
Exploiting a Page-Level Upper Bound for Multi-Type
Nearest Neighbor Queries

Xiaobin Ma
∗

University of Minnesota

xiaobin@cs.umn.edu

Shashi Shekhar
University of Minnesota

shekhar@cs.umn.edu

Hui Xiong
Rutgers University

hui@rbs.rutgers.edu

Pusheng Zhang
Microsoft Corporation

pzhang@microsoft.com

ABSTRACT
Given a query point and a collection of spatial features, a
multi-type nearest neighbor (MTNN) query finds the short-
est tour for the query point such that only one instance
of each feature is visited during the tour. For example, a
tourist may be interested in finding the shortest tour which
starts at a hotel and passes through a post office, a gas sta-
tion, and a grocery store. The MTNN query problem is
different from the traditional nearest neighbor query prob-
lem in that there are many objects for each feature type and
the shortest tour should pass through only one object from
each feature type. In this paper, we propose an R-tree based
algorithm that exploits a page-level upper bound for efficient
computation in clustered data sets and finds optimal query
results. We compare our method with a recently proposed
method, RLORD, which was developed to solve the optimal
sequenced route (OSR) query. In our view, OSR represents
a spatially constrained version of MTNN. Experimental re-
sults are provided to show the strength of our algorithm and
design decisions related to performance tuning.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process

General Terms
Algorithms

Keywords
GIS, MTNN Query, location-based service

1. INTRODUCTION
Widespread use of search engines such as Google Maps

and MapQuest is leading to an increasing interest in devel-
oping intelligent spatial query techniques. For example, a

∗Xiaobin Ma is currently with NCR Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GIS’06, November 10-11,2006, Arlington, Virginia, USA
Copyright 2006 ACM 0-59593-529-0/06/0011 ...$5.00.

traveler may be interested in finding the shortest tour which
starts at a hotel and passes through a post office, a gas sta-
tion, and a grocery store. Therefore, it is critical to design
an intelligent map query technique to efficiently find such a
shortest tour. In this paper, we formalize the above intel-
ligent map query problem as a multi-type nearest neighbor
(MTNN) query problem. Specifically, given a query point
and a collection of spatial features, a MTNN query finds the
shortest tour for the query point such that only one instance
of each feature type is visited during the tour.

In the real world, many spatial data sets include a collec-
tion of instances of spatial features (e.g. post office, grocery
store, and hotel). Figure 1 illustrates a MTNN query. In the
figure, points with different colors represent different spatial
feature types. Given the query point q and a collection
of spatial events represented by black(b) points, white(w)
points and green/gray(g) points, a MTNN query is to find
the shortest tour that starts at point q and passes through
only one instance of each spatial event in the collection as
the shortest route shown in the Figure 1. In this figure, the
solid line string route (q, w12, g3, b11) is a shortest path. All
other dashed line strings represent alternative routes from q
through one point from each feature type.

b1

g10

g2
g12

w15

w14w13

b9

b10

g11
g8

g1

b4

b14

w6B1
b2

w11

w8

g6

b8

b5

g13

w4

w5

w7

g7
g16

g3
w1

w12
w3

g4

b13
g14 g9

g5
g15

b7

b6

b11

b3
w2w10

w9

q

b15

b12

Figure 1: Illustration of a Multi-Type Nearest
Neighbor Query

The nearest neighbor (NN) query problem [1, 2, 4, 10, 18,
20, 24] has been studied extensively in the field of computer
science. A traditional NN query can be stated as follows:
given a point set P = {p1, p2, ...pn} and a query point q in
a vector space, the NN query finds a point pk such that the

distance from q to pk ∈ P is minimized among the distances
from q to pi ∈ P . Many application domains are related to
the NN query. For example, in Geographic Information Sys-
tems (GIS), “find the nearest gas station from my location”
is a typical query that uses a NN query technique. In addi-
tion, NN queries are used for some data analysis techniques
such as clustering.

Recently, many other NN query problems have attracted
great research interest. All nearest neighbor (ANN) query
[3, 5, 11, 12, 25] searches a nearest neighbor in a data set A
for every point in a data set B. K-closest pair query [7, 6, 11,
12] discovers K-closest pairs within which a different point
comes from a different data set. Reverse nearest neighbor
(RNN) query [8, 13, 14, 22, 23] finds a set of data that
is the NN of a given query point. Group nearest neighbor
(GNN) query [17] retrieves a nearest neighbor for a given
set of query points. All of these problems focus on one or
two data types and try to find relationships among data
points within one or two object types. However, for many
application domains, it is the relationship among more than
two types of objects that is important.

In this paper, we study the MTNN query problem. The
MTNN problem can have many variations if spatial and/or
time constraints are imposed on it. For instance, we may
constrain the range of selected object set PO within a given
circle or rectangle, and the path can be from a query point
q to all points in PO and return to q. If we know the
visit order for part or all of the different feature types, it is
a (partially) fixed order MTNN problem. Time constraint
can also be part of the problem. For example, the post
office might be open from 9:00am to 5:00pm so a visit has
to be made during this period. However, our focus is on the
generalized MTNN problem.

Related Work. Previous work on NN can be classified
in two groups. One consists of the main memory algorithms
that are mainly proposed in computational geometry. The
other is the category of secondary memory algorithms which
use R-tree index.

The simplest brute force algorithm can find a NN in O(n)
time. In the early period the main memory algorithms fo-
cused on developing efficient algorithms for data sets with
specific distributions. Cleary analyzed algorithms on a uni-
formly distributed data set that partition the space into a
regular grid in [4]. Bentley et al. used k-d tree to get an
O(n) space and O(log(n)) time query result [9]. Another
partition based approach[19] used the well-known Voronoi
graph. It first precomputed the Voronoi graph for the given
data set. For a given query point q, it just needed to use
a fast point location algorithm to determine the cell that
contained the query point q.

The first R-tree based algorithm[20] for the NN query
problem was a branch-and-bound algorithm in that it searches
the R-tree using a depth first strategy and prunes the search
space with the NN found so far. It basically uses two met-
rics, the MINDIST and MINMAXDIST, to prune the impos-
sible R-tree node in the search as soon as possible. MINDIST
is the distance from query point q to an object O and MIN-
MAXDIST is the minimum of the maximum possible dis-
tances from p to a face of the Minimum Bounding Box(MBR)
containing the object O.

The R-tree search begins at a root node downward to the
leaf node. When necessary, the search will be upward. In a
downward search, all MBRs with a MINDIST greater than

the MINMAXDIST of another MBR will be discarded. In
an upward search, an object with a distance to query point q
greater than the MINMAXDIST of query point q to a MBR
will be discarded and the MBR with a MINDIST greater
than the distance from query point q to an object is also
discarded.

Hjalason et al. employed a priority queue to implement a
best first search strategy in [12]. This algorithm is optimal
in the sense that it visits only the nodes along the path from
the root to the leaf node that contains the NN.

In parallel with our work, Sharifzadeh et al. [21] recently
proposed an Optimal Sequenced Route (OSR) query prob-
lem and provided three optimal solutions: Dijkstra-based,
LORD and R-LORD. Essentially, the OSR problem is a spe-
cial case of the MTNN problem investigated in this paper.
Indeed, the OSR problem can be thought of as imposing a
spatial constraint on the MTNN problem. Specifically, the
visiting order of feature types is fixed for the OSR problem.

Another recently published work [15] proposed a number
of fast approximate algorithms to give sub-optimal solutions
in metric space for Trip Planning Queries(TPQ); this is the
same type of query we call a MTNN query in our paper.

In this paper, we study a generalized MTNN query prob-
lem and provide an optimal solution to the problem. Based
on an R-tree index, we design an algorithm which exploits
a page-level upper bound(PLUB) for efficient pruning at
the R-tree node level. We originally formalized the MTNN
query problem and presented algorithms for both optimal
results and sub-optimal results in a technical report [16].
These algorithms are based on a page-level pruning strat-
egy. In contrast, algorithms proposed for the OSR problem
[21] apply instance-level pruning techniques for reducing the
computation cost. In fact, the R-tree page-level pruning
method can serve as a nice complimentary technique to the
instance-level pruning method, since the R-tree page-level
pruning technique makes better use of the R-tree index for
reducing I/O cost. After discussion of our PLUB pruning
strategy, we will give a detailed comparison of our method
and the RLORD method, one of the solutions proposed by
[21] for the OSR problem, introduced in [21]. Finally we give
experiment results for both our method and the RLORD al-
gorithm on clustered data sets.

Our Contributions. We provide an optimal solution
algorithm for a generalized MTNN problem when the feature
type number is small. In our algorithm, a page-level upper
bound is exploited for efficient pruning at the R-tree node
level. Our experiments show that our method outperforms
RLORD with clustered data sets and that the optimal solu-
tion becomes computationally intractable when the number
of query feature types is large.

Overview. The remainder of this paper is organized as
follows. Section 2 formalizes the MTNN problem. Section
3 presents an R-tree based optimal solution for the MTNN
problem. Section 4 compares the difference of our method
with the RLORD algorithm, using a specific example. The
experimental setup and experiment results are provided in
Section 5. Finally, in Section 6, we conclude our discussion
and suggest further work.

2. PROBLEM FORMULATION
In this section, we introduce some basic concepts, describe

some symbols used in the rest of the paper and give a formal
problem statement for the MTNN query problem.

Let < P1, P2, ..., Pk > be an ordered point sequence and
P1, P2, ..., Pk be from k different (feature) types of data sets.
R(q, P1, P2, ..., Pk) is a route from q though points P1, P2, ...,
and Pk and d(R(q, P1, P2, ..., Pk)) represent the distance of
route R(q, P1, P2, ..., Pk). Similarly, with Ri representing
the tree node of feature type i we define a page-level up-
per bound(PLUB) as d(R(q, R1, R2, ..., Rk)), the longest dis-
tance of route R(q, R1, R2, ..., Rk).

A Multi-Type Nearest Neighbor (MTNN) is defined to
be the ordered point sequence < P ′1, P

′
2, ..., P

′
k > such that

d(R(q, P ′1, P ′2, ..., P
′
k)) is minimum among all possible routes.

d(R(q, P ′1, P
′
2, ..., P

′
k)) is the MTNN distance. A MTNN

query is a query finding MTNNs in given spatial data sets.
The following descriptions characterize a formal definition

for the MTNN query problem.

Problem: The Multi-type Nearest Neighbor (MTNN)
Query

Given:

• A query point, distance metric, k feature types of spa-
tial objects and R-tree for each data set

Find:

• Multi-type Nearest Neighbor (MTNN)

Objective:

• Minimize the length of route from a query point cov-
ering an instance of each feature

Constraints:

• Correctness: The tour should be the shortest path
for the query point and the given collection of spatial
query feature types.

• Completeness: Only the shortest path is returned as
the query result.

3. A PAGE-LEVEL UPPER BOUND (PLUB)
ALGORITHM

In spatial databases, R trees and theirs variants are widely
used for indexing spatial data. In this paper, we propose
PLUB, an R-tree based algorithm, for the MTNN query
problem. Specifically, we design an R-tree based page-level
pruning method to filter out large numbers of spatial ob-
jects. PLUB identifies an optimal solution and its expo-
nential time complexity grows exponentially with respect to
the number of feature types, but not the average number of
instances for feature types.

We have many feature types in a MTNN problem. In or-
der to find the optimal solution, we have to search a space
consisting of all permutations of all feature type objects.
For every permutation, we do the same search steps and get
a route with a shortest distance. Thus for total N permu-
tations, we get N routes. Finally we find the solution to
the MTNN problem by taking the route with the shortest
distance from these N routes. For the sake of convenience,
our discussions are based on a search space consisting of one
permutation of all feature type objects in the following.

For one permutation of feature types t1, t2, . . . , tk, we need
to find the optimal route from the query point through one
point in every type in the order of t1, t2, . . . , tk. In the R-
tree based algorithm we use a branch and bound strategy to

prune and search the space. The algorithm can be divided
into three parts. The first part finds an upper bound for
the R-tree search. The second part prunes the search space
based on R-tree using the current upper bound. The output
of this part is candidate sequences consisting of leaf nodes,
each of which is from one of the R trees. The third part
finds the current MTNN shortest distance from the current
candidate sequence. Figure 2 illustrates these three parts.
We will discuss them in detail in the rest of this section.

Input : K types of spatial objects and R-tree
Distance metrics

Output : MTNN and the shortest path
MTNN
1. step 1: First Upper Bound Search Find the
2. first upper bound of MTNN shortest distance
3. by using a fast greedy algorithm and set current
4. upper bound to be this first upper bound
5. step 2: R-Tree Search Prune search space to
6. find subsets of objects and get candidate
7. sequences for one permutation of feature types
8. step 3: Subset Search Calculate current MTNN
9. shortest distance in current candidate sequences
10. if current calculated MTNN shortest distance
11. shorter than current upper bound
12. then set current upper bound to be current
13. calculated MTNN shortest distance
14. if Search space of some permutations are not
15. examined
16. then Go to step 2
17. else Report current upper bound as the final
18. MTNN shortest distance

Figure 2: The PLUB Algorithm

3.1 First Upper Bound Search
The first step of the MTNN algorithm is to find the first

upper bound for pruning the search space. This upper bound
will determine the pruning efficiency for the R-tree search.
The general requirements for the first upper bound search
strategy are time efficiency and upper bound accuracy. Trade-
offs will be made when designing a MTNN algorithm. In
most cases, we prefer an algorithm with high time efficiency
and normal upper bound accuracy. In this paper, we use a
simple greedy algorithm as follows.

Randomly generate one permutation of feature types, for
example, generate permutation R = (r1, r2, . . . , rk). Search
the NN r1,i1 of query point q in feature type r1 by using a
basic R-tree based NN search method. Then search the NN
r2,i2 of r1,i1 in feature type r2. Repeat this procedure until
all types of features are visited. Finally, we get a path from
query point q going through an exact single point in each
feature type. Calculate the distance of this path and use it
as the first upper bound in the MTNN search. We call this
distance the greedy distance rg.

3.2 R-Tree Search
In spatial databases, the task of an R-tree search is to

prune the search space using a branch and bound approach
on the R-tree index. We call the pruning method used
in this part R-tree page-level pruning. For permutation
R = {r1, r2, . . . , rk} we first use a general NN search strategy
to determine in the R-tree of type r1 the possible leaf node
rectangle set S1 such that d(R(q, Rs1) (Rs1 ∈ S1) is less than
the upper bound distance. Next the rectangle set S1 is used

to determine the possible leaf node rectangle set S2 in the
R-tree of type r2 such that the distance d(R(q, Rs1, Rs2))
(Rs1 ∈ S1, Rs2 ∈ S2) is less than the upper bound distance.
This procedure continues until all R-trees are visited. Fi-
nally, we get a list of candidate leaf node sequences among
which each leaf node contains one type of feature object.
When searching R trees we choose to use a Depth First
Search(DFS) strategy since DFS generates a route distance
faster and we may use the new generated route distance as
an upper bound if it is shorter than the current upper bound
and thus prune R-tree nodes more efficiently.

3.3 Subset Search
In a subset search, we are given subsets of all different

types of objects for one permutation of feature types. For
a specific permutation, all these points in the subsets form
a multi-level bipartite graph. The legal route consists of
points, each of which is from a different level of the graph.
Many search algorithms such as BFS, DFS, Dijkstra, A∗,
IDA∗, SMA∗ etc can be updated and used to find the op-
timal route. We call the methods used in this part point
pruning. In [16], a simple brute force algorithm and a dy-
namic programming method were given. In this paper, we
use the RLORD algorithm[21] as another search method in
our subset search.

3.4 Solution Optimality
Lemma PLUB finds an optimal solution to the MTNN

Query
Proof The first upper bound calculated in step 1 of Fig-

ure 2 is longer than the distance of the optimal solution.
All candidate leaf node sequences pruned by step 2 for a
specific permutation have a PLUB longer than the current
upper bound. Since any d(R(q, P1, P2, ..., Pk)), (P1 ∈ R1,
P2 ∈ R2,...,Pk ∈ Rk), is longer than d(R(q, R1, R2, ..., Rk)),
candidate solutions pruned by PLUB cannot be better than
the solution chosen by PLUB finally. At step 3, we find the
candidate MTNN with the shortest distance from the leaf
node candidate sequences. The smaller of the shortest dis-
tance and the current upper bound becomes the new current
upper bound. If other permutations are not examined, re-
turn step 2. Otherwise, the current upper bound is reported
as the MTNN query optimal solution.

4. COMPARISON OF PLUB AND RLORD

4.1 Comparison by Example
Here, we illustrate our proposed PLUB-based MTNN al-

gorithm and compare it to R-LORD by using an extended
example from [21]. Basically, a MTNN problem reduces to
an OSR problem for a fixed permutation of feature types.
The following discussion is based on a fixed permutation.

In the example of Figure 3 we assume the permutation is
(w, b, g) and the distance metric is the Euclidian distance.
The order of the R-tree is 4. There are three different feature
types represented by black(b), white(w) and green/gray(g)
points. In Figure 3, R(q, w2, b2, g2) is the greedy route and
the radius of the search circle is d(R(q, w2, b2, g2)). q is the
query point represented as 4 and the rectangles represent
the leaf nodes of the R-tree indices for different feature types.
Figure 4 gives the R-tree structure for feature types green,
black and white.

g11

G2

b10

B2

b9

w13 w14

w15
W4

g12
g2

G1
g10

b1

g8

b5

b8

g6

w8

w11
b2

B1 w6

b14

b4

B4

g1

g13

g14
b13

g4
G4

w3
w12

w1
g3
g16

g7

w7

w5

W3

w4

W2

g9

b12

b15

q

w9
w10
W1

w2
B3

b3

b11

b6

b7

g15
g5 G3

Figure 3: An Example for PLUB and RLORD

W4W3W2W1

(feature white) root

(feature black) root

B4B3B2B1

G4G3G2G1

(feature green) root

Figure 4: R-trees

The first step in PLUB is the same as in R-LORD: look
for the first upper bound distance. The algorithm first
finds NN w2 of q in all objects of feature type w. Then
b2 of feature type b is found as the NN of w2. Next, g2

of feature type g is found as the NN of b2. Finally we get
greedy route Rg (q, w2, b2, g2) with greedy distance Dg =
d(R(q, w2, b2, g2)) = 3.37 as the current upper bound Du.

In the R-tree search, leaf node W1 is inside the upper
bound circle, so the partial route is expanded to be (q, W1).
Next, the R-tree of feature type b is searched, and leaf nodes
B1, B3, B4 are added to the current partial route (q, W1)
because the PLUB of partial routes (q, W1, B1), (q, W1, B3)
and (q, W1, B4) is less than the current upper bound. Then
we search the R-tree of feature type g and find that the
PLUB of only one route (q, W1, B1, G1) is less than the
current upper bound. Thus in the subset search step, we
only need to look for the shortest route from query point q
through points inside leaf nodes W1, B1 and G1. Table 1
gives the detailed calculation results.

Upper Bound Eliminated
W1 B1 G1 2.04 N
W1 B1 G3 6.2 Y
W1 B1 G4 4.27 Y
W1 B3 G1 7.53 Y
W1 B3 G3 6.54 Y
W1 B3 G4 4.29 Y
W1 B4 G1 4.02 Y
W2 B1 3.7 Y
W2 B3 G4 3.43 Y
W2 B4 5.17 Y
W4 B1 4.08 Y
W4 B3 7.94 Y
W4 B4 7.56 Y

Table 1: Calculation Results of PLUB Leaf Node
Sequences

When searching candidate MTNNs in route R(q, W1, B1,
G1)), the first iteration does 4 point-to-point(P − P) calcu-
lations and finds partial routes R(q, g2), R(q, g10), R(q, g12)
and R(q, g13). Similarly, iteration 2 gives partial routes
R(q, b12, g13), R(q, b1, g13), R(q, b2, g2) and R(q, b15, g13)
with 20 (P − P) calculations. Finally we get R(q, w10,
b15, g13), R(q, w9, b15, g13), R(q, w2, b2, g2), and R(q, w11, b1,
g13) with 20 P-P calculations. After this step, the current
MTNN is R(q, w11, b1, g13) with distance 3.16. This proce-
dure takes 44 total P-P calculations.

In R-LORD, initially the partial route set is S = {(g2), (g3),
(g4), (g5), (g7), (g9), (g10), (g12), (g13), (g14), (g15), (g16)}. In
the first iteration, every black point x inside Tc (range query
Q1) and MBR(Q2) (range query Q2) is checked for every
green/gray point in S. If D(p, x)+D(x, P1)+L(PSR) ≤ Tc,
then point x is added to the head of the partial route. When
x is b1, for example, we get partial route (b1, g10), (b1, g13).
By using property 2, only partial routes with shortest length
will be kept. So, (b1, g13) is put into a new partial route
set. At the end of iteration 1, we have partial route set
{(b1, g13), (b2, g2), (b3, g3), (b4, g3), (b6, g14), (b7, g14), (b11, g3),
(b12, g13), (b13, g14), (b14, g3), (b15, g13)}. By using property
2, we dramatically reduce the size of the partial route set.
However, property 2 can only be used in iteration 1. Fol-
lowing a similar procedure, each of subsequent (m − 2) it-
erations will check every point of the feature type inside
Tv (range query Q1) and MBR(Q2) (range query Q2) for
every partial route in the current partial route set S. Fi-
nally we get route set {(w1, b11, g3), (w2, b2, g2), (w3, b11, g3),
(w8, b1, g13), (w9,b15, g13), (w10, b15, g3), (w11, b1, g13), (w12,
b11, g3), (w13, b1, g13), (w14,b1, g13), (w15, b1, g13)} and R(q,
w11, b1,g13) is shortest among all routes. This procedure
takes a total of 298 P-P calculations.

To summarize, PLUB needs 17 rectangle-to-rectangle dis-
tance calculations and 44 P −P distance calculations in this
example. RLORD takes 298 P−P calculations. Apparently
PLUB requires less computation.

As seen in the above illustration, the PLUB method uses a
page-based pruning approach, while R-LORD uses a point-
based search method. If the number of points inside the
query range in R-LORD becomes big, the size of the partial
route set will increase significantly. For every partial route
inside a current partial route set, every point of the follow-
ing feature type inside the current query range in R-LORD
needs to be checked, which takes a lot of time.

4.2 Comparison by Cost Models
In this section, we provide algebraic cost models for PLUB

and RLORD. The MTNN query is a CPU intensive task, and
the CPU cost is at least as important as the I/O cost for
data sets with medium and high numbers of feature types of
spatial data. We will explore the I/O cost model and give a
whole cost analysis for PLUB and RLORD.

As we discussed in section 3, the costs for the proposed
PLUB include (1) the search of the R-tree leaf nodes inside
the current search range, (2) page-level leaf node candidate
sequence pruning and (3) a point-level candidate MTNN
search. Therefore, the cost model also has three compo-
nents: (1) cost of the page-level R-tree traversal, (2) cost
of the page-level leaf node candidate sequence search, and
(3) cost of the point-level candidate MTNN search. We also
identify the cost components of RLORD as (1) cost of the
page-level R-tree traversal and (2) cost of the point-level

candidate MTNN search. In PLUB, the page-level leaf node
candidate sequence search will possibly prune many more
candidate sequences so the cost of the point-level candidate
MTNN search will possibly be much smaller than that in
RLORD. In the following, we discuss the cost models for
PLUB and RLORD respectively.

4.2.1 A Cost Model for PLUB
Let CR−T be the cost of the R-tree traversal to find all

R-tree leaf nodes intersected by the circle with radius of the
current upper bound, centered at the query point. In ad-
dition, let CLF be the page-level leaf node search cost for
the R-tree candidate leaf node sequences and CPN be the
point-level search cost for candidate MTNNs in candidate
leaf node sequences. Thus the total cost of PLUB is ex-
pressed as CR−T + CLF + CPN .

PLUB first traverses all the R-trees to look for leaf node
rectangles that intersect with the current search range. Let
CPR be the cost of the point-to-rectangle distance calcu-
lations and Nt,i be the number of all the tree nodes vis-
ited in the feature type i tree traversal. Thus CR−T =
CPR×ΣNt,i(i = 1, ..., k) (k is the number of feature types).
It is worth noting that CR−T is the same for PLUB and
RLORD.

Next PLUB does a page-level search for leaf node can-
didate sequences. Let NR−R be the number of leaf nodes
visited in candidate leaf node sequences, and CR−R be the
cost of rectangle-to-rectangle distance calculation. Then we
can get the cost of leaf node candidate sequence pruning as
CLF = NR−R × CR−R.

Finally we search for candidate MTNNs in the remaining
leaf node candidate sequences. Let FLS be the leaf node
candidate sequence filtering ability ratio, nl be the average
point number in leaf node for all feature types and pi be
the page number of feature type i. We use Cls to denote
the cost of the MTNN search in single leaf node sequence to
arrive at the following cost:

Cls = nl + (nl × nl) + nl + (nl × nl) + ... + nl + (nl × nl)
(k − 1 items)

The condensed form is:

(k − 1)(nl × (nl + 1))

Thus the total point-level candidate MTNN search cost is
CPN = Cls ×Πpi × (1− FLS), (i = 1, ..., k)

4.2.2 A Cost Model for RLORD
Let CR−T be the cost of R-tree based coarse pruning, i.e.,

finding all data points inside the initial upper bound, and
let CPS be the cost of the candidate MTNN search in the
remaining subsets. The cost CR−T is the same as for PLUB.
The cost CPS is:

nl × (p1 + nl × p1 × p2 + (p2 + nl × p2 × p3) + ... + (pk−1 +
nl × pk−1 × pk)

The total cost of RLORD is CR−T + CPS .

4.2.3 A Cost Model Comparison of PLUB and RLORD
Lemma PLUB is more efficient than RLORD for clustered

data sets
Proof There are many factors to consider when compar-

ing the cost models of PLUB and RLORD. We may consider

MeasurementsMTNN Query
Processing

Analysis

Algorithms

Parameters: Feature Types, CN, BCF, ICF

PLUB−based RLORD−based
Algorithms

Datasets
Generation

Datasets
Spatial

CN BCF ICF

Figure 5: The Experiment Setup and Design

simplifying these models by focusing on the dominant fac-
tors and therefore removing some terms. In PLUB we may
assume that CR−T +CLF << CPL and get the approximate
cost model as:

(k − 1)nl × (nl + 1)×Πpi × (1− FLS).

Similarly, if we assume CR−T << CPS , R-LORD’s cost
model becomes:

nl × (p1 + nl × p1 × p2 + (p2 + nl × p2 × p3) + ... + (pk−1 +
nl × pk−1 × pk)

In random or approximate random data sets, FLS is small,
and PLUB takes more time. The opposite is true in clus-
tered data sets, where FLS tends to be bigger. That is when

1− FLS < nl × (p1 + nl × p1 × p2 + (p2 + nl × p2 × p3) +
... + (pk−1 + nl × pk−1 × pk))/((k − 1)nl × (nl + 1)× πpi)

PLUB runs more efficient than RLORD.
Later in the discussion of the experimental results, we’ll

refer to this formula 1, and refer to the left side as the re-
maining ratio (r− ratio), and the right side as the compar-
ison ratio (c− ratio).

5. EXPERIMENTAL RESULTS
In this section, we present the results of various experi-

ments to evaluate our PLUB based algorithm and the RLORD
based algorithm, both of which give optimal solutions, for
the MTNN query in different clustered data sets. Specifi-
cally, we demonstrate comparisons of the PLUB and RLORD
based algorithms with respect to execution time under data
sets with different properties such as feature type number,
data set density and compactness of clusters.

5.1 The Experimental Setup
Experiment Platform Our experiments were performed

on a PC with a 3.20GHz CPU and 1 GByte memory run-
ning the GNU/Linux Ubuntu 1.0 operating system. All al-
gorithms were implemented in the C programming language.

Experimental Data Sets We evaluated the performance
of both the PLUB and RLORD based algorithms for the
MTNN query with synthetic data sets, which allow better
control towards studying the effects of interesting parame-
ters. All data points in the synthetic data sets were dis-
tributed over a 10000X10000 plane and formed clustered
data sets. In order to reduce the effect of query point
positions, we took 25 query points on a sample data set
space, each of whose x and y axis values were from 3000.00

to 7000.00 respectively and with each point placed 1000.00
away from its neighbor in the x and y axis directions, and
calculated the average running time, c− ratio and r− ratio
as the final reported values. There were four different pa-
rameters in our experimental setup.

• Feature Type(FT): Feature type numbers from 2 to 7
to show the scalability of both algorithms. In real GIS
applications, the feature type number is normally less
than 10.

• Between-cluster Compactness Factor(BCF): to control
the minimum distance of cluster centers, i.e. the com-
pactness between clusters.

• In-cluster Compactness Factor(ICF): to control the com-
pactness within a cluster.

• Cluster Number(CN): to control the density of the
data sets.

For a given cluster number ClusterNumber, we generated
a data set as follows. First a simplified estimated maximum
number of cluster center distance was determined by for-
mula maxCCDist = 10000.0/(int)(

√
ClusterNumber + 1).

Next the minimum cluster center distance was calculated as
follows minCCDist = BCF ×maxCCDist. Finally, we de-
cided the cluster size by ClusterSize = ICF ×minCCDist
The number of objects inside each cluster is within p/2 and
p, 84 in our experiment setting, that is the order of R-tree
leaf node. Thus the expected number of objects inside a
single cluster is about 61. For a data set of 20 clusters, the
total object number is therefore about 1220.

Experiment Design Figure 5 describes the experimen-
tal setup to evaluate the impact of design decisions on the
relative performance of both the PLUB and RLORD based
algorithms for the MTNN query. We evaluated the perfor-
mance of the algorithms with synthetic data sets generated
according to the rules discussed above. We observed the
performance of both PLUB and RLORD based algorithms
under different data set settings in term of execution time.
Our goal was to answer the following questions: (1) How do
changes in feature type number affect scalability in PLUB
and RLORD? (2) How do differences in data density affect
the performance of PLUB and RLORD? (3) How does com-
pactness between clusters affect the performance of PLUB
and RLORD? (4) How does compactness within clusters af-
fect the performance of PLUB and RLORD?

5.2 A Performance Comparison of PLUB and
RLORD With Different Feature Types

This section describes the scalability improvement of PLUB
in terms of feature types in clustered data sets, compared to
RLORD. We set the fixed cluster number at 20, the BCF at
0.1, which means the minimum cluster center distance was
10% of maxCCDist and the ICF at 0.1, which means the
size of a cluster was 10% of the minimum distance between
two clusters. This is a highly clustered data set in that the
size of clusters is 1% of maxCCDist. We change the number
of feature types from 2 to 7 and don’t show the results with
feature type number 1 because that case would reduce the
MTNN query problem to the classic NN problem, making
PLUB and RLORD no more than classic NN algorithms.

Figure 6 compares the scalability of PLUB and RLORD
in terms of numbers of feature types. More specifically, this

2 3 4 5 6 7

0

50

100

150

200

250

300

350

400

450

500

Feature Type(BCF=0.1,ICF=0.1,CN=20)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

Figure 6: The Scalability of PLUB and RLORD in
Terms of the Number of Feature Types

20 50 100 200
0

50

100

150

200

250

300

Cluster Number(FT=7,BCF=0.1,ICF=0.5)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

Figure 7: A Performance Comparison of PLUB and
RLORD On Data Sets with Different Densities

figure illustrates that the execution time change with the
increase of data types from 2 to 7 when the minimum dis-
tance between clusters is small (BCF=0.1) and cluster size is
small (ICF=0.1) When the data type number is 2,3,4 and 5,
there is no big difference of performance between PLUB and
RLORD. When the data type number is 6 and 7, PLUB runs
less time than RLORD. This experiment shows that PLUB
is more scalable than RLORD in highly clustered data sets.

5.3 The Effect of the Data Set Density
Here, we show how the density of data sets affects the

performance of PLUB and RLORD. We tested PLUB and
RLORD with feature type number 7, BCF 0.1, and ICF 0.5,
which means the size of a cluster was 50% of the minimum
distance between two clusters. The changing variable is the
cluster number, with assigned values of 20, 50, 100 and 200.
Because there are almost the same average number of data
points inside clusters for data sets of different cluster num-
bers, these data sets on the same space represent data sets
with different densities.

Figure 7 illustrates the performance of PLUB and RLORD
on different densities of data sets. As can be seen, under all
data set densities with cluster numbers 20, 50, 100 and 200,
the execution time of PLUB is always less than RLORD.
In this figure we cannot see significant change in execution
time, or any apparent trend for either PLUB and RLORD,
which means the data set density appears to have almost no
effect on execution time of PLUB and RLORD in clustered
data sets with current settings.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

(a) BCF(FT=7,ICF=0.3,CN=50)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−22

−20

−18

−16

−14

−12

−10

(b) BCF(FT=7,ICF=0.3,CN=50)

R
at

io
(lo

g)

r−ratio
c−ratio

Figure 8: The Effect of the Between-Clusters Com-
pactness Factor

5.4 The Effect of the Between-Cluster Com-
pactness Factor

In this section, we show the effect of the between-cluster
compactness factor (BCF) on the performance of PLUB and
RLORD. We set the feature type number at 7, ICF at 0.3
and cluster number at 50, which is medium density in our
experiments. We raised parameter BCF from 0.1 to its high-
est value 1.0.

Figure 8(a) illustrates the performance of PLUB and RLORD
on data sets with different BCF. We can see that both the
execution times and the trends of PLUB and RLORD are
very different. The execution time of RLORD has an ap-
parent down trend with the increase of BCF from 0.1 to 1.0.
However, the execution time of PLUB doesn’t change too
much. With BCF values smaller than some value, about
0.8 in this specific experimental setting, PLUB runs faster.
When BCF increases beyond this value, RLORD is faster.

Figure 8(b) gives the results of formula 1. The curve r −
ratio shows the ratio of the left side of formula 1 and the
curve c−ratio presents the ratio of the right side of formula
1. Both ratio values are log values because they are tiny
numbers, which means the pruning ability is very high. A
seemingly contradictory result evident in this figure is that
increases in the r − ratio, which means there is a decrease
in the pruning ratio, does not lead to increases in execution
time. The explanation is that when BCF increases, there
are fewer leaf nodes that intersected with the current search
bound. Thus the total number of possible candidate leaf
node sequences decreases dramatically, thereby reducing the
execution time. The key point to note here is that when the
r−ratio is smaller than the c−ratio, PLUB runs faster but
when the remaining ratio is greater than the comparison
ratio, PLUB takes more time than RLORD. In other words,
the relative trends of r− ratio and c− ratio only determine
the relative execution time of PLUB and RLORD.

5.5 The Effect of the In-Cluster Compactness
Factor

In this section, we show the effect of the in-cluster com-
pactness factor (ICF) on the performance of PLUB and
RLORD. We set the feature type number at 7, BCF at 0.1
and cluster number at 50, or medium density. We changed
parameter ICF from 0.1 to 0.5.

Figure 9 illustrates the performance of PLUB and RLORD
on data sets with different ICF. We can see the execution

0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

ICF(FT=7,BCF=0.1,CN=50)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

Figure 9: The Effect of the In-Cluster Compactness
Factor

times of PLUB and RLORD are very different. With BCF
= 0.1, ICF has little influence on the execution time of ei-
ther PLUB or RLORD, which means if the minimum allowed
distance minCCDist of clusters is very small, compared to
the maximum allowed distance maxCCDist, in our exper-
imental settings, the effect of BCF is dominant among all
factors. From this figure the only apparent trend is that
PLUB always runs much faster than RLORD under these
experimental settings.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated a multi-type nearest neigh-

bor (MTNN) query problem which can be applied to many
application domains. We proposed an R-tree based solution
to the MTNN query. In our algorithm, a page-level upper
bound (PLUB) is exploited for efficient pruning at the R-
tree node level. Finally, experimental results are provided to
show the strength of the proposed algorithm and design deci-
sions related to performance tuning. In our experiments, we
compare the performances of PLUB and RLORD in terms
of execution time. When data sets are compact, PLUB out-
performs RLORD. When data sets go to random-distributed
in space, RLORD runs faster than PLUB.

As for future work, we plan to evaluate the I/O cost of
PLUB and do further experiments using real data sets. In
addition, we believe that the PLUB algorithm has potential
for applications related to real road networks.

7. REFERENCES
[1] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel. A

cost model for nearest neighbor in high-dimensional
data space. 1997.

[2] K. Cheung and A. Fu. Enhanced Nearest Neighbor
Search on the R-tree. ACM SIGMOD Record, pages
16–21, 1998.

[3] K. Clarkson. Fast Algorithms for the
All-Nearest-Neighbors Problem. In FOCS, 1983.

[4] J. G. Cleary. Analysis of an algorithm for finding
nearest neighbor in Euclidean space. ACM
Transactions on Mathematical Software, pages
183–192, June 1979.

[5] A. Corral, Y. Manolopoulos, and M. Vassilakopoulos.
Closest Pair Queries in Spatial Databases. In ACM
SIGMOD, 2000.

[6] A. Corral, Y. Manolopoulos, and M. Vassilakopoulos.
Algorithms for Processing K-closest-pair Queries in

Spatial Databases. Data and Knowledge Engineering,
pages 67–104, 2004.

[7] A. Corral, M. Vassilakopoulos, and Y. Manolopoulos.
The impact of Buffering on Closest Pairs Queries
Using R-Trees. In Proceedings of Advances in
Databases and Information Systems (ADBIS’01),
pages 41–54, 2001.

[8] C.Yang and K.-I. Lin. A index structure for efficient
reverse nearest neighbor queries. In ICDE, 2001.

[9] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An
algorithm for finding best matches in logrithmic
expected time. ACM Transactions on Mathematical
Software, pages 209–226, September 1977.

[10] H. Herhatosmanoglu, D. A. I. Stanoi, and A. Abbadi.
Constrained Nearest Nieghbor Queries. In SSTD,
2001.

[11] C. Hjaltason and H. Samet. Incremental Distance Join
Algorithms for Spatial Databases. In ACM SIGMOD,
1998.

[12] C. Hjaltason and H. Samet. Distance Browsing for
Spatial Databases. ACM Transactions on Database
Systems, pages 265–318, 2 1999.

[13] F. Korn and S. Muthukrishnan. Influence sets based
on reverse nearest neighbor queries. In ACM
SIGMOD, 2000.

[14] F. Korn, S. Muthukrishnan, and D. Srivastava.
Reverse nearest neighbor aggregates over data stream.
In VLDB, 2002.

[15] F. Li, D. Chen, M. Hadjieleftherious, G. Kollios, and
S. Teng. On trip planning queries in spatial databases.
In SSTD, 2005.

[16] X. Ma, S. Shekhar, H. Xiong, and P. Zhang.
Exploiting a page-level upper bound for multi-type
nearest neighbor queries. In Technique Report,05-008,
University of Minnesota, 2005.

[17] D. Papadias, Y. T. Q. Shen, and K. Mouratidis.
Group nearest neighbor queries. In ICDE, 2004.

[18] A. Papadopoulos and Y. Manolopoulos. Performance
of Nearest Neighbor Queries in R-trees. In ICDT,
pages 394–408, 1997.

[19] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer Verlag, 1985.

[20] N. Roussopoulos and F. V. S. Kelly. Nearest Neighbor
Queries. In SIGMOD, 1995.

[21] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi.
The optimal sequenced route query. In University of
Southern California, Computer Science Department,
Technical Report 05-840, January 2005.

[22] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse
nearest neighbor queries for dynamic databases. In
SIGMOD workshop on Research Issues in data mining
and knowledge discovery, 2000.

[23] I. Stanoi, M. Riedewald, D. Agrawal, and A. E.
Abbadi. Discovery of influence sets in frequently
updated databases. In VLDB, 2001.

[24] Y. Tao, D. Papadias, and Q. Shen. Continuous
Nearest Neighbor Search. In VLDB, 2002.

[25] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao.
All-Nearest-Neighbors Queries in Spatial Databases.
In SSDBM, 2004.

