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Abstract

A data warehouse stores current and historical records consolidated from multiple

transactional systems. Securing data warehouses is of ever-increasing interest, especially

considering areas where data are sold in pieces to third parties for data mining practices.

In this case, existing data warehouse security techniques, such as data access control,

may not be easy to enforce and can be ineffective. Instead, this paper proposes a data

perturbation based approach, called the cubic-wise balance method, to provide privacy

preserving range queries on data cubes in a data warehouse. This approach is motivated

by the following observation: analysts are usually interested in summary data rather

than individual data values. Indeed, our approach can provide a closely estimated sum-

mary data for range queries without providing access to actual individual data values.

As demonstrated by our experimental results on APB benchmark data set from the

OLAP council, the cubic-wise balance method can achieve both better privacy preserva-

tion and better range query accuracy than random data perturbation alternatives.
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1. Introduction

Data warehouse is built primarily as an open system to support On-line

Analysis Processing (OLAP), which requires the open nature of data ware-

house. However, with the growth of OLAP, the range of data warehouse users

is growing steadily to include customers, partners or even third parties. This

leads to privacy concern [1] and the needs of proper access control policies. In-
deed, inappropriate disclosure of sensitive data stored in the underlying data

warehouses may result in the breach of individual�s privacy and jeopardize

the organization�s interest. It is well recognized that access control alone is

insufficient in controlling information disclosure, because information not di-

rectly released may be inferred indirectly by manipulating legitimate queries

about aggregated information.

Data cubes in a data warehouse are used to support data analysis. Specifi-

cally, a data cube is used to represent data along some measures of interest. In
general, a data cube can be 2-dimensional, 3-dimensional, or higher dimen-

sional. Each dimension represents an attribute in the data warehouse and the

cells in the cube represent the measure of interest. Range query is one of the

most important queries of data cube. Range queries apply a given aggregation

operation over selected cells where the selection is specified as contiguous

ranges in the domains of some of the attributes. Range-Sum query is finding

the summation values over selected cells of a data cube where the selection is

specified by a range of contiguous values for each dimension. For example,
to find the total sales of stationary items, which have item codes ranging from

1201 to 1300, between day 130 and 159 in the western outlets, with branch-no

ranging from 45 to 89 is a range-sum query.

Consider that a single data item in a data cube is not likely to be accessed

alone, but a number of data are often aggregated to give summarized informa-

tion and the trends of the database [2]. Preserving the confidential information

in individual data cells while still being able to provide an accurate estimation

of aggregations is the main focus of this paper. More specifically, our objectives
are listed as follows:

(1) Privacy preservation: The individual cell data in a data cube is sensitive

and must be protected from unauthorized users.

(2) High accuracy: Query results with high accuracy are valuable for business

decision making.

(3) Accessibility: Most OLAP applications demand instant responses to

interactive queries, although those queries usually aggregate a large
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amount of data [3,4]. Hence, there should be no unnecessary restriction

or data access control on the data.

To achieve the above three objectives, in this paper, we propose a cubic-

wise balance data perturbation method to provide privacy preserving range

queries on data cubes. This method is different from random data perturba-
tion alternatives, since it provides a purposive perturbation on data cells in

a way such that a closely estimated summary data for range queries can be

obtained without providing access to the actual individual data values. As

demonstrated by our experimental results on APB benchmark data set from

the OLAP council, the cubic-wise balance method can achieve both better pri-

vacy preservation and better range query accuracy than random data pertur-

bation alternatives.

Overview. The remainder of this paper is organized as follows: Section 2
presents related works. In Section 3, we introduce the cubic-wise balance

method for privacy preserving range query in data cubes. And how to deal

with null cells is discussed in detail in Section 4. Experiment results are de-

scribed in Section 5. Finally, in Section 6, we draw conclusions and suggest

future works.
2. Related work

Related literature can be grouped into four categories: The first category de-

scribes data access control. The second category is about cardinality-based

security control in data cubes. In addition, the third category addresses privacy

preserving data mining. Finally, a fourth category introduces a summary of

security-control in statistical databases.
2.1. Data access control

Data access control is a traditional technique of protecting data in

the data warehouse. Data access control is based on the notion of privileges –

the authorization to perform a particular operation. Privileges are required to
gain access to information in the data warehouse. However, it is well known

that data access control alone is insufficient in controlling information leakage,

because information not released directly may be inferred indirectly by manip-

ulating legitimate queries about aggregated information.

Moreover, in data warehouses, data access control is not defined in terms of

tables, but dimensions, hierarchical paths and granularity levels. Hence, data

access control may bring up inconsistent problems [5].
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2.2. Cardinality-based security control

Wang et al. [6] proposed a cardinality-based security control in data cubes.

By exploring special structures of data cube operator, such as group-by,

cross-tab and sub-total, the author derived cardinality-based sufficient condi-

tions for securing data in data cubes. The main idea of this method is to enforce
query restriction. Only those queries, which is regarded as safe, will be

answered.

Such a query restriction method can protect the data cube from information

leakage through repeating queries. However, due to the query restriction, some

legal queries may not satisfy the specified security requirements. As a result,

these queries have to be denied or modified for resubmission. Furthermore,

the overhead of judging whether a query is safe or not is unavoidable. As we

know, the response time is critical in OLAP systems. Any extra procedures
can potentially slow down the response time.
2.3. Privacy preserving data mining

Privacy preserving data mining [7] has drawn considerable attentions [8–11].

The basic idea of privacy preserving data mining is to preserve data privacy by

adding random noise, while making sure that the random noise still preserves

the �signal� from the data so that original data distributions can still be accu-
rately estimated. However, in data cubes, our concern is to preserve the aggre-

gate values for range queries but not data distributions.

Recently, Kargupta et al. [12] proposed a random matrix-based spectral fil-

tering technique to challenge the privacy preserving approaches based on ran-

dom data perturbation. However, this filtering technique cannot be effectively

applied to compromise our approach for the following three reasons. First, the

effectiveness of this filtering technique is based on the assumption which re-

quires that the eigenvectors of the covariance matrix of the perturbed data
are orthogonal to the eigenvectors of the covariance matrix of the original

data. Consider that the cubic-wise balance method is based on purposive per-

turbation instead of random data perturbation. Hence, this assumption can be

invalid in our method. Second, if there is no prior knowledge of perturbed data

distributions, which is true in our approach, this filtering approach needs to

estimate the variance of the perturbed data. Even if this variance can be

correctly estimated, the process for estimating the variance adds complexity

and increases computation cost significantly. Finally, the filtering approach
requires the computation of eigenvalues of covariance matrix. For a large

amount of data, such as a data cube, this computation cost can be

intractable.
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2.4. Security control in statistical databases

In general, statistical databases also deal with multi-dimensional datasets

and concern about statistical summarizations over the dimensions of the data

sets. In the literature of statistical databases, data privacy has been extensively

studied. An excellent survey is provided in [13].
The privacy preserving techniques proposed by the statistical database com-

munity can be classified into the following three general approaches: query

restriction, data perturbation, and output perturbation.

(1) Query restriction: The query restriction category includes two techniques.

The first one restricts the size of query results [14]. The second technique

controls the overlap of successive queries [15].

(2) Data perturbation: The data perturbation category includes preserving
probability distribution, such as data swapping [16] and replacing the ori-

ginal database with a sample from the same distribution [17]; the fixed-

data perturbation, such as adding noise to numerical attributes [18]

and categorical attributes [19].

(3) Output perturbation: The output perturbation category includes random-

sample queries [20] and varying-output perturbation [21].

Query restriction approach tries to protect confidential information by
enforcing certain limitations on unsafe queries. In contrast, output perturba-

tion approach perturbs the answer to user queries. Algorithms of both ap-

proaches are enforced only after queries arrive, which will slow down the

response time of the OLAP system.

The preserving probability distribution method in data perturbation cate-

gory treats the statistical database as a sample from a given population

that has a given probability distribution. However, in data cubes, we aim at

preserving the aggregation values of range queries instead of probability
distributions.

The fixed-data perturbation for numerical attributes, also known as value

perturbation, is more attractive to us, because all queries are based on the per-

turbed data set and no overhead of query processing is introduced. Such a fea-

ture fulfills our goal of accessibility and privacy preservation.
3. Data value perturbation based privacy preserving methods

In this section, we first briefly introduce traditional random data value per-

turbation based privacy preserving methods and some related issues. Next, we

present our cubic-wise balance data perturbation method and show why this
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method provides protection for individual data cells in data cubes and can still

achieve desirable results for range queries even if data perturbation is enforced.

Finally, we discuss the security and other issues related to our method.

3.1. Random data value perturbation

Privacy preservation based on random data perturbation was developed by

Traub et al. [18]. This method works as follows. Assume that the true value of a

given attribute (e.g., sales) of an entity k is yk. Using this method, the result of a

range-sum query on yk will be T ¼
Pn

k¼1xk, where xk = yk + ek, ek is a random

variable with the expectation E(ek) = 0, the variance VarðekÞ ¼ r2
e , and {ek} are

independent.
3.1.1. Scaling problem

The random value perturbation method replaces the actual value xi by

xi + a. The security level achieved by this method depends on the choice of

a. If a is a random value generated in an absolute range, the random value per-

turbation method may encounter the scaling problem. For example, if the stock

a customer bought is 15,000, adding 8000 to the value would be sufficient to

hide the actual value. However, if perturbing 150,000 by 8000, the actual data

protection would be considered limited.

An alternative approach is to use relative value perturbation instead of abso-
lute value perturbation. Relative value perturbation means that the perturba-

tion is generated from a relative value, say 20%. For instance, if the value of

a cell in a data cube is x, the perturbation generated for this cell is within

the range [�jxj20%, jxj20%].

3.1.2. Query size

By the law of large numbers, the random value perturbation method can

increase the range query accuracy by applying queries to large query sets. In
other words, the error bound of query results depends on the size of the query

sets. Hence, the query performance would be degraded dramatically when the

query size becomes small.
3.2. A cubic-wise balance method

Here, we propose a cubic-wise balance method to provide privacy preserv-

ing range queries on data cubes. This method is based on data perturbation.
However, unlike random data perturbation approaches, the cubic-wise bal-

ance method provides a purposive perturbation on individual cells in a data

cube. Before describing our method, we first define some terminologies as

follows.
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3.2.1. Terminologies

Definition 1. A data cube X with d dimension is a d-dimensional array. In this

array, the size of dimension i is ni which represents the number of distinct val-

ues for this dimension. Thus, this data cube consists of n1 · n2 · � � � · nd cells,

and each cell can be represented as X[X1,X2, . . . ,Xd], where 0 6 Xi < ni and

1 6 i 6 d.
Definition 2. The input to a range-sum query can be expressed as

(l1:h1, . . . ,Id:hd), where li is the lower bound of the range query and hi is the

upper bound of the query in ith dimension of the data cube, for 1 6 i 6 d.

A data cube is usually not fully occupied. Some cells are empty, i.e., these

cells contain NULL values. Hence, a cube sparsity can be calculated as
the number of empty cells

the total number of cells
. In the real-world data warehouses, a data cube sparsity

usually ranges from 60% to 90%.

Definition 3. In a d-dimensional data cube, a unit cube is defined as a d-

dimensional sub-cube and the size of each dimension is two. In other words,

there are two distinct values in each dimension.
Definition 4. A cell X[x1,x2, . . . ,xd] in a unit cube is the anchor cell if all others

cells X[y1,y2, . . . ,yd] in this unit cube satisfy xi 6 yi 6 xi + 1, where 1 6 i 6 d.
Example 1. Fig. 1 gives an illustration of the concepts of data cube, query

range, and unit cube. We observe that

• this is a 2-dimensional data cube and the size of each dimension is 6;

• cells: X[3,1] = 102, X[5, 3] = 41;

• the cube sparsity ¼ 22
6�6

¼ 61%;

• the rectangle with thicker lines indicates the query result of the range query
Q(1:4,1:5);

• the three shaded areas are unit cubes. For example, {X [3, 3],X[3,4],X[4, 3],
X[4, 4]} is a unit cube and X[3, 3] is the anchor cell of this unit cube.
X1
0 1 2 3 4 5

0 147

1 123 102
X2 2

3 193 5 117 32 41
4 195 103 29 38
5 49

9

Fig. 1. An illustration of the concepts of data cube, query range, and unit cube.
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3.2.2. 2-Dimension data cubes

The key idea of the cubic-wise balance method is illustrated as follows. In a

unit cube, for each perturbation value, we have a counter-value to cancel its

effect, so that the summation of the perturbation within the unit cube is main-

tained at zero. In this section, we present how the cubic-wise balance method

works on 2-dimensional data cubes.
The working mechanism of the cubic-wise balance method for perturbing

2-dimensional data with size m · n is described as follows:

• Suppose X[x1,x2] is a non-null cell of a 2-dimensional data cube, where

0 6 x1 < m, 0 6 x2 < n, and X[x1,x2] = t. Let X[x1,x2] be an anchor cell

which decides a unit cube, then other cells in the same unit cube are

X[y1,y2], where x1 6 y1 6 x1 + 1, and x2 6 y2 6 x2 + 1. Let the relative per-

turbation range be [0,D], where D > 0. For each unit cube, this method gen-
erates a random data a where �jtjD 6 a 6 jtjD] and assigns +a to the anchor

cell X[x1,x2]. The method assigns +a to X[y1,y2] if ((y1 + y2) � (x1 + x2))

mod2 = 0, otherwise assigns �a to X[y1,y2].
Example 2. Fig. 2 shows a 4 · 4 2-dimensional data cube. Assume that all cells

are non-null cells and the relative perturbation range is [0,D] where D > 0.

Let us start from cell X[0,0], which decides a unit cube containing four cells:

X[0, 0], X[0, 1], X[1,0], and X[1, 1]. If d0,0 is a random value generated within the

range [�jX[0, 0]jD, jX[0, 0]jD], the perturbation added to this unit cube is shown

on the left side of Fig. 2(a). In the figure, the gray area indicates the unit cube.
Next, we consider cell X[1,0], which decides a unit cube shown as the gray area

on the right side of Fig. 2(a), where d1,0 is a random value generated within the

range [�jX[1, 0]jX, jX[1, 0]jD].
Once we have the same perturbation process for all the cells, the perturbed

data set is shown in Fig. 2(b). As illustrated, unlike the random value pertur-

bation, the perturbation approach in the cubic-wise balance method is not
0 1 2 3 
0 +d0,0 -d0,0

1 -d0,0 +d0,0

2 
3 

Step1 

0 1 2 3 
0 +d0,0 -d0,0+d1,0 -d1,0

1 -d0,0 +d0,0-d1,0 +d1,0

2 
3 

Step2 

(a) The First Two Steps.

0 1 2 3 
0 +d0,0 -d0,0+d1,0 - d1,0+ d2,0 -d2,0+d3,0

1 -d0,0 

+d0,1

+d0,0-d1,0 

-d0,1+d1,1

+d1,0-d2,0 

-d1,1+d2,1

+d2,0-d3,0 

-d2,1+d3,1

2 -d0,1 

+d0,2

+d0,1-d1,1 

-d0,2+d1,2

+d1,1-d2,1 

-d1,2 +d2,2

+d2,1-d3,1 

-d2,2+d3,2

3 -d0,2 

+d0,3

+d0,2-d1,2 

-d0,3+d1,3

+d1,2–d2,2 

-d1,3 +d2,3

+d2,2-d3,2 

-d2,3+d3,3

(b) Perturbation Results.

Fig. 2. An illustration of the cubic-wise balance method on 2-dimensional data cube.
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random but a constraint perturbation. As shown in Fig. 2(b), after perturba-

tion, each cell is added several perturbations and the final perturbation of a cell

is the summary of all these perturbations. Therefore, different cells end up with

very different perturbation values.

Now the question is how the cubic-wise balance method guarantees high

accuracies for range-sum queries? To illustrate this, let us consider a range-
sum query Q(1:3,1:2) on the perturbed data shown in Fig. 2(b). In the figure,

the query range is indicated by the gray area. Assume that S(Q) is the true

answer for the query Q based on actual data and S 0(Q) is the answer based

on perturbed data, then S 0(Q) � S(Q) = d0,0 � d3,0 � d0,2 + d3,2, since most of

the perturbations on the cells belonging to this query are cancelled with each

other. As a result, the query result on the perturbed data is very close to the

query result on the actual data, especially for large queries.

3.2.3. Multi-dimensional data cubes

The cubic-wise balance method can be easily extended to deal with d-dimen-

sional data. In this case, the unit cube is also d-dimensional and the size of each

dimension is two. In order to cancel the effect of perturbation added to one

cell, the perturbation values assigned to any two neighboring cells have

opposite signs. More specifically, if the perturbation +a is assigned to

X[x1,x2, . . ., xd] which is the anchor cell, then the perturbation +a is assigned

to X[y1,y2, . . . ,yd] if (
P

yi �
P

xi) is an even number; otherwise,�a is assigned
to X[y1,y2, . . . ,yd].

Fig. 3 shows the pseudocode of the perturbation algorithm of the cubic-wise

balance method. Essentially, this algorithm is an iterative process. For each

iteration, all cells in an unit cube are perturbed. Non-anchor cells are handled

separately as shown in Fig. 4.

3.2.4. Error bound analysis

In this subsection, we present the error bound analysis of the cubic-wise bal-
ance method. Error bound refers to the maximum possible difference between

the actual result of a range-sum query Q and the result of the same range-sum

query on the perturbed data cube.

Theorem 1. Given a 2-dimensional dataset, suppose all perturbations di,j are

random data uniformly distributed within [�a,a] where a>0. Given a range query
Q(l1:h1, l2:h2), S(Q) denotes the summation of query Q before perturbation while

S 0(Q) denotes the summation of the same query, then jS(Q) � S 0(Q)j 6 4a.
Proof. As illustrated in Fig. 2(b), we have known that the final perturbation

Di,j of cell [i, j] is the summation of several perturbations:

Di;j ¼ di�1;j�1 � di�1;j � di;j�1 þ di;j



Fig. 3. The perturbation algorithm of the cubic-wise balance method.
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Then

S0ðQÞ � SðQÞ

¼
Xh1
i¼l1

Xh2
j¼l2

Di;j ¼
Xh1
i¼l1

Xh2
j¼l2

ðdi�1;j�1 � di;j�1 � di�1;j þ di;jÞ

¼
Xh1
i¼l1

fðdi�1;l2�1 � di;l2�1 � di�1;l2 þ di;l2Þ þ ðdi�1;l2 � di;l2

� di�1;l2þ1 þ di;l2þ1Þ þ � � � þ ðdi�1;h2�1 � di;h2�1 � di�1;h2 þ di;h2Þg

¼
Xh1
i¼l1

ðdi�1;l2�1 � di;l2�1 � di�1;h2 þ di;h2Þ

¼ ðdl1�1;l2�1 � dl1;l2�1 � dl1�1;h2 þ dl1;h2Þ
þ ðdl1;l2�1 � dl1þ1;l2�1 � dl1;h2 þ dl1þ1;h2Þ þ � � �
þ ðdh1�1;l2�1 � dh1;l2�1 � dh1�1;h2 þ dh1;h2Þ

¼ dl1�1;l2�1 � dl1�1;h2 � dh1;l2�1 þ dh1;h2

Since �a 6 di,j 6 a, we get

jdl1�1;l2�1 � dl1�1;h2 � dh1;l2�1
þ dh1;h2 j 6 4a

Thus, jS(Q) � S 0(Q)j 6 4a. h



Fig. 4. The algorithm for data perturbation in non-anchor cells of an unit cube.
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Theorem 1 indicates that, for any range-sum query over 2-dimensional data

cubes, the error bound is a constant value, which is solely determined by the

upper bound of the perturbation range.

For 3-dimensional data cubes, we can also derive the final perturbation
value of cell [i, j,k] as

Di;j;k ¼ �di�1;j�1;k�1 þ di�1;j�1;k þ di�1;j;k�1 þ dd;j�1;k�1 � di;j;k�1

� di;j�1;k�1 � di�1;j;k þ di;j;k

Similarly, we can derive jS(Q) � S 0(Q)j 6 23a. In addition, for a perturbed
d-dimensional dataset, the error bound of a range-sum query is given by the

following corollary.

Corollary 1. For a d-dimensional dataset, under the assumption of Theorem 1,

jS(Q) � S 0(Q)j 6 2da.
3.2.5. Query size

As previously noted, for the random data perturbation method, the range-

sum query accuracy depends on the query size. A larger query size usually leads

to more accurate query results. In contrast, the cubic-wise balance method is

not only able to protect the actual value by keeping a large perturbation in indi-

vidual cells, but also guarantee high accuracy for range-sum queries regardless
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of whether the query size is large or small. The reason is that the effect of per-

turbations will be cancelled out for all unit cubes contained in a range query

result.
3.2.6. Security control

The cubic-wise balance method is a data value perturbation based method.
Data access is through the perturbed data. Hence, the snoopers cannot improve

their estimation of the value of an individual cell by repeating queries [13].

Also, there are several techniques which can estimate the actual values from

partial information:

• It was shown in [22] that it is possible to fully recover original distribution

from non-overlapping, contiguous partial sums, if the distribution is

�smooth�.
• There is work on estimating attribute distributions from partial information

[23], or on approximating queries on sub-cubes by higher-level aggregations

[24].

• Another potential security attack can come from the known marginal infor-

mation. For example, in the 2-dimensional case, the correct values of sums

of rows and the sums of columns are known.

However, the above techniques do not deal with information that has been
deliberately perturbed. In our method, because the data access is based on

the perturbed data cube, the individual cell values being estimated by partial

information are perturbed values but not actual values. Hence, the above tech-

niques cannot effectively compromise our cubic-wise balance method.
4. Handling null cells

In reality, the sparsity of data cubes is usually between 60% and 90%. There-

fore, more than half of data cells should contain null values. If the cubic-wise

balance method is applied to perturb a data cube without considering the pres-

ence of null cells, the sparsity of the perturbed data cube will decrease to 0. This

will lead to high storage cost. In order to keep the sparsity of original data

cubes, null cells must be taken into the consideration.
Example 3. Given a 2-dimensional unit cube, the anchor cell is at the up-left
corner. In the unit cube, there are two null cells and two non-null cells, as

shown in Fig. 5(a). Suppose the perturbation value for this unit cube is a.

Fig. 5(b) is the perturbation result without considering the presence of null

cells. As shown, two null cells become non-null cells with value +a.



+α

+α

+α- α

-α -α -α

-α

null cell non-null cell 

(a) 

(b) (c) (d) 

Fig. 5. 2-Dimensional unit cube with two null cells.
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One simple method to deal with null cells is to let null cells still be null after

the perturbation process. The result is shown in Fig. 5(c). The perturbations

added to the unit cube cannot cancel each other. To deal with this problem,

we change one �a to +a. The result is shown in Fig. 5(d), the sum of pertur-

bations added to this unit cube is still zero.

Since the perturbation values added to a specific unit cube are the same, only
the signs (+ or �) of values are different. The problem of how to efficiently

counterbalance the perturbations added to a unit cube is actually equivalent

to the problem of how to assign the sign of perturbations.

4.1. Sign assignment problem

The problem on how to optimally assign the sign of perturbations to a unit

cube can be described as follows.
Sign Assignment Problem (SAP): Given a subset S of a d-dimensional unit

cube, the SAP is to find an assignment of signs to S, such that the absolute

value of the sum of signs for all range queries is minimal.

Let Q be a range query in a unit cube. The absolute value of sum of signs of

all cells in the query Q is equal to Hs(Q):

HsðQÞ ¼
X
xi2Q

signðxiÞ
�����

����� ð1Þ

where sign(xi) = +1 if xi is assigned a positive sign, otherwise sign(xi) = �1.

Therefore, the problem can be formulated as the following optimization:

min
fsignðxiÞjxi2Sg

X
allQ

HsðQÞ
 !
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If an assignment for S satisfiesHs(Q) = 1 if the size of Q is odd andHs(Q) = 0 if

the size of Q is even, this assignment is a strict optimal problem. However, the

strict optimal solution may not always be achievable.

Example 4. Let S = {(1,1,0), (1,0,1), (0,1,1), (1,1,1)}. Fig. 6(a) is the result of

simply forcing the original null cells to be null after the perturbation process.
Fig. 6(b) shows a better solution to S. In Fig. 6(a), there are three + and only

one �, thus the sum of perturbations in the unit cube is +2a (suppose a is the

perturbation value). However, in Fig. 6(b), the number of + and � is the same,

so the sum of perturbations in the unit cube is zero.

Although Fig. 6(b) is an optimal solution, it is not a strict optimal solution,

since there exists a range query Q(1,1,0:1) such that Hs(Q) = 2.
4.2. NF-completeness of the SAP

Here, we illustrate the NP-completeness of the SAP. By suitable transforma-

tion, SAP is equivalent to Partial Parallel Searchability (PPS) problem which

was proposed by Srinivasan [25].
PPS problem: Suppose a database consists of St segment types. Given a set

of queries Q, each of which requires different segment types of data from St,

find an optimal distribution of St into k nodes, such that the number of

searches to answer all queries once is minimum.

As we have known that SAP is to find an optimal sign assignment of S such

that the number of sum of signs for all queries is minimal. Thus, SAP is equi-

valent to the PPS problem with two nodes where the segment types St corre-

sponds to the subset S of a unit cube, and the two different signs are
mapped to two nodes.

It has been proved in [25] that PPS is an NP-complete problem. Since SAP is

equivalent to the PPS problem, SAP is also an NP-complete problem.
-1+1

+1

+1

(0,0,0)
(1,0,0)

(0,1,0)

(0,0,1)

-1+1

+1

−1 

(a) (b) 

Fig. 6. 3-Dimensional unit cube with four null cells.
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4.3. A heuristic assignment algorithm for SAP

Since the SAP is an NP-complete problem, we propose a Heuristic Assign-

ment Algorithm (HAA) to deal with this problem.

The HAA is based on the observation of 2-dimensional plane:

(1) If and only if there are only two non-null cells and the two cells are at the

ends of a diagonal line (as shown in Fig. 5(a)), the two cells should be

assigned opposite signs.

(2) In order to minimize the sign sum of a query, two neighboring cells

should be assigned opposite signs.

So the HAA first deals with all 2-dimensional planes of a range query, then

process the rest unassigned non-null cells whose signs will be decided by the
neighboring cells. The pseudocode of HAA is presented in Fig. 7.

The computation cost of the HAA algorithm is mainly on examining all 2-

dimensional planes of a d-dimensional unit cube. Thus, the complexity of HAA

algorithm is bounded by 2d�2C2
d , which is the number of 2-dimensional planes.

Since it is unnecessary to apply HAA algorithm to null unit cubes (all cells of

the unit cube are null), the sparser the data cube is, the smaller the overhead of

the HAA algorithm will have.

To measure the performance of the HAA algorithm, we provide a baseline
algorithm, called the Basic Assignment Algorithm (BAA), which simply forces

null cells to be null after the perturbation process (as shown in Fig. 5(c)). BAA

is simple, but the two opposite signs assigned to non-null cells cannot be coun-

terbalanced with each other and potentially will degrade the query accuracy.

To evaluate the performance of sign assignment algorithms, we employed a

measure HsðQdÞ:

HsðQdÞ ¼ HsðQdÞ
number of queries

ð2Þ

where

HsðQdÞ ¼
X
allQd

�����
X
xi2Qd

signðxiÞ
����� ð3Þ

For a given unit cube, Hs(Q
d) calculates the sum of all signs of all d-dimen-

sional range queries (denoted as Qd). HsðQdÞ indicates the average sign sum of

all d-dimensional queries. Therefore, the smaller HsðQdÞ is, the better the solu-
tion is.

In addition, we compare Hs(Q) (defined in Formula 1) of HAA and BAA

for each query and see how many queries favor BAA or HAA, respectively.



Fig. 7. The Heuristic Assignment Algorithm (HAA) for SAP.

1230 Y. Liu et al. / Information Sciences 176 (2006) 1215–1240
For a specific query, if Hs(Q)BAA > Hs(Q)HAA, HAA is better; if

Hs(Q)BAA < Hs(Q)HAA, BAA is better; otherwise they perform equally. For

example, Fig. 5(a) is a subset of a 2-dimensional unit cube, S = {(0,1),

(1,0)}. With BAA, the sign assignment for S is shown in Fig. 5(c), and with

HAA, the sign assignment for S is shown in Fig. 5(d). Given a range query
Q = (0:1,0:1), the absolute value of sum of signs for BAA is 2 while the abso-

lute value of the sum of signs for HAA is 0. Thus, for the query Q, HAA is

considered better than BAA.

Case study. For a 3-dimensional unit cube, there are 23 cells, each cell could

be null or non-null. In total, there are 22
3 ¼ 256 possible cases. In other words,

a 3-dimensional unit cube has 256 distinct subsets.

Furthermore, for a given 3-dimensional unit cube, jQ1j = 12 (there are 12

1-dimensional queries), jQ2j = 6 and jQ3j = 1.
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We calculate Hs(Q
d) for all possible d-dimensional range queries over all

possible 3-dimensional unit cubes.

Table 1 shows the performance of BAA and HAA for 3-dimensional unit

cubes. It showed that HAA performs better than BAA except for 1-dimen-

sional query. For all 3-dimensional queries, the average value of the sign

sum of a query was only 0.5 when using HAA, but the value increased to larger
than 1 when using BAA.

Table 2 shows the performance of each algorithm on queries. Although

BAA was slightly better for 1-dimensional queries, HAA performed much bet-

ter for higher dimensional queries. 11.72% of 2-dimensional queries favored

HAA while only 4.69% of 2-dimensional queries favored BAA.

Tables 3 and 4 present the performance results of 4-dimensional unit cube.

As the number of query dimension increased, the performance of HAA

improved significantly. For 4-dimensional query, if using BAA, the average
sign sum of a query was 1.57. This was reduces to 0.57 if using HAA. Also over

40% queries favored HAA while only 0.77% queries favored BAA.
Table 1

Hs of 3-dimensional unit cube

Hs Q1 Q2 Q3

BAA 0.5 0.75 1.09

HAA 0.57 0.61 0.5

Table 2

Queries of 3-dimensional unit cube

Q1 Q2 Q3

BAA is better 3.68% �4.69% 0

HAA is better 0 11.72% 28.91%

Table 3

Hs of 4-dimensional unit cube

Hs Q1 Q2 Q3 Q4

BAA 0.5 0.75 1.09 1.57

HAA 0.59 0.65 0.72 0.57

Table 4

Queries of 4-dimensional unit cube

Q1 Q2 Q3 Q4

BAA is better 4.61% 6.19% 5.84% 0.77%

HAA is better 0 10.76% 24.32% 43.96%
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5. Experimental evaluation

In this section, we present an experimental evaluation of the cubic-wise bal-

ance method. After a brief description of the experimental setup and perfor-

mance evaluation measures, we present the performance of the cubic-wise

balance method with respect to parameters including data perturbation range,
data cube sparsity, and query size.

Experimental data sets. The experimental data sets were generated using the

APB Benchmark program from [26]. These data sets had four dimensions: cus-

tomer, product, channel, and time. The size of each dimension was 900 (cus-

tomer), 9000 (product), 9 (channel), and 17 (time), respectively. The measure

of interest was dollar, with range [0,699] and data type short. Cells with �1 dol-

lar value were empty cells and were treated as missing or uncounted. The over-

all sparsity of the data cube was 20%. Hence, the file size of the data cube was
900 · 9000 · 9 · 17 · 0.2 · 2 = 495,720,000 bytes = 0.49 GB. The original size

of the data file generated by the APB Benchmark was around 15G (ASCII

text). We read each record in this file and then filled in the corresponding cells

in the data cube.

Experimental platform. Our experiments were performed on a PC with a

Pentium III 733 MHz, 40G hard disk, and 256 Mbytes of memory.
5.1. Evaluation measures

In this paper, we employed two measures: privacy and the range query accu-

racy for evaluating the performance of the cubic-wise balance method.

5.1.1. A measure of privacy

The measure of privacy should indicate how closely the actual value can be

estimated. Since the final perturbation added to a cell by the cubic-wise bal-

ance method is the sum of several perturbations, the density function of the
final perturbation is unknown. We can only estimate the amount of privacy

at cell i by using the difference between xi (the actual value) and yi (the value

after perturbation). Based on expectation and large number theory, we define

a privacy factor to measure how close the actual value can be estimated as

follows:

F p ¼
1

N

XN
i¼1

jyi � xij ð4Þ

In Eq. (4), N is the total number of cells, the privacy factor Fp is considered

as the amount of privacy. The amount of privacy calculated in Eq. (4) does not

take into account the value of the actual data. To accurately quantify privacy,
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we need a method which takes such information into account. A modified ver-

sion of formula Eq. (4) is given below:
F c ¼
1

N

XN
i¼1

jyi � xij
jxij

ð5Þ
The value Fc is the average amount of perturbations (relative to x-value),
and is considered as the amount of relative privacy. Accordingly, the relative

privacy is also modified by a factor x, at cell i, that is, a cell with actual value

x and relative privacy will generate perturbations that are (uniformly) distri-

buted over an interval of [�jxjD, jxjD]. For example, if Fc = 50%, it means that

in average, the difference between actual values and perturbed values is about

50% of the actual values.
5.1.2. A measure of accuracy

The difference between the sum of the perturbed values and the actual values

over a range query Q is referred to as the accuracy loss of Q. Let true_sum be

the sum of all actual values of cells in query Q, and answer be the sum of all

perturbed values. Formula (6) defines the relative accuracy loss of Q, dQ. As

a result, we define a measure of accuracy as Eq. (7) shows:

dQ ¼ answer � true sum
true sum

��� ��� ð6Þ

F a;Q ¼ 1

1þ dQ
ð7Þ
Note that the accuracy factor Fa,Q lies between 0 and 1 (inclusive). If the

accuracy factor is close to one, the range query has a high query accuracy. If

the accuracy factor is close to zero, the query has a low query accuracy. When

the estimated answer equals to the true_sum, accuracy factor is 1 (100%).

5.2. Experimental design

There are two major issues related to the experimental design as follows:

• Data perturbation range. We applied relative perturbation range to generate

perturbations. For example, if the relative perturbation range is [0, 50%],

and suppose a cell value is a, the perturbation of this cell is uniformly

and randomly generated within the range [�50%jaj, 50%jaj].
• The baseline of performance. We compared our method with the random

value perturbation method proposed in [18]. We call such a value
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perturbation as traditional perturbation. With the traditional perturbation

method, the perturbation is relative to the value of a cell, so perturbations

added to cells with different values are different.
5.3. Experimental results

In this section, we present experimental results to show the performance of

the cubic-wise balance method in terms of privacy preservation and accuracy

achieved.
5.3.1. The effect of data perturbation range

First, we illustrate the effect of different perturbation ranges on privacy pres-
ervation. In this experiment, we fixed the data cube sparsity at 60% and fixed

the lower bound of perturbation range at zero while increasing the upper

bound of perturbation range from 10% to 100%. Then we observed the

achieved average privacy.

Fig. 8 shows the privacy performance of the cubic-wise balance method and

the traditional perturbation method when the upper bound of perturbation

range is increased. In the figure, it was not surprising to see a trend that the pri-

vacy values of both methods were increased with the increase of the upper bound
of the relative perturbation ranges, since higher perturbation can bring better

privacy preservation. Also, we observed that the achieved privacy of the cu-

bic-wise balance method was systematically better than that of the traditional

perturbation method. We also observed that the change of perturbation ranges

affected the achieved privacy of the cubic-wise balance method much more than

the traditional perturbation method. When the perturbation range increased
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from [0,10%] to [0,100%], the privacy of the traditional perturbation method
was increased from 0.04 to 0.5, while the privacy of the cubic-wise balance meth-

od was increased from 0.3 to 4.6. Finally, with the same perturbation range, the

privacy of the cubic-wise balance method was much higher than that of the tra-

ditional perturbation method, especially when the perturbation range was large.

5.3.2. The interactive effect between privacy preservation and query accuracy

This experiment compared the query accuracy between the traditional per-

turbation method and the cubic-wise balance method at the same level of pri-
vacy. Because it was almost impossible to get exactly the same privacy value for

different methods, we treated all privacy values falling into the same small

range as the same level. For example, if the privacy values of different methods

fall into the same small range [0.8,0.9], we considered these values were at the

same level. In this experiment, the data cube sparsity was fixed at 60%. Also,

we generated 600 range-sum queries with the query size between 50 and

1000. The average query accuracy of these queries was reported and compared.

Fig. 9 shows the accuracy of the cubic-wise balance method and the tradi-
tional perturbation method with the change of privacy values. As can be seen,

the accuracy of cubic-wise balance method was significantly and systematically

better than that of the traditional perturbation method. Also, with the increase

of privacy values, the accuracy of the traditional perturbation method de-

creased dramatically. In contrast, the accuracy of the cubic-wise balance meth-

od was almost not affected by the change of privacy values.

5.3.3. The effect of data cube sparsity

To test the effect of data cube sparsity on the performance of the cubic-wise

balance method, we fixed the perturbation range as [0,30%] for the cubic-wise

balance method and [50%,100%] for the traditional perturbation method. In
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this experiment, we generated 600 range-sum queries with the query size be-
tween 50 and 1000.

Fig. 10(a) and (b) shows the achieved privacy values and accuracy values of

the cubic-wise balance method and the traditional perturbation method with

the change of data cube sparsity. As can be seen, the achieved privacy of the

cubic-wise balance was consistently better than the privacy of the traditional

perturbation method, while the accuracy of the cubic-wise balance method

was significantly and systematically better than that of the traditional pertur-

bation method at different data cube sparsity. Another observation was that,
the less sparsity the data cube was, the better that the accuracy could be

achieved for each method evaluated.

5.3.4. The effect of query size

Here, we illustrate the effect of changing query sizes. In this experiment, we

fixed the data cube sparsity at 60% and kept privacy values at the same level,
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[0.7,0.8]. The query size was changing from small (<50) to large (>1000). We

generated 600 range-sum queries for each query size and compared the average

query accuracy of these queries.

Fig. 11 shows the accuracy performance of the cubic-wise balance method

and the traditional perturbation method when the query size is increased. As

can be seen, the accuracy of the cubic-wise balance method was significantly
and systematically better than that of the traditional perturbation method.

The accuracy of the traditional perturbation method depended a lot on the

query size. When the query size was small, the accuracy was as low as 80%.

Only when answering large range queries, the traditional perturbation method

could obtain relatively high accuracy. In contrast, the accuracy of the cubic-

wise balance method was consistently over 96% even for small query size.

5.3.5. A summary of experimental results

Several major results are summarized as follows:

• The accuracy of the traditional perturbation method is very poor when the

query size is small. However, the cubic-wise balance method can achieve

high query accuracy even when the query size is small.

• The query accuracy of the traditional perturbation method is significantly

affected by the data cube sparsity, perturbation ranges and query sizes. In

contrast, the query accuracy of the cubic-wise balance method is relatively
insensitive to these parameters.

• The privacy of the cubic-wise balance method is systematically better than

the privacy of the traditional perturbation method. And the cube sparsity

and perturbation ranges affect the privacy of the cubic-wise balance method

much more than that of the traditional perturbation method.

The high accuracy achieved by the cubic-wise balance method is due to the

fact that the way of cubic-wise method adding perturbations to cells enables
most of the perturbations of a range-sum query be counter-balanced. In other

words, the difference between the answer of a range-sum query based on per-

turbed data and the answer based on actual data is small, thus the accuracy

loss is small.

Discussions: We now address some limitations of the cubic-wise balance

method.

Since response time is important in OLAP application, we materialize data

cubes for better efficiency. Indeed, materializing data cubes is not an uncom-
mon technique to achieve better performance. Harinaryan et al. [27] stated that

there are two basic approaches to facilitate OLAP. One is materializing the

data cube in an multi-dimensional database (MDDB) while the raw data is

in relational data warehouse. The other is to use relational data base systems

and let users directly query the raw data. The MDDBs retain a significant
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performance advantage, but are not very scalable, although performance in

relational database systems can be improved dramatically by materializing

the data cube into summary table. Therefore, we acknowledge that materializ-

ing data cubes raises the concern of scalability. The time complexity of the cu-

bic-wise balance approach is 2k · n1 · � � � · nk where k is the number of

dimensions and ni is the size of ith dimension of a data cube. The cost is rela-
tively high for large data cube.

However, this is only one time expense for a data cube, and the subsequent

query response time is not affected. Furthermore, once the perturbed data cube

is created, the update cost is very low. Only the small block which contains the

updated cell needs to be recomputed. For OLAP applications, the query re-

sponse time is rather more critical. In contrast, many other privacy preserving

methods, such as query restriction, require extra processing time each time

when answering a query. This additional processing time will significantly slow
down the response time.

In fact, the similar scalability problem also exists in pre-computing [28]. For

example, the time of pre-computing may stretch in days in very large cases [29].

Parallel computing is one of the general techniques which has been used to effi-

ciently handle the increase in data sizes [30–32]. However, the scalability of the

cubic-wise balance method should be further considered in the future work.
6. Conclusions and future work

In this paper, we present a purposive value perturbation approach, called

the cubic-wise balance method, for privacy preservation in data cubes. The

goal is to provide an accurate estimation of the answer for range-sum queries

while being able to preserve the confidential information of individual data cell

in a data cube. With this method, the whole data cube is perturbed only once

and all data access through the perturbed data cube rather than through the
original data cube. The first benefit of this method is that no additional data

access restriction is required on the perturbed data cube. Furthermore, our

experimental results show that the cubic-wise balance method can achieve both

better privacy preservation and better range query accuracy than the tradi-

tional random data perturbation method. Finally, as demonstrated by our

experimental results, our cubic-wise balance method meets the three design

goals including privacy preservation, high accuracy, and accessibility.

There are several directions for future work on this topic: Firstly, the cost of
cubic-wise balance method is relatively high for higher dimensional data cube.

There may be a way to improve the scalability of the proposed method. Sec-

ondly, it will be interesting to study privacy preservation in data cubes for

other query types, such as range-max query and range-min query, for the sake

of practical applications.
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