
Co-Preserving Patterns in Bipartite Partitioning for Topic Identification

Tianming Hu ∗ Hui Xiong † Sam Yuan Sung ‡

Abstract

The claimed advantage of describing a document data
set with a bipartite graph is that partitioning such a
graph yields a co-clustering of words and documents.
The topic of each cluster can then be represented by
the top words and documents that have highest within-
cluster degrees. However, such claims may fail if
top words and documents are selected simply because
they are very general and frequent. In addition, for
those words and documents across several topics, it
may not be proper to assign them to a single cluster.
To that end, this paper introduces a new bipartite
formulation that incorporates both word hypercliques
and document hypercliques as super vertices. By co-
preserving hyperclique patterns during the clustering
process, our experiments on real-world data sets show
that better clustering results can be obtained and the
cluster topic can be more precisely identified. Also,
we illustrate an application of the partitioned bipartite
to search engines, returning clustered search results for
keyword queries. We show that the topic of each cluster
with respect to the current query can be identified more
accurately with the words and documents from the
patterns than with those top ones from the standard
bipartite formulation.
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1 Introduction
In text categorization, typically the data is arranged as a
word-document co-occurrence matrix. Most clustering
algorithms focus on one-way clustering, i.e., cluster one
dimension of the table based on similarities along the
second dimension. Such a duality between document
and word clustering can be naturally formulated in a
bipartite graph, with documents and words modeled
as vertices on two sides respectively [1]. Finding an
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optimal partitioning in such a bipartite gives a co-
clustering of documents and words. It is expected
that top documents and words in the same cluster can
represent its topic, where top vertices usually refer to
those with highest within-cluster degrees.

However, such claims may fail if the cluster is not
pure enough or it includes words/documents across mul-
tiple topics. Some documents are top simply because
they contain many general words with high degrees.
Others may span several topics and it is improper to
give them a hard classification. When it comes to words,
it gets worse. Quite a few words come with multiple
meanings, hence it is unreasonable to classify them to
a single class. For instance, given a collection of docu-
ments with topics including business and health, it may
not be appropriate to assign word ‘cell’ to a single class.
In fact, it can appear in documents of any topic, with
meaning ‘cell phone’ or ‘cancer cell’.

To perform natural clustering and to precisely cap-
ture the cluster topic, first we need to identify those
micro-sets of words/documents that are very similar
among themselves and, as whole, representative of their
corresponding topics. Meanwhile, we need to ensure
that they would not be separated into different clusters
during the clustering process. Second, as for those doc-
uments and words across several topics, they should be
allowed to go to more than one cluster.

In this paper, we exploit hyperclique patterns [8]
to define such micro-sets. Hyperclique patterns truly
possess such desirable property: the objects in a hy-
perclique pattern have a guaranteed level of global pair-
wise similarity to one another as measured by the cosine
or Jaccard similarity measures [9]. We propose a new
bipartite formulation for co-preserving patterns, where
word hypercliques and document hypercliques are rep-
resented by super vertices on two sides of the bipartite
respectively. Our approach, CO-preserving PAtterns in
bipartite Partitioning (COPAP), is compared with the
standard bipartite formulation on real-world document
data sets from different domains. The experimental re-
sults show that we can make improvement on clustering
results in terms of various external measures and the
topic can be identified more precisely.



Finally, due to the high affiliation within hyper-
clique patterns, the pattern preserving partitioned bi-
partite naturally lends itself to various applications in
search engines. For instance, instead of a long ranked
list for keyword queries, it is better to return clustered
search results by topics. We demonstrate such an appli-
cation of the COPAP method and show that the topic
of each cluster with respect to the current query can
be identified more accurately with the words and docu-
ments from the patterns than with those top ones from
the standard bipartite formulation.

Overview. The rest of this paper is organized as
follows. Section 2 describes background and related
work. In Section 3, we introduce the details of the CO-
PAP method. Section 4 describes an application of the
COPAP method in search engines. Experimental results
of co-clustering are reported in Section 5, together with
a demonstration on returning clustered search results.
Finally, we draw conclusions in Section 6.

2 Background and Related Work

In this section, we describe related work and introduce
some background information including document clus-
tering and hyperclique patterns.

2.1 Document Clustering
In general, clustering algorithms can be divided into

two categories: hierarchical and partitional. Using
highly affiliated subsets of documents as starting points,
[7] proposed the HIerarchical Clustering with PAttern
Preservation (HICAP) algorithm and showed that its
clusters are more interpretable than other hierarchical
methods. As for the partitional category, probably
K-means is the most widely used method. As a
modification, bisecting K-means has been proposed
in hierarchical clustering of documents and produces
competitive results [6]. Graph-theoretic techniques have
also been considered for clustering. They model the
word-document datasets by a graph whose vertices
correspond to documents or words. The duality between
document and word clustering can be naturally modeled
using a bipartite, where documents and words are
modeled as vertices on two sides respectively [1].

2.2 Hyperclique Patterns
In this paper, hyperclique patterns are what we pre-

serve during clustering. They are based on the concepts
on frequent itemsets. Let I = {i1, i2, ..., im} be a set of
distinct items. Each transaction T in database D is a
subset of I. We call X ⊆ I an itemset. The support
of X , denoted by supp(X), is the fraction of transac-
tions containing X . If supp(X) is no less than a user-
specified threshold, X is called a frequent itemset. The

confidence of association rule X1 → X2 is defined as
conf(X1 → X2) = supp(X1 ∪ X2)/supp(X1). To mea-
sure the overall affinity among items within an itemset,
the h-confidence was proposed in [8]. Formally, the h-
confidence of an itemset P = {i1, i2, ..., im} is defined as
hconf(P ) = mink{conf(ik → P − ik)}. Given a min-
imum threshold hc, an itemset P ⊆ I is a hyperclique
pattern if and only if hconf(P ) ≥ hc. A hyperclique
pattern P can be interpreted as that the presence of
any item i ∈ P in a transaction implies the presence
of all other items P − {i} in the same transaction with
probability at least hc. A hyperclique pattern is a max-
imal hyperclique pattern if no superset of this pattern
is a hyperclique pattern.

2.3 Applications to Search Engines
Pattern preserving partitioned bipartites can also play

a role in search engines. Instead of returning a long
ranked list of documents for keyword queries, it is bet-
ter to give the user a quick view of the whole results,
say, by returning clustered search results by topic. [3]
returns a set of topic sensitive lists by computing a set
of PageRank vectors biased using a set of representative
topics. Vivisimo(http://vivisimo.com) provides clus-
tered search results based on distinct frequent words.
Within the cluster, the documents are still shown ac-
cording to their original ranks. However, a frequent
word may not represent a topic and it may even be
meaningless. Here for each topic(cluster), we can show
only the documents in the patterns and use them for
generating topical words.

3 COPAP: Co-Preserving Patterns in Bipartite
Partitioning

Our approach COPAP is based on the bipartite graph
partitioning with hyperclique patterns as super vertices.
So the objects in the hyperclique pattern will not be
separated during graph partitioning. Figure 1 gives the
overview of the algorithm. Detailed description is given
later in this section.

3.1 Mining Maximal Hyperclique Patterns
To apply clustering algorithms, a document data set is

usually represented by a matrix by extracting significant
words from documents. The matrix A’s non-zero entry
Aij indicates the presence of word wi in document dj ,
while a zero entry indicates an absence. Given A, if we
treat words as transactions and documents as items, we
can find maximal hyperclique patterns of documents.
Next, we transpose A, where each row/transaction is
for a document and each column/item for a word. In
this case, we can identify maximal hyperclique patterns
of words. For mining maximal hyperclique patterns, we



Input:
D: a data set represented by a word-document matrix.
αw: a minimum support threshold for words.
θw: a minimum h-confidence threshold for words.
αD: a minimum support threshold for documents.
θD: a minimum h-confidence threshold for documents.
K: the desired number of clusters.

Output: C: the resulting result.

Variables:
MD: the set of maximal document hypercliques.
LD: the set of documents not included in MD.
MW : the set of maximal word hypercliques.
LW : the set of words not included in MW .
BG: a bipartite graph.

Steps
1. MD= MaximalHypercliquePattern(αD, θD, D)
2. LD = UncoveredObjects(MD, D)

3. MW= MaximalHypercliquePattern(αw , θw, DT )
4. LW = UncoveredObjects(MW , D)
5. BG = BipartiteGraph(MW , LW , MD, LD, D)
6. C = GraphPartition(BG, K)

Figure 1: Overview of the COPAP Algorithm

employ a hybrid approach proposed in [4], which ex-
ploited key advantages of both the depth first search
strategy and the breadth first search strategy for effi-
cient computation.

3.2 Generating the Bipartite
First some notations for general graph representation.

A graph G = (V, E) is composed of a vertex set V =
{1, 2, ..., |V |} and an edge set {(i, j)} each with edge
weight Eij . The graph can be stored in an adjacency
matrix M , with entry Mij = Eij if there is an edge
(i, j), Mij = 0 otherwise.

Given the m × n word-by-document matrix A, the
standard bipartite graph G = (V, E) is constructed
as follows. First we order the vertices such that
the first m vertices index the words while the last n
index the documents, so V = VW ∪ VD, where VW

contains m vertices each for a word, and VD contains
n vertices each for a document. Edge set E only
contains edges linking different kinds of vertices, so the

adjacency matrix M may be written as
(

0, A
AT , 0

)
. In

our case, with the word hyperclique set MW and the
document hyperclique set MD, we first identify those
remaining words LW that never appear in MW and

Figure 2: The bipartite with meta-words and meta-
documents.

those remaining documents LD that never appear in
MD. Then we construct vertex set V = VW ∪ VD

as follows. VW contains |MW | + |LW | vertices each
for a meta-word, i.e., either a word pattern in MW
or a single word in LW . VD contains |MD| + |LD|
vertices each for a meta-document, i.e., either a pattern
in MD or a document in LD. An example bipartite is
shown in Figure 2, where there are pattern vertices on
both sides. The new (|MW | + |LW |) × (|MS| + |LS|)
meta-word by meta-document matrix A′ is defined as
A′

ij =
∑

wk∈Wi,dl∈Dj
Akl. That is, the association

between meta-word Wi and meta-document Dj is the
sum of association between all words wk in Wi and all
documents dl in Dj .

3.3 Graph Partitioning
Given a weighted graph G = {V, E} with adja-

cency matrix M , clustering the graph into K parts
means partitioning V into K disjoint clusters of ver-
tices V1, V2, ..., VK , by cutting the edges linking vertices
in different parts. The general goal is to minimize the
sum of the weights of those cut edges. To avoid triv-
ial partitions, often the constraint is imposed that each
part should be roughly balanced in terms of part weight
wgt(Vk), which is often defined as sum of its vertex
weight. Here we employ Graclus [2], a fast kernel based
multilevel algorithm, which involves coarsening, initial
partitioning and refinement phases.

4 Applications to Clustered Search Results

The partitioned bipartite naturally lends itself to dif-
ferent clustering-related functions in search engines. In
this section, we describe its applications to returning
clustered search results.

As described in Figure 3, this job can also be
done by the standard bipartite formulation. First we
retrieve the set of documents D(q) that contains query
q and then partition it into groups {G} according
to the partitioned bipartite. The subsequent work
is performed cluster by cluster. For representative
documents, we directly select top documents from the
cluster. When it comes to words, we give priority to



Input:
D: a dataset represented by a word-document matrix.
C: the partitioned bipartite containing

the clustering results.
q: a query word.
k1/k2: the number of words/documents

returned for each cluster.

Output: the clustered search results.

Steps
1. According to D, retrieve the documents D(q)

that contains q.
2. According to the cluster label in C,

partition D(q) into groups {G},
and keep those groups of size larger than k2.

3. For each group G Do
4. Return top k2 documents from G.
5. Compute W (G), words shared by

all documents in G.
6. If |W (G)| ≥ k1 Then
7. Return top k1 words from W (G).

Else
8. Return W (G),

and other top k1 − |W (G)| words from G.
End of for

Figure 3: The standard bipartite algorithm for return-
ing clustered search results.

those words shared by all documents in G(lines 5-8).
The counterpart in the bipartite with co-preserved

patterns is more complicated, since we want to focus
on those words/documents from patterns. The detailed
procedure is shown in Figure 4. Within each group
G, we first check if query q appears in (multiple)super
vertex of word hypercliques. If yes, the words from
the hypercliques receive priority of being selected(lines
5-6) and then we try to output any document that
completely contains any single word hyperclique(lines
7-8). If not, we check if G contains(multiple)super
vertex of document hypercliques. In this case, the
document from the hypercliques are returned first(lines
11-12) and the words shared by such documents also
get selected(lines 13-14). When the flow comes to line
16, it means that q appears in no word hypercliques
and G contains no document hypercliques, then the
word/document selection procedure is like the standard
bipartite.

5 Experimental Evaluation
In this section, we present an experimental evaluation of
COPAP. First we introduce the experimental datasets

Table 1: Characteristics of data sets.

data RE0 RE1 K1 WAP TR31 TR41
#doc 1504 1657 2340 1560 927 878
#word 2886 3758 4592 8460 4703 7454
#class 13 25 6 20 7 10

MinClass 11 13 60 5 2 9
MaxClass 608 371 1389 341 352 243
min/max 0.018 0.035 0.043 0.015 0.006 0.037
source Reuters-21578 WebACE TREC-6,7

Table 2: Comparison on six datasets.

data method ERR F NMI CE

RE0 COPAP 0.4109 0.3812 0.3288 2.385
STD 0.4262 0.3341 0.2711 2.608

RE1 COPAP 0.4906 0.3983 0.3610 2.436
STD 0.5214 0.3434 0.3434 2.800

K1 COPAP 0.1282 0.8734 0.6987 0.5676
STD 0.1444 0.8097 0.6512 0.9000

WAP COPAP 0.5147 0.4173 0.4615 0.9269
STD 0.5551 0.3336 0.3677 1.125

TR31 COPAP 0.2808 0.5407 0.4411 1.600
STD 0.3112 0.5177 0.3978 1.731

TR41 COPAP 0.2976 0.5129 0.4420 1.161
STD 0.2654 0.6421 0.5657 1.499

and cluster evaluation criteria, then we evaluate the
clustering performance of COPAP against the standard
bipartite formulation. Finally we illustrate clustered
search results.

5.1 Experimental Setup
In our experiments, we used six datasets from different

sources, as shown in Table 1. For all data sets, we used
a stoplist to remove common words, stemmed the re-
maining words using Porter’s suffix-stripping algorithm
and removed those words with extreme low document
frequencies.

Because the true class labels of documents are
known, we can measure the quality of the cluster-
ing solutions using external criteria that measure the
discrepancy between the structure defined by a clus-
tering and what is defined by the true class labels.
We use the following four measures: normalized mu-
tual information(NMI), conditional entropy(CE), er-
ror rate(ERR) and F-measure [5]. NMI and CE are
entropy based measures. Error rate ERR(T |C) com-
putes the fraction of misclassified data when all data in
each cluster is classified as the majority class in that
cluster. F-measure combines the precision and recall
concepts from information retrieval.



Input:
D: a dataset represented by a word-document matrix.
C: the partitioned bipartite containing the clustering results.
q: a query word.
k1/k2: the number of words/documents returned for each cluster.

Output: the clustered search results.

Steps
1. According to D, retrieve the documents D(q) that contains q.
2. According to the cluster label in C, partition D(q) into groups {G},

and keep those groups of size larger than k2.
3. For each group G Do
4. If q appears in (multiple)super vertex of word hyperclique {WHi} Then
5. Retrieve W (G), the set of all words in {WHi}. % return words

If |W (G)| ≥ k1 Then
Return top k1 words from W (G).

Else
6. Return W (G), and other top k1 − |W (G)| words from G.
7. Retrieve D(G),the set of document that contains at least one WHi.

If |D(G)| ≥ k2 Then
Return top k2 documents from D(G).

Else
8. Return D(G), and other top k2 − |D(G)| documents from G − D(G).
9. CONTINUE;
10. If G contains(multiple)super vertex of document hyperclique {DHi} Then
11. Retrieve D(G), the set of all documents in {DHi}. % return documents

If |D(G)| ≥ k2 Then
Return top k2 documents from D(G).

Else
12. Return D(G), and other top k2 − |D(G)| documents from G − D(G).
13. Compute W (G), the set of word shared by D(G).

If |W (G)| ≥ k1 Then
Return top k1 words from W (G).

Else
14. Return W (G), and other top k1 − |W (G)| words from D(G).
15. CONTINUE;
16. CALL fragment (lines 4-8) in the procedure for standard bipartite.

End of for

Figure 4: The co-preserving bipartite algorithm for returning clustered search results.

5.2 Clustering Results
Because our main purpose is to show the advantage

of using hyperclique patterns as starting points, we just
compare COPAP with the standard bipartite formula-
tion on transactional data. By setting the number of
clusters equal to the true number of classes, the clus-
tering results are shown in Table 2, where STD denotes
the standard bipartite formulation. NMI and F are
preferred large while ERR and CE are preferred small.
One can see that except for TR41, COPAP is able to
achieve improvement on all datasets in terms of all four
measures. The two parameters, support threshold and
h-confidence threshold, were tuned separately for each
dataset, but not for each criterion.

5.3 Applications to Search Engines: Clustered
Search Results
In this subsection, we illustrate the application of

the partitioned bipartite to showing clustered search
results. The motivation is still the high affiliation
within hypercliques. Due to lack of space, we only
show two search results of the co-preserving bipartite in
Table 3 for dataset K1. For each cluster, we show the
number of documents in that cluster, top five words,
and the sentence where the query word appears in the
top document.

As shown in Figure 3, the standard bipartite for-
mulation can do this job by first grouping all the doc-
uments containing the query according to the cluster



label, and then returning the top words and documents
from each group of documents. In some cases, however,
we find that its returned words are still too general,
not closely enough related to the query. As for the bi-
partite with co-preserved patterns, this problem is re-
lieved considerably. For instance, given query ‘cell’, the
standard bipartite returned ‘risk, medic, diseas, find,
drug’ from the cluster of health. Obviously they are re-
lated to health and medicine, but not closely related to
cell. The reason is that for the current group of docu-
ments containing word ‘cell’, these words are still top,
possessing the largest within-cluster degrees. In con-
trast, the bipartite with co-preserved patterns output
‘normal, gene, brain, professor, cancer’, because each
word forms a two-word hyperclique with ‘cell’, accord-
ing to the steps (lines 5-6) in Figure 4 which dictate
the words from the hypercliques receive priority of be-
ing selected. Words like ‘medicine’ and ‘disease’ are too
general to be able to form a hyperclique with ‘cell’, be-
cause conf(cell → medic) is high, but not vice versa.

Similar observations were also made when there
are no word patterns and we select top words from
top/hyperclique documents. Given query ‘model’, the
standard bipartite only returned general words like ‘risk’
and ‘disease’ from the cluster of health. In contrast,
the bipartite with co-preserved patterns output ‘protect,
respons, risk, diseas, medicin’, because the first two
words come from a document hyperclique talking about
road safety for drivers. Therefore, according to steps
(lines 13-14) in Figure 4, they are selected first.

6 Conclusions
In this paper, we presented a new approach, CO-
preserving PAtterns in bipartite Partitioning (COPAP),
for word-document co-clustering and cluster topic iden-
tification. Hyperclique patterns capture strong connec-
tions between groups of objects and should not be sep-
arated during clustering. Using them as starting points
in the bipartite, our experiments showed that better
clustering results could be obtained in terms of various
external criteria and the cluster topic can be identified
accurately. Besides, the co-preserved patterns in the
partitioned bipartite enable those words and documents
across several topics to appear in more than one cluster
as needed. Due to the unique structure of the parti-
tioned bipartite, it naturally lends itself to clustering
related functions in search engines. Finally we illus-
trated such an application, returning clustered search
results for keyword queries. Experiments indicated that
compared to the standard bipartite formulation, select-
ing topical words from word/document patterns is able
to identify the topic that is more closely related to the
current query.

Table 3: Sample search results for K1.

cell
(6) finance stock analyst percent internet
Online: AT&T launches pocketnet internet cell phone
(127) normal gene brain professor cancer
Health: The loss of key brain cells may be reversible
model
(10) protect respons risk diseas medicin
Health: safety-oriented roadway design model in Europe
(7) celebr fashion gala crash paris
People: Five-hundred models appear in fashion show
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