, where xi is the ith

attribute value of x.

Table 4 shows the results. As can be seen, no matter what
K-means distance we used, for the data sets with large CV0

values, K-means tends to reduce the variation on the cluster
sizes of the clustering results, as indicated by the negative
DCV values. This result indicates that, for data sets with
highly imbalanced class sizes, the uniformization effect is
dominant in the objective function. Also, there are five
data sets including optdigits, pendigits, segment,
ohscal and german.numer, which have small CV0 val-
ues. Indeed, for these data sets with relatively balanced
class sizes, the uniformization effect of K-means is not sig-
nificant and can be dominated by other factors, such as the
centroid distances, the densities or the shapes of the classes.

Now let’s take a closer look on the CV1 values, i.e., the
distribution of the cluster sizes. Figure 1 shows the com-
parisons of CV1 and CV0 values when applying different
K-means distances. Please note that a dot line represents
a data set in Table 4. As can be seen, after applying K-
means, the distributions of the cluster sizes, i.e., the CV1

values, are in a much narrower interval. Also, we test the
hypothesis that all the CV1 values are normally distributed.
The results show that the p values of the Shapiro-Wilk W
statistic and χ2 statistic are 0.887 and 0.478 respectively,
which implies not to reject the null hypothesis (given the
significance level α = 0.05). Therefore we can compute
the 95% confidence interval of CV1: [0.09, 0.85], given the
mean and the standard deviation of CV1 values are 0.470
and 0.192, respectively. In other words, for data sets with
CV0 values greater than 0.85, the uniformization effect of
K-means will take place with a very high probability.
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Table 4. Experimental Results.
Distance Dataset #cluster CV0 CV1 DCV E VI
Square ecoli 8 1.160 0.707 -0.454 0.664 1.746

Euclidean optdigits 10 0.012 0.636 0.624 1.357 2.461
Distance pendigits 10 0.042 0.506 0.464 1.058 1.965

dna 3 0.500 0.125 -0.374 0.955 2.015
satimage 6 0.425 0.333 -0.092 0.935 1.913

a1a 2 0.718 0.218 -0.500 0.691 1.559
ijcnn1 2 1.140 0.273 -0.867 0.460 1.433

ionosphere scale 2 0.399 0.133 -0.266 0.821 1.694
german.numer 2 0.566 0.605 0.040 0.869 1.721

fourclass 2 0.407 0.135 -0.272 0.877 1.808
diabetes scale 2 0.427 0.412 -0.015 0.875 1.754

Segment 7 0.000 0.646 0.646 1.164 1.983
Min - 2 0.000 0.125 -0.867 0.460 1.433
Max - 10 1.160 0.707 0.646 1.357 2.461

Distance Dataset #cluster CV0 CV1 DCV E VI
Cosine hitech 6 0.495 0.261 -0.234 1.631 3.394

Similarity sports 7 1.022 0.604 -0.418 1.112 2.662
la2 6 0.516 0.508 -0.008 1.563 3.147

ohscal 10 0.266 0.486 0.219 2.156 4.223
tr11 9 0.882 0.328 -0.554 0.883 2.171
tr12 8 0.638 0.377 -0.261 0.965 2.082
tr23 6 0.935 0.375 -0.559 1.475 3.362
tr31 7 0.936 0.496 -0.440 1.228 2.886
tr41 10 0.913 0.542 -0.371 1.159 2.666
tr45 10 0.669 0.460 -0.209 1.310 2.775
k1a 20 1.004 0.925 -0.079 1.547 3.266
wap 20 1.040 0.749 -0.291 1.536 3.339

LungCancer 5 1.363 0.542 -0.820 0.608 1.877
Leukemia 7 0.582 0.363 -0.219 1.522 3.178

Min - 5 0.266 0.261 -0.820 0.608 1.877
Max - 20 1.363 0.925 0.219 2.156 4.223

Distance Dataset #cluster CV0 CV1 DCV E VI
KL-divergence tr11 9 0.882 0.355 -0.527 0.418 1.220

tr12 8 0.638 0.625 -0.013 0.219 0.453
tr23 6 0.935 0.670 -0.265 0.639 1.525
tr31 7 0.936 0.840 -0.096 0.290 0.766
tr41 10 0.913 0.557 -0.355 0.335 0.988
tr45 10 0.669 0.402 -0.268 0.431 1.050
wap 20 1.040 0.490 -0.550 0.692 1.827
re0 13 1.502 0.345 -1.157 1.128 3.253
re1 25 1.385 0.429 -0.956 1.056 2.829

Min - 6 0.638 0.345 -1.157 0.219 0.453
Max - 25 1.502 0.840 -0.013 1.128 3.253

Since CV1 values have such a narrow interval, we can
expect that as the skewness of the distribution of class sizes
increases, the results by K-means clustering tend to be
farther away from the true ones. Figure 2(a) indeed shows
this trend; that is, the absolute DCV values increase as
the CV0 values increase. Therefore, in general, applying
K-means clustering on highly imbalanced data sets is not
very effective, which can be indicated by the DCV measure.

4.4 The Uniformization Effect and the
Cluster Validity Problem

Here, we illustrate that the uniformization effect of K-
means can make negative impact on the cluster validity.
More specifically, some well-known clustering validation
measures may not have the ability to identify the uni-
formization effect of K-means, so as to deliver unreliable
scores on the clustering results. In this subsection, we will
focus on two measures: Entropy and Variation of Informa-
tion (VI). The former has been widely used in data mining

community, and the latter was well established on the infor-
mation theory and a set of axioms.

Entropy. We first perform the analysis using the Entropy
measure. Figure 2(b) and 2(c) show the Entropy values
along data sets with increasing variation on the class sizes.
The common ground of these figures is that the Entropy val-
ues tend to be systematically lower (better) on results of
highly imbalanced data sets. This seriously contradicts the
findings above: K-means tends to produce poorer partitions
on highly imbalanced data sets due to the uniformization
effect. Therefore, we can suspect that, Entropy may not
be suitable for evaluating the results produced by K-means
with squared Euclidean distance or cosine similarity.

Furthermore, we explore the reason why Entropy is unre-
liable on K-means. The key point is, Entropy only assesses
the purity of each cluster, but does not promise to find ev-
ery class of the data set. In detail, for a highly imbalanced
data set, due to its uniformization effect, K-means tends to
break down the large class and assign the pieces to different
clusters. Since the number of instances of the large class
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Figure 2. Relationships between CV0 and Val-
idation Measures.
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Figure 3. CV0 vs. Entropy (KL-divergence).

can be “huge” compared with other classes, the pieces of
it can still be dominant in their corresponding clusters, so
as to make the clusters be rather “pure”, which results in a
low Entropy value. Actually, this seeming “purity” is at the
cost of missing many small classes in the data! A detailed
illustration can also be found in [25].
Variation of Information (VI). VI is a more sophisticated
clustering validation measure which implicitly takes the in-
tegrality of all classes in data into consideration. As a result,
VI is also more complicated than Entropy — to directly un-
derstand its relationship with K-means and the uniformiza-
tion effect is rather difficult. Therefore, we here only evalu-
ate them empirically.

Figure 2(d) shows the VI values along data sets with in-
creasing variation on class sizes. A similar trend as Entropy
can be found; that is, the VI values tend to be systemat-

ically lower (better) on results of highly imbalanced data
sets. Therefore, we can suspect that VI also has troubles
on evaluating the K-means clustering, especially for highly
imbalanced data sets.

Please note that Figure 2(d) is based on the Euclidean
distance, however this observation can be extended to the
situation when applying cosine similarity. We omit the re-
sults based on cosine similarity due to the page limitation.
Measures for K-means with KL-divergence. Here, we
study the effectiveness of the two measures on evaluating
results produced by K-means with KL-divergence. An in-
teresting observation is that, compared with their previous
performances on squared Euclidean distance or cosine sim-
ilarity, both Entropy and VI measures show rather different
behaviors on KL-divergence.

As indicated by Figure 3, the Entropy values increase as
the CV0 values go up. This is opposite to the trends in Fig-
ure 2(b) and 2(c). This implies that, given KL-divergence
as the K-means distance, Entropy can identify poor results
by K-means on highly imbalanced data sets. As to VI, we
can simply compute the coefficient of correlation between
VI values and Entropy values. The 0.99 result implies that
VI acts in a way very similar to Entropy; that is, the VI val-
ues increase as the distributions of the resultant cluster sizes
being farther away from the true ones. In other words, VI
is also effective on evaluating results produce by K-means
with KL-divergence.

5. Related Work

Here, we highlight some research results which are
mostly related to the main theme of this paper.

First, people have studied the impact of high dimension-
ality on the performance of K-means, and found that the
traditional Euclidean notion of proximity is not effective
for K-means clustering on high-dimensional data sets. To
meet this challenge, one research direction is to make use of
dimensionality reduction techniques, such as multidimen-
sional scaling (MDS) [4], principal components analysis
(PCA) [13], and singular value decomposition (SVD) [8].
Another direction for this problem is to redefine the no-
tions of proximity, e.g., by the Shared Nearest Neighbors
(SNN) similarity [12]. Some other similarity measures,
such as the cosine similarity, have also been used as prox-
imity functions for clustering high-dimensional document
data sets [26].

Second, there are a number of choices for the proxim-
ity function that can be used in K-means. For instance,
the Euclidean distance has been widely used, and the co-
sine similarity, KL-divergence as well as Itakura-Saito dis-
tance have also shown their advantages for document clus-
tering [26], words clustering [9] and power spectra anal-
ysis [17], respectively. Recently, in his inspiring work,
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Banerjee [3] proposed a general framework for K-means
clustering that uses proximity functions based on Bregman
divergences [6]. This work shares some common grounds
with our work. However, in this paper, we propose a gen-
eral concept of K-means distance for proximity functions
that fit K-means. Some well-known proximity functions of
K-means, such as the cosine similarity, the coefficient of
correlation, and the Bregman divergence, are instances of
K-means distance.

Finally, in their previous work [25], Xiong et al. prelimi-
narily studied the uniformization effect of K-means and the
cluster validation issues. However, their focus is merely on
the squared Euclidean distance and the Entropy measure.
Therefore, this paper is a natural extension of [25]. In-
deed, we show that the uniformization effect exists no mat-
ter which proximity function is used in K-means as long as
this proximity function fits K-means clustering. Also, we
show the impact of skewed cluster distributions on the per-
formance of some other external cluster validation measure,
such as Variation of Information (VI), which has been well
established in the machine learning community [19, 20].

6. Conclusions

In this paper, we studied the generalization issues of
proximity functions for K-means. Specifically, we showed
that a proximity function that fits K-means can be derived
from a differentiable convex function. We call such prox-
imity functions as K-means distance. Also, we theoretically
proved that some widely used proximity functions, such as
the Bregman divergence and the cosine similarity, are the
instances of K-means distance. In addition, we revealed
that K-means has a general uniformization effect; that is,
K-means tends to produce clusters with relatively uniform
sizes regardless proximity functions used. Finally, experi-
mental results on real-world data sets show the uniformiza-
tion effect of K-means. We also observed that both Entropy
and VI have difficulty in measuring clustering quality if the
class sizes of data have skewed distributions.
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