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ABSTRACT
Given its importance, the problem of predicting rare classes
in large-scale multi-labeled data sets has attracted great at-
tentions in the literature. However, the rare-class problem
remains a critical challenge, because there is no natural way
developed for handling imbalanced class distributions. This
paper thus fills this crucial void by developing a method for
Classification using lOcal clusterinG (COG). Specifically, for
a data set with an imbalanced class distribution, we perform
clustering within each large class and produce sub-classes
with relatively balanced sizes. Then, we apply traditional
supervised learning algorithms, such as Support Vector Ma-
chines (SVMs), for classification. Indeed, our experimen-
tal results on various real-world data sets show that our
method produces significantly higher prediction accuracies
on rare classes than state-of-the-art methods. Furthermore,
we show that COG can also improve the performance of
traditional supervised learning algorithms on data sets with
balanced class distributions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.5.2 [Pattern Recognition]: Design Method-
ology—Classifier Design and Evaluation

General Terms
Algorithms, Experimentation

Keywords
Rare Class Analysis, K-means Clustering, Support Vector
Machines, Local Clustering

1. INTRODUCTION
Classification provides insight into the data by assigning

objects to one of several predefined categories. An emerg-
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ing critical challenge for classification is to address so-called
“imbalanced classes” in the data. Specifically, people are
interested in predicting rare classes in the data sets with
imbalanced class distributions. For example, in the domain
of network intrusion detection, the number of malicious net-
work activities is usually very small compared to the number
of normal network connections. It is crucial and challenging
to build a learning model which has the prediction power to
capture future network attacks with low false positive rates.
Indeed, rare class analysis is often of great value and is de-
manded in many real-world applications, such as the detec-
tion of oil spills in satellite radar images [20], the prediction
of financial distress in enterprises [33], and the diagnoses of
rare medical conditions [25].

To meet the above challenge, considerable research efforts
have been focused on the algorithm-level improvement of
the existing classifiers for rare class analysis. Two promis-
ing research directions are the use of re-sampling techniques
and cost-sensitive learning [29]. These two methods indeed
show encouraging performances in some cases by directly
or indirectly adjusting the class sizes to a relatively bal-
anced level. Nevertheless, in this paper, we reveal that the
class imbalance problem is strongly related to the presence
of complex concepts (inherent complex structures) in the
data. For imbalanced data sets with complex concepts, it is
often not sufficient to simply manipulate the class sizes. In
fact, our experimental results show that adjusting the class
sizes alone usually can improve the predictive accuracy of
the rare classes slightly, but at the cost of seriously decreas-
ing the accuracy of the large classes. As a result, we need to
develop a classification method which follows two criteria.

1. The ability to divide imbalanced classes into relatively
balanced classes for classification.

2. The ability to decompose complex concepts within a
class into simple concepts.

Indeed, this paper fills this crucial void by designing a
method for classification using local clustering (COG). Specif-
ically, for a data set with an imbalanced class distribution,
we perform clustering within each large class and produce
sub-classes with relatively balanced sizes. Then, we apply
traditional supervised learning algorithms, such as SVMs,
for classification. Since the clustering is conducted indepen-
dently within each class but not across the entire data set,
we call it local clustering, which is the essential part of our
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COG method. By exploiting local clustering within large
classes, we can decompose the complex concepts, e.g., non-
linear-separable concepts for linear classifiers, into relatively
simple ones, e.g., linearly separable concepts. Another effect
of local clustering is to produce subclasses with relatively
uniform sizes. In addition, for data sets with highly skewed
class distributions, we further integrate the over-sampling
technique into the COG scheme and propose the COG with
over-sampling technique (COG-OS).

The merit of COG lies in three aspects. First, COG has
the ability to divide imbalanced classes into relatively bal-
anced and small sub-classes, and thus provide the opportu-
nities in exploiting traditional classification algorithms for
better predicting rare classes. Second, similar to the re-
sampling schemes, COG is not a “bottom-level” algorithm
but provides a general framework which can incorporate var-
ious existing classifiers. Finally, COG is especially effective
on improving the performance of linear classifiers. This is
noteworthy, since linear classifiers have shown their unique
advantages, such as simplicity and understandability, higher
executive efficiency, less parameters, less generalization er-
rors [12, 28], in many cases.

We have conducted extensive experiments on a number of
real-world data sets. Our experimental results show that, for
data sets with imbalanced classes, COG and COG-OS show
much better performances in predicting rare classes than two
popular re-sampling schemes as well as two state-of-the-art
rule induction classifiers without compromising the predic-
tion accuracies of large classes. In addition, for data sets
with balanced classes, we show that our COG method can
also improve the performance of traditional linear classifiers,
such as SVMs, by decomposing the non-linear-separable con-
cepts into linearly separable ones.

2. ALGORITHM DESCRIPTION
In this section, we first describe our methods: COG (Clas-

sification using lOcal clusterinG) and COG-OS (COG with
Over-Sampling). Then, we present the details about how to
perform COG by a simple example.

2.1 COG and COG-OS
In a nutshell, COG provides a general framework which

can incorporate various linear classifiers and improve their
classification performance on data sets with non-linear-separable
concepts as well as imbalanced class distributions . As to
COG-OS, it is an extended version of COG, which integrates
the over-sampling technique into the COG scheme for the
purpose of better predicting rare classes in data sets with
extremely imbalanced class distributions.

Figure 1 shows the pseudo-code of COG containing four
phases. In Phase I, we employ K-means clustering on class i
(i = 1, 2, · · · , C) according to the user preset cluster number
K(i), and change the instance labels of class i with the sub-
class labels provided by the K-means clustering, thus form a
multi-class data set with

PC
i=1 K(i) subclasses. Since we do

clustering inside every class (if necessary) but not across the
entire data set, we call it local clustering . Phase II is ded-
icated to COG-OS. In this phase, we replicate R(j) times
the instances of class j (j = 1, 2, · · · , C), to form a more
balanced data set. Phase III is straightforward; that is, we
build the model on the modified data set using a user speci-
fied linear classifier. Phase IV is simply for testing; however,
each instance from the test set will be assigned with a label

COG (Classification using lOcal clusterinG)
Input: TR: a training data set.

TE: a test data set.
LCF: a linear classifier, such as SVMs.
K: a vector specifies the number of local clusters

for each class.
R: a vector specifies the over-sampling times for

each class. (for COG-OS only)
Output: CM: the model built on TR.

CR: the prediction results.
Procedure:
Phase I: local clustering
1. for class i=1 to C //C represents #classes
2. clusterLabel(i)=Clustering(TR(i), K(i));
3. TR(i)*=changeLabel(TR(i), clusterLabel(i));
4. end for
Phase II: over-sampling (for COG-OS only)
5. for class i=1 to C
6. TR(i)**=replicate(TR(i)*, R(i));
7. end for
8. TR**=mergei=1,··· ,C(TR(i)**)
Phase III: training
9. CM=train(TR**,LCF);
Phase IV: testing/predicting
10. clusterLabel=predict(TE, CM);
11. predictLabel=convertLabel(clusterLabel);
12. CR=compareLabel(predictLabel, trueLabel(TE));

(for testing only)

Figure 1: The COG Algorithm

of a subclass which must be converted into the label of the
corresponding parent-class.

There are some points needed to be further addressed.
Typically, we do local clustering and over-sampling (if nec-
essary) on different classes; that is, in Phase I and II, the
cluster number K(i) is larger than 1 for the relatively large
class i, while the replication ratio R(j) is larger than 1 for the
small or rare class j. In practice, we first assign K(i) with a
small number, e.g., four, on the large class i (i = 1, · · · , C),
then use R(j) on the small class j (j = 1, · · · , C) to adjust
the data set to a relatively balanced situation.

Also, we must emphasize that COG and COG-OS have
more impact on the performances of linear classifiers. We
know that linear classifiers have various merits such as sim-
plicity and understandability, higher executive efficiency, less
parameters, less generalization errors, and so on [12, 28]. In
contrast, although non-linear classifiers such as SVMs with
RBF kernel can find sophisticated boundaries, their param-
eters are typically hard to specify, and the use of non-linear
kernels can easily lead to overfitting [12]. Therefore, in this
paper, we use SVMs with a linear kernel. Furthermore, non-
linear-separable concepts in the data is a long-standing chal-
lenge for the use of linear classifiers. To this end, COG and
COG-OS can strengthen the use of linear classifiers by de-
composing the non-linear-separable complex concepts into
linear-separable ones. By contrast, as shown in our exper-
imental results (Section 4), COG shows no consistent im-
provements on non-linear classifiers such as decision trees
and rule based learning algorithms.

While we use k-means as the clustering scheme in COG,
the choices of clustering algorithms in COG is not limited to
k-means. Any other clustering algorithm which can produce
clusters with relatively balanced sizes, such as the EM algo-
rithm, can also be used in COG. Finally, COG is efficient in
terms of the computational performance. First, if K-means
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Figure 2: Illustration of the COG Procedure.

is used for the local clustering, the time required in the clus-
tering phase is modest — basically linear in the number of
data points [29]. Then in the training phase, as the num-

ber of classes increases, the time required is
QC

i=1 K(i) × T
where T is the time required for the training without local
clustering. Since the number of relatively large classes in a
data set is often very small, and in practice each K(i) is usu-
ally assigned with a small number, e.g., four, we can expect
to keep the computational cost of COG in the same level as
the original classifier.

2.2 An Illustration of COG
Here, we use a synthetic data set with three classes and

the SVMs classifier to illustrate the process of COG. The
sizes of the three classes are 133, 60 and 165 respectively,
and please note that the small class is non-linear-separable
from the other two large classes, as shown in the “Original
Data” subplot of Figure 2. The SVMs tool we used here is
LIBSVM [5] with the linear kernel.

First, we build the classification model by simply applying
SVMs on the original data set, and the results are shown
in the pure SVM subplot. In this subplot, the solid line
represents the maximal margin hyperplane (MMH) learned
by SVMs algorithm. One interesting observation is that
the instances of the small class, i.e., class 2, have totally
“disappeared”; that is, they are all assigned to either class
1 or class 3 according to the only one MMH. This is due to
the non-linear-separable concepts in the data.

Instead, we employ COG. First, we apply local clustering
on class 1 and 3 respectively, given the cluster number is two.
The clustering results can be seen in subplot “COG: Phase
I”. That is, class 1 and class 3 are divided into two sub-
classes respectively by K-means. Thus we obtain a modified
data set with five relatively balanced and linear-separable
classes. Next, we apply SVMs on this five-classes data set
and get results shown in subplot “COG: Phase III”. As can
be seen, more MMHs appear in the model, which enables the
model to identify the instances of class 2. Finally, for each
instance, we convert its predictive label of some subclass
into the label of the parent-class. This is equal to delete
the MMHs separating the subclasses derived from a same
parent-class, as indicated by the “COG: Phase IV” subplot.
Therefore, by applying COG, we build up a more accurate

model which can identify the instances from the small class
among non-linear-separable concepts.

3. COG FOR RARE CLASS ANALYSIS
In this section, we illustrate why COG is especially ef-

fective on predicting rare classes using an example. First,
we generate synthetic data sets for three different scenarios:
data with simple concepts, data with non-linear-separable
concepts, and data with complex concepts. In this example,
we again use LIBSVM [5] with the linear kernel as the clas-
sifier in COG and COG-OS. Also, the synthetic data sets
are two-class data sets with two dimensions, and the sizes
of the rare and normal classes are 14 and 136, respectively.

3.1 Data with Simple Concepts
First of all, let’s give an informal definition. We call that

a concept is complex in data if the distributions of the in-
stances from the two classes are too close to be separable
by the linear classifiers. Therefore, in this scenario, we have
two well-separated classes which represent a rather simple
concept in the data, as shown in “Scenario I” of Figure 3.
As can be seen, for this simple concept, pure SVM sepa-
rates the rare and normal classes easily and precisely (the
solid line represents the maximal margin hyperplane learned
by the SVMs algorithm). This implies that the rare class
problem will be inapparent in the case of simple concepts.

3.2 Data with Non-Linear-Separable Concepts
In Scenario II, we consider the case that data sets contain

non-linear-separable concepts, which can seriously hinder
the performance of linear classifiers. In the COG scheme, we
exploit local clustering to divide non-linear-separable con-
cepts into smaller linear-separable concepts. In this way,
traditional linear classifiers can still work well in this sce-
nario. In Figure 3, two subplots of “Scenario II” show the
process of COG on handling non-linear-separable concepts.
As can be seen in subplot II-I, pure SVM cannot effectively
identify the rare class, since the instances of rare class and
normal class are very close. After applying COG, however,
we can divide the large class into two subclasses and form a
data set with three linear-separable sub-classes, which can
be easily learned by SVMs, as shown in subplot II-II.
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Figure 3: Illustration of Various Scenarios.

3.3 Data with Complex Concepts
In this subsection, we consider a more complicated case

that data sets contain complex concepts. In other words,
the instances of the rare class are adjacent to the instances
of the normal class in the data, as shown by subplots of
“Scenario III” in Figure 3.

In this scenario, COG alone seems not very helpful for
rare class analysis. As can be seen in subplot III-I of Fig-
ure 3, COG cannot separate the rare class from one of the
subclasses of the normal class. Also, in subplot III-II, we
can see that the traditional over-sampling technique per-
forms poorly for predicting rare class, since many instances
of the normal class have been assigned to the rare class (the
replicative time is set to be 8 on the rare class to obtain a
relatively balanced distribution). However, COG with the
over-sampling technique (COG-OS) can help SVMs success-
fully isolate the over-sampled instances of the rare class from
the two sub-classes partitioned by K-means clustering on the
normal class, as shown in the Subplot III-III of Figure 3.

Discussion. In summary, the rare class problem is strongly
related to the presence of the complex concepts (inherent
complex structures) in the data. The more complex the
concepts are, the more significant the rare class problem is.
By applying local clustering, COG can handle the rare class
problem in the presence of the non-linear-separable con-
cepts; by further incorporating the over-sampling scheme,
COG-OS can handle the rare class problem in the case of
more complex concepts.

4. EXPERIMENTAL EVALUATION
In this section, we present experimental results to vali-

date the performance of the COG and COG-OS methods
on balanced and imbalanced classification problems.

4.1 The Experimental Setup
Experimental Tools. We used four types of classifiers: sup-
port vector machines, Bayesian logistic regression, decision
trees, and rule-based classifiers. Their corresponding imple-

Table 1: Some Notations.
US: Under-sampling scheme.
OS: Over-sampling scheme.
COG: Classification using local clustering.
COG-OS: COG with the over-sampling scheme.

mentations are LIBSVM [5], BMR [1], C4.5 [2], and RIP-
PER [7]. In all the experiments, default settings were used
except that the kernel type of LIBSVM was set to be linear.
Thus we have two linear classifiers, i.e., LIBSVM and BMR,
and two non-linear classifiers, i.e., C4.5 and RIPPER.

Also, we applied K-means, a widely used clustering scheme
which tends to produce clusters with relatively uniform sizes,
as the clustering method in our COG method. During the K-
means clustering, for data sets with relatively small number
of dimensionality, squared Euclidean distance was used as
the proximity measure; and for data sets with high dimen-
sionality, however, the cosine similarity was used instead.
This is due to the fact that Euclidean notion of proximity is
not very meaningful for high-dimensional data sets, such as
document data sets. Note that for each data set, K-means
ran ten times and returned the best partitioning result.

Finally, some notations are given in Table 1. The default
classifier used in these schemes is SVMs. If other classifiers
are used instead, e.g, BMR in the COG scheme, we will
explicitly denote it by “COG(BMR)”.
Experimental Data Sets. For our experiments, we used
a number of benchmark data sets that were obtained from
different application domains. Some characteristics of these
data sets are shown in Table 2. In the table, CV — Coef-
ficient of Variation [9]— shows the dispersion of the class
distribution for each data set. In general the larger the CV
value is , the greater the variability is in the data.

UCI Data Sets. In our experiments, we used eight
well-known benchmark data sets from UCI Repository [26].
Among them two data sets, breast-w and pima-diabetes,
are binary data sets from the medical domain. The breast-w
data set contains two types of results from real-world breast
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Table 2: Some Characteristics of Experimental Data Sets.
Dataset Source #objects #features #classes MinClassZize MaxClassSize CV

UCI Data Sets

breast-w§ UCI 683 9 2 239 444 0.424
pima-diabetes UCI 768 8 2 268 500 0.427

letter UCI 20000 16 26 734 813 0.030

optdigits† UCI 3823/1797 64 10 376/174 389/183 0.014/0.015
page-blocks UCI 5473 10 5 28 4913 1.953

pendigits† UCI 7494/3498 16 10 719/335 780/364 0.042/0.042

satimage† UCI 4435/2000 36 6 415/211 1072/470 0.425/0.368

vowel† UCI 528/462 10 11 48/42 48/42 0.000/0.000
Document Data Sets

k1b WebACE 2340 21839 6 60 1389 1.316
la12 TREC 6279 31472 6 521 1848 0.503

LIBSVM Data Sets
fourclass LIBSVM 862 2 2 307 555 0.407

german.numer LIBSVM 1000 24 2 300 700 0.567
splice LIBSVM 1000 60 2 483 517 0.048

SVMguide1 LIBSVM 3089 4 2 1089 2000 0.417
Notes: The numbers before and after “/” are for training and test sets respectively.
§: 16 instances with missing data have been deleted.
†: These data sets have been split into training/test sets by the sources.

cancer diagnosis, and the pima-diabetes data set is about
the information of whether the patient shows signs of dia-
betes according to the WHO criteria. The rest six data sets
are frequently used by the pattern recognition community.
letter, optdigits and pendigits are data sets containing
the information of handwritings; that is, letter has the let-
ter information from A to Z, and the other two have the
number information from 0 to 9. The satimage data set
contains the multi-spectral values of pixels in 3 × 3 neigh-
borhoods in a satellite image. The page-blocks data set
contains the information of five types of blocks from a docu-
ment page layout. And the last data set vowel was designed
for the task of speaker independent recognition of the eleven
steady state vowels of British English.

Document Data Sets. We also used high-dimensional
document data sets in our experiments. The data set k1b

was from the WebACE project [15]. Each document cor-
responds to a web page listed in the subject hierarchy of
Yahoo!. The la12 data set was obtained from articles of the
Los Angeles Times that was used in TREC-5 [30]. The cat-
egories correspond to the desk of the paper that each article
appeared and include documents from the entertainment,
financial, foreign, metro, national, and sports desks. For
these two document data sets, we used a stop-list to remove
common words, and the words were stemmed using Porter’s
suffix-stripping algorithm [27].

LIBSVM Data Sets. Finally, we applied four binary
data sets: fourclass, german.numer, splice and SVMguide1

from the LIBSVM repository [5].
Please note that for any data set without an appointed

test set, we did random, stratified sampling on it and had
70% samples as the training set and the rest as the test set.

4.2 The Effect of COG and COG-OS on
Imbalanced Data Sets

In this subsection, we show how COG can improve the
performance of linear classifiers on imbalanced data sets. As
discussed in Section 3, the problem of imbalanced classes is
related to the complex concepts in the data — such as non-
linear-separable concepts for linear classifiers. The COG
method is a natural solution to this problem: handling the
non-linear-separable concepts as well as making the class
sizes be relatively balanced. For data sets with highly imbal-
anced class sizes, such as binary data sets with rare classes,

Table 3: Sampled Data Sets.
Data Set Class Sampling Ratio #instances CV
breast-w 1 0.20 48 1.14

2 1.00 444
pima-diabetes 1 0.20 54 1.14

2 1.00 500
fourclass 1 0.20 62 1.13

2 1.00 555
german.numer 1 0.20 60 1.19

2 1.00 700
splice 1 0.10 49 1.17

2 1.00 517
SVMguide1 1 0.05 53 1.34

2 1.00 2000

we apply COG with the over-sampling scheme (COG-OS).
Specifically, for the large class of any binary data set, we did
K-means clustering on it, and set the cluster number consis-
tently to be 4; and for the rare class, we did over-sampling
on it, and made the size be approximate to the average size
of the partitioned large class. In this way, we can have much
more balanced data sets. Also, the non-linear-separable con-
cepts can be transformed into linearly separable concepts.

Also, we prepared the imbalanced data sets with rare
classes via sampling on various binary data sets. Specif-
ically, for each data set with two classes, we did random
sampling on the small class to turn it into a rare class, then
combined it with the original large class to form a sample
data set. Detailed information of the samples can be found
in Table 3. We did sampling ten times for each data set and
returned the average classification results for it, as shown
in Table 4. Finally, since SVMs shows best classification
performance in many cases [8], we used it as the benchmark
classifier for all the experiments in this subsection.

Results by COG-OS on Two-class Data Sets.
Table 4 shows the performance of COG-OS(SVMs) and

pure SVM on six two-class data sets. As can be seen, pure
SVM assigned all the instances to the large class of data sets
pima-diabetes, fourclass and german.numer. This indi-
cates that pure SVM has no prediction power on rare classes
for these three data sets. In contrast, COG-OS can success-
fully identify more than 25 percent instances of the rare
classes. Indeed, the F-measure values of the rare classes by
COG-OS(SVMs) are consistently higher than the F-measure
values produced by pure SVM for all six data sets, as indi-
cated in Table 4. For instance, for data sets SVMguide1 and
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Table 4: Classification Results of Sampled Data Sets by COG-OS (SVMs).
Data Set Method Class #repetitions #clusters Recall Precision F-measure
breast-w SVMs 1 N/A N/A 0.871 0.878 0.872

2 N/A N/A 0.986 0.987 0.985
COG-OS 1 3 1 0.907 0.850 0.873

2 1 4 0.982 0.990 0.986
pima-diabetes SVMs 1 N/A N/A 0.000 #DIV/0! N/A

2 N/A N/A 1.000 0.904 0.949
COG-OS 1 2 1 0.344 0.428 0.373

2 1 4 0.949 0.931 0.940
fourclass SVMs 1 N/A N/A 0.000 #DIV/0! N/A

2 N/A N/A 1.000 0.902 0.948
COG-OS 1 2 1 0.606 0.699 0.646

2 1 4 0.971 0.958 0.964
german.numer SVMs 1 N/A N/A 0.000 #DIV/0! N/A

2 N/A N/A 1.000 0.921 0.959
COG-OS 1 3 1 0.317 0.239 0.270

2 1 4 0.915 0.940 0.927
splice SVMs 1 N/A N/A 0.314 0.289 0.298

2 N/A N/A 0.929 0.938 0.933
COG-OS 1 3 1 0.493 0.270 0.344

2 1 4 0.874 0.950 0.910
SVMguide1 SVMs 1 N/A N/A 0.069 0.261 0.104

2 N/A N/A 1.000 0.976 0.988
COG-OS 1 9 1 0.913 0.365 0.518

2 1 4 0.956 0.998 0.976
Notes:1.For SVMs: -t 0.
2.“#repetitions” means the replicative time of each instance during OS.
3.“#clusters” means the preset cluster numbers for K-means during COG.
4.“N/A”: not applicable; “#DIV/0!”: divided by zero.

fourclass, COG-OS(SVMs) results in the increases of the
F-measure values by more than 0.4.

Table 5: Information of SVMguide1 Samples.
Sample ID 1 2 3 4 5
Sampling Ratio 0.03 0.05 0.07 0.09 0.11
Size of Rare Class 33 55 77 99 120
#clusters for Larger Class 4 4 4 4 4
#repetitions for Rare Class 15 9 6 5 4
Note:Class sizes of the original data are 1089 and 2000.
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Figure 4: The Effect of the Size of the Rare Class.

Another observation is that, for COG-OS, the increase of
the F-measure value of the rare class is NOT at the high cost
of the prediction accuracy of the large class. For example,
for data sets breast-w and fourclass, the F-measure values
of both large and rare classes by COG-OS are higher than
the F-measure values produced by pure SVM. Also, for the
rest four data sets, the F-measure values of the large class
by COG-OS are just slightly smaller. This is acceptable
since the rare class is usually the major concern in many
real-world applications.

In addition, we also investigate how the F-measure value
changes as the increase of the sampling ratio on the small
class. As an example on the SVMguide1 data set, Table 5

Table 7: COG-OS vs. the Resampling Scheme.
Data Set Class COG-OS US OS
breast-w 1(rare) 0.873 0.858 0.834

2 0.986 0.983 0.981
total 0.975 0.970 0.967

pima-diabetes 1(rare) 0.373 0.320 0.331
2 0.940 0.818 0.828

total 0.890 0.714 0.727
fourclass 1(rare) 0.646 0.339 0.346

2 0.964 0.804 0.809
total 0.935 0.699 0.704

german.num 1(rare) 0.270 0.255 0.258
2 0.927 0.812 0.835

total 0.868 0.701 0.731
splice 1(rare) 0.344 0.268 0.349

2 0.910 0.805 0.905
total 0.843 0.694 0.835

SVMguide1 1(rare) 0.518 0.308 0.397
2 0.976 0.937 0.959

total 0.955 0.884 0.923
Note: 1.Performances are measured by F-measure.
2.SVMs was used as the only classifier.

shows the information of various samples as the increase of
the size of the rare class. Figure 4 shows the classification
results on these samples. Please note that for each sam-
pling ratio, we did sampling ten times and therefore had
ten samples for each ratio. Then we applied pure SVM and
COG-OS on the ten samples respectively, and finally got
ten results for each sampling ratio, as indicated by the box
plots in Figure 4. As can be seen, the F-measure values by
COG-OS are consistently higher than the ones produced by
pure SVM, no matter what the sampling ratio is. Moreover,
COG-OS performs much better than pure SVM when the
rare class size is relatively small. However, as the increase
of the size of the rare class, the performance difference is
decreased.

Results by COG on Multi-classes Data Sets. In ad-
dition to the experiments on the two-class data sets, we
also employed some multi-classes data sets with imbalanced
classes to validate the COG method. For these multi-classes
data sets, we simply used the COG scheme. Since the Eu-
clidean distance is not very meaningful for the sparse doc-
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Table 6: Classification Results of Multi-classes Data Sets by COG (SVMs).
page-blocks (CV=1.953) Pure SVM COG(SVMs)
Class #instances #clusters Recall Precision F-measure #clusters Recall Precision F-measure

1 4913 N/A 0.990 0.971 0.980 10 0.993 0.977 0.985
2 329 N/A 0.780 0.839 0.808 2 0.880 0.898 0.889
3 28 N/A 0.556 1.000 0.714 1 0.556 0.833 0.667
4 88 N/A 0.815 0.917 0.863 1 0.815 0.917 0.863
5 115 N/A 0.514 0.900 0.655 1 0.543 0.950 0.691

total 5473 N/A 0.962 0.962 0.962 - 0.971 0.971 0.971

k1b (CV=1.316) Pure SVM COG(SVMs)
Class #instances #clusters Recall Precision F-measure #clusters Recall Precision F-measure

1 494 N/A 0.968 1.000 0.984 3 0.974 1.000 0.987
2 1389 N/A 0.990 0.963 0.976 9 0.993 0.981 0.987
3 142 N/A 0.979 0.939 0.958 1 1.000 0.940 0.969
4 114 N/A 0.829 0.967 0.892 1 0.886 0.969 0.925
5 60 N/A 0.810 1.000 0.895 1 0.905 1.000 0.950
6 141 N/A 0.955 0.955 0.955 1 1.000 0.978 0.989

total 2340 N/A 0.969 0.969 0.969 - 0.982 0.982 0.982

la12 (CV=0.503) Pure SVM COG(SVMs)
Class #instances #clusters Recall Precision F-measure #clusters Recall Precision F-measure

1 1848 N/A 0.921 0.561 0.697 2 0.886 0.572 0.695
2 1497 N/A 0.757 0.912 0.827 2 0.708 0.922 0.801
3 1042 N/A 0.663 0.759 0.707 1 0.721 0.728 0.725
4 729 N/A 0.465 0.896 0.612 1 0.564 0.866 0.683
5 642 N/A 0.672 0.794 0.728 1 0.687 0.793 0.736
6 521 N/A 0.329 0.917 0.485 1 0.353 0.881 0.504

total 6279 N/A 0.709 0.709 0.709 - 0.713 0.713 0.713

Table 8: Information of kddcup99data and the Modified Data Sets.
Dataset Source #objects #features #classes MinClassZize MaxClassSize CV0

kddcup99data UCI KDD 494021/292300 41 5 52/39 391458/223298 1.708/1.634

probe binary† UCI KDD 494021/292300 41 2 4107/2377 489914/289923 1.391/1.391

r2l binary† UCI KDD 494021/292300 41 2 1126/5993 492895/286307 1.408/1.356
Note: We deleted in the test set 18729 instances whose class labels are not present in the training set.
†: Modified binary data set of kddcup99data.

ument data sets k1b and la12, for the COG method, we
used the CLUTO [19] implementation of K-means on these
two data sets with cosine similarity as the proximity mea-
sure. Table 6 shows the classification results by pure SVM
and COG. As can be seen, for data set k1b, the F-measure
value for every class using COG is higher than that produced
by pure SVM. Meanwhile, the results on the page-blocks

and la12 data sets show a similar trend as k1b. In sum-
mary, COG indeed can improve the prediction performance
on rare classes, and this improvement is achieved without a
big loss of the prediction performance on large classes.

4.3 COG-OS vs. the Resampling Schemes
In previous sections, we mentioned that resampling is a

widely used technique to improve the classification perfor-
mance on imbalanced data sets. Here, we compare the per-
formances of COG-OS with two resampling strategies —
under-sampling and over-sampling. Details of these two re-
sampling methods can be found in various books [29, 23].

In this experiment, we also employed the six sampled data
sets as shown in Table 3. We set the sampling ratio for
under-sampling or over-sampling to make the modified size
of the rare class be approximate to the one of the large class,
and the classifier we used here is SVMs. Table 7 shows the
results. One observation is that, for all data sets in Table 7,
COG-OS performs the best for the rare class, except for
one data set: splice, on which COG-OS and over-sampling
show comparable results. Another observation is even more
encouraging; that is, while obtaining excellent performances
on the rare classes, COG-OS also provides much higher pre-
dictive accuracies on the large classes, which has long been
the “choke point” of the resampling schemes. This is not sur-

prising since the non-linear-separable concept in the data is
usually the bottle-neck of the class imbalance problem. By
integrating the over-sampling scheme, COG can further im-
prove its ability to identify the instances from the rare class.

In summary, compared to two widely used resampling
strategies, COG-OS shows appealing performances on han-
dling non-linear-separable data with rare classes, yet keeps
a much better performance on large classes.

4.4 COG-OS for Network Intrusion Detection
Here, we demonstrate an application of COG-OS for net-

work intrusion detection. For this experiment, we used a
real-world network intrusion data set, which is provided as
part of the KDD-CUP-99 classifier learning contest [3], and
now is a benchmark data set in the UCI KDD Archive [4].

The KDD CUP Data Set. The data set was collected
by monitoring a real-life military computer network that
was intentionally peppered with various attacks that hack-
ers would use to break in. Original training set has close
to 5 million records belonging to 22 subclasses and 4 classes
of attacks, i.e., dos, probe, r2l and u2r, and still one nor-
mal class. In this experiment, we applied 10% sample of
this original set which is also supplied as part of the con-
test. We present results for two rare classes: probe and
r2l, whose populations in the 10% sample training set are
0.83% and 0.23%, respectively. The test set provided with
the 10% training set, however, has some new subclasses that
are not present in the training data. So for the evaluation
concern we deleted these new subclasses, and the resultant
populations of probe and r2l in the test set are 0.81% and
2.05%, respectively. Table 8 shows the detailed information
of these data sets. Note that we obtained the probe binary
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data set by making the probe class as the rare class, and
the rest four classes as one large class. The other data set,
i.e., r2l binary, was prepared in a similar fashion.

Table 9: Results on Modified Data Sets.
probe binary SVMs RIPPER PNrule COG-OS

rare class 0.806 0.798 0.884 0.881
huge class 0.998 0.998 N/A 0.999

total 0.996 0.996 N/A 0.998

r2l binary SVMs RIPPER PNrule COG-OS
rare class 0.262 0.360 0.230 0.496
huge class 0.991 0.992 N/A 0.993

total 0.983 0.984 N/A 0.986
Note: “N/A” means results were not provided by the
source paper [17].

Table 10: Classification Accuracies by COG with
Different Classifiers.

Data Set #clusters Classifier
SVMs BMR C4.5 RIPPER

letter N/A 0.851 0.750 0.862 0.839
2 0.872 0.762 0.846 0.821
4 0.923 0.812 0.858 0.826
6 0.946 0.844 0.854 0.818
8 0.952 0.850 0.856 0.812

optdigits N/A 0.965 0.949 0.858 0.874
2 0.973 0.958 0.880 0.840
4 0.973 0.970 0.855 0.816
6 0.979 0.972 0.866 0.805
8 0.981 0.973 0.860 0.771

pendigits N/A 0.953 0.901 0.921 0.925
2 0.969 0.937 0.920 0.918
4 0.979 0.964 0.927 0.917
6 0.981 0.962 0.923 0.897
8 0.977 0.967 0.920 0.867

satimage N/A 0.852 0.834 0.854 0.854
2 0.860 0.837 0.841 0.855
4 0.871 0.841 0.857 0.850
6 0.883 0.862 0.850 0.848
8 0.881 0.863 0.847 0.847

vowel N/A 0.517 0.448 0.517 0.468
2 0.602 0.517 0.392 0.312
4 0.582 0.541 0.385 0.370
6 0.580 0.491 0.370 0.314
8 0.597 0.513 0.346 0.251

Notes:
1.All classifiers used default settings except for SVMs: -t 0.
2.For K-means, maxIteration=500, repeat=10.

The Benchmark Classifiers. In this experiment, we
apply four classifiers: COG-OS(SVMs), pure SVM, RIP-
PER [7], and PNrule [17]. For COG-OS, the cluster number
for the large class is 4 for each data set, and the replicative
times of over-sampling on the rare classes for probe binary

and r2l binary are 30 and 120, respectively. For SVMs,
we set the parameters as: -t 0. Ripper and PNrule are
two rule induction classifiers. RIPPER builds rules first for
the smallest class and will not build rules for the largest
class. Hence, one might expect that RIPPER can provide a
good performance on the rare class. As to PNrule, it con-
sists of positive rules (P-rules) that predict presence of the
class, and negative rules (N-rules) that predict absence of
the class. It is right the existence of N-rules that can ease
the two problems induced by the rare class: splintered false
positives and error-prone small disjuncts. These two clas-
sifiers have shown the appealing performance on classifying
the modified binary data sets in Table 8, and the PNrule
classifier even shows superior performance [17]. To our best
knowledge, we used the same source data as [17] and the
pre-process procedure for the modified data sets is also very
similar to [17]. Therefore, we simply adopted the results of
PNrule in [17] for our paper.
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Figure 5: Ratio of the Classes with Accuracy Im-
provements by COG.

The Results. Table 9 shows the classification results by
various methods on the probe binary data set. As can be
seen, COG-OS performs much better than pure SVM and
RIPPER on predicting the rare class as well as the large
class, while PNrule shows slightly higher F-measure on the
rare class. For data set r2l binary, however, COG-OS
shows overwhelming advantages among all classifiers. As
indicated in Table 9, the F-measure value of the rare class
by COG-OS is 0.496, far more higher than the ones produced
by the rest classifiers. Meanwhile, the predictive accuracy of
the large class by COG-OS is also higher than that of pure
SVM and RIPPER. This real-world application nicely illus-
trates the effectiveness of COG-OS — the combination of
local clustering and over-sampling schemes. We believe that
COG-OS is a prospective solution to the difficult classifica-
tion problem induced by the non-linear-separable concepts
and imbalanced class distributions.

4.5 The Effect of COG on Balanced Data Sets
In the previous subsections, we have shown that COG and

COG-OS indeed can improve the prediction accuracies of
the rare classes for imbalanced data sets. In this subsection,
however, we would like to show COG is also applicable to
data sets with balanced class distributions.

In this experiment, we used five balanced data sets with
CV < 0.5, i.e., letter, optdigits, pendigits, satimage

and vowel. Among them, four data sets have been split
into training and test sets by UCI repository except for the
letter data set. Four classifiers including SVMs, BMR,
C4.5 and RIPPER were used for the purpose of comparison.
The clustering method in the COG scheme is K-means with
Euclidean notion proximity, and the cluster number for each
class in a data set is exactly the same, ranging from 2 to 8.

Results by COG with Linear Classifiers. Table 10
shows the experimental results on these balanced data sets.
As can be seen, for linear classifiers SVMs and BMR, COG
indeed can improve the classification accuracies no matter
what the cluster number is. For instance, for the data set
letter, the accuracies achieved by pure SVM and BMR
are merely 0.851 and 0.750 respectively (as indicated by the
italic numbers). In contrast, COG with SVMs and BMR can
increase the prediction accuracies of the rare classes steadily
as the increase of the cluster number, and finally up to 0.952
and 0.850 respectively when the cluster number is 8. Indeed,
the resultant prediction accuracies are 10% higher than the
ones obtained by pure SVM and BMR.

Next, we take a closer look at the performance of COG in
the class-wise level. Table 11 shows the classification accu-
racies on the data set optdigits by pure SVM and COG.
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Table 11: Classification Accuracies of optdigits in the Class-wise Level.
Class 1 2 3 4 5 6 7 8 9 10
SVMs 0.994 0.967 0.960 0.934 0.989 0.989 0.989 0.950 0.920 0.956

COG(SVMs) 1.000 0.989 0.994 0.973 1.000 0.995 0.994 0.950 0.954 0.956
BMR 0.972 0.940 0.977 0.918 0.972 0.978 0.978 0.911 0.902 0.939

COG(BMR) 1.000 0.978 0.989 0.967 0.967 0.973 0.989 0.961 0.948 0.961
Note: For COG, the cluster number is set to be 8 for every class.
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Figure 6: Comparison of the Maximal Accuracy
Gains by COG with SVMs and BMR.

In the table, we can observe that COG can simultaneously
improve the classification accuracies for nearly all the classes
of optdigits. In addition, Figure 5 shows the improvement
ratio of classes in the five balanced data sets by COG with
SVMs and BMR (“#clusters”=8). A very similar improve-
ment trend can be observed for all five data sets. Indeed,
COG can transform the non-linear-separable concepts in the
data into the linear-separable concepts so as to simultane-
ously improve the classification performance of linear clas-
sifiers for most of the classes in the data.

Another interesting observation is that, the accuracy im-
provements gained by COG with SVMs and BMR are quite
close. To illustrate this, we compute the maximal accuracy
gain for each data set; that is, we first select the highest ac-
curacy among four values achieved in different “#clusters”
levels, then subtract it by the accuracy obtained by the pure
classifier. Figure 6 shows the results. As can be seen, the
maximal accuracy gains of all data sets by COG with SVMs
and BMR are quite close except for pendigits. This im-
plies that the non-linear-separable concept in the data is
the bottle-neck that hinders the analysis of linear classifiers.

Results by COG with Non-linear Classifiers. Ta-
ble 10 also shows the results of COG with non-linear classi-
fiers such as RIPPER and C4.5 on five balanced data sets.
In the table, we can see that COG(RIPPER) has worse per-
formance than pure RIPPER on all five data sets. This is
due to the fact that the rule learning algorithm aims to build
up a rule set in a greedy fashion by employing the standard
divide-and-conquer strategy. Meanwhile, COG partitions
instances of the same class into different sub-classes. This
can increase the number of negative examples for some tar-
get rules, and ultimately result in missing such rules.

Finally, for another widely used non-linear classifier C4.5,
the performance of COG with C4.5 is not consistent on five
balanced data sets as shown in Table 10. For instance, COG
can improve the classification accuracy of optdigits, but
lead to worse performances on letter, vowel and satimage.
This is due to the fact that COG can increase the number of
sub-classes so as to make the branch-splitting decision even
harder to make. In other words, the splitting attributes of
the tree can be better or worse selected in such “uncertain”
scenarios, which results in the inconsistent performances.
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Figure 7: Comparison of the Classification Accura-
cies by COG and Random Partitioning.

COG versus Random Partitioning. In this experi-
ment, we compare the effect of clustering in the COG scheme
with that of simple random partitioning. To this end, we
take the data set letter and the classifier SVMs to illus-
trate this. First, we randomly split the letter data set into
two parts, 70% of which as the training set and the rest as
the test set (the class size distribution holds). Then we per-
formed training and testing in a very similar fashion to the
procedure of COG except that we use random partitioning
instead of clustering on each class. Figure 7 shows all the
results. Please note that for random partitioning and COG,
“#clusters”= 4. As indicated by Figure 7, while the perfor-
mance of random partitioning with SVMs, i.e., RP(SVMs),
are slightly better than the results of pure SVM, they are
much worse than the results by COG(SVMs). This indi-
cates that the clustering phase in COG is very important.
In fact, the local clustering process can transform the non-
linear-separable concepts of the data into linear or “quasi”
linear concepts, and so as to improve the classification ac-
curacy of linear classifiers.

In summary, COG is of great use on improving the classi-
fication accuracy of linear classifiers by eliminating or miti-
gating the negative impact of the non-linear-separable con-
cepts in the data. But for the non-linear classifiers, such as
C4.5 and RIPPER, COG shows no competitive results.

5. RELATED WORK
In the literature, there are a number of methods address-

ing the class imbalance problem. For instance, the sam-
pling based methods are one of the simplest yet effective
ones. The over-sampling scheme replicates the small classes
to match the sizes of large classes [22, 29]; under-sampling,
however, cuts down the large class sizes to achieve a simi-
lar effect [21, 29]. Drummond and Holte [11] provided de-
tailed comparisons on these two resampling schemes. An-
other popular method is the cost-sensitive learning scheme
which takes the cost matrix into consideration during model
building and generates a model that has the lowest cost. The
properties of a cost matrix had been studied by Elkan [13].
Margineantu and Dietterich [24] examined various methods
for incorporating cost information into the C4.5 learning
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algorithm. Other cost-sensitive learning methods that are
algorithm-independent include AdaCost [14], MetaCost [10],
and Costing [32]. In addition, Joshi et al. [18] discussed the
limitations of boosting algorithms for rare class modeling
and proposed PNrule, a two-phase rule induction algorithm,
to handle the rare class purposefully [17]. Other algorithms
developed for mining rare classes include SMOTE [6], RIP-
PER [7] etc. A survey paper is given by Weiss [31].

Finally, in her inspiring paper, Japkowicz [16] shows the
idea of “supervised learning with unsupervised output sep-
aration”. This work shares some common grounds with our
COG method in terms of combining supervised and unsu-
pervised learning techniques. However, in this paper, we
have a novel perspective on rare class analysis. We develop
the foundation of classification using local clustering (COG)
for enhancing linear classifies on handling both balanced and
imbalanced classification problems.

6. CONCLUSIONS
In this paper, we propose a method for classification using

local clustering (COG). The key idea is to perform cluster-
ing within each class and produce linearly separable sub-
classes with relatively balanced sizes. For data sets with
imbalanced class distributions, the COG method can im-
prove the performance of traditional supervised learning al-
gorithms, such as Support Vector Machines (SVMs), on rare
class analysis. In addition, the COG method has the capa-
bility in enhancing linear classifiers on data sets contain-
ing non-linear-separable classes. Finally, as demonstrated
by our experimental results on various real-world data sets,
COG with over-sampling can have much better prediction
performance on rare classes than state-of-the-art methods.
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