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ABSTRACT | Transfer learning aims at improving the

performance of target learners on target domains by transfer-

ring the knowledge contained in different but related source

domains. In this way, the dependence on a large number

of target-domain data can be reduced for constructing tar-

get learners. Due to the wide application prospects, trans-

fer learning has become a popular and promising area in

machine learning. Although there are already some valuable

and impressive surveys on transfer learning, these surveys

introduce approaches in a relatively isolated way and lack the

recent advances in transfer learning. Due to the rapid expan-

sion of the transfer learning area, it is both necessary and

challenging to comprehensively review the relevant studies.

This survey attempts to connect and systematize the existing

transfer learning research studies, as well as to summarize

and interpret the mechanisms and the strategies of transfer

learning in a comprehensive way, which may help readers

have a better understanding of the current research status and

ideas. Unlike previous surveys, this survey article reviewsmore

than 40 representative transfer learning approaches, espe-

cially homogeneous transfer learning approaches, from the

perspectives of data and model. The applications of transfer

learning are also briefly introduced. In order to show the
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performance of different transfer learning models, over 20 rep-

resentative transfer learning models are used for experiments.

The models are performed on three different data sets, that

is, Amazon Reviews, Reuters-21578, and Office-31, and the

experimental results demonstrate the importance of selecting

appropriate transfer learning models for different applications

in practice.
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N O M E N C L AT U R E
Symbol Definition
n Number of instances.
m Number of domains.
D Domain.
T Task.
X Feature space.
Y Label space.
x Feature vector.
y Label.
X Instance set.
Y Label set corresponding to X.
S Source domain.
T Target domain.
L Labeled instances.
U Unlabeled instances.
H Reproducing kernel Hilbert space.
θ Mapping/coefficient vector.
α Weighting coefficient.
β Weighting coefficient.
λ Tradeoff parameter.
δ Parameter/error.
b Bias.
B Boundary parameter.
N Iteration/kernel number.
f Decision function.
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L Loss function.
η Scale parameter.
G Graph.
Φ Nonlinear mapping.
σ Monotonically increasing function.
Χ Structural risk.
κ Kernel function.
K Kernel matrix.
H Centering matrix.
C Covariance matrix.
d Document.
w Word.
z Class variable.
z̃ Noise.
D Discriminator.
G Generator.
S Function.
M Orthonormal bases.
Θ Model parameters.
P Probability.
E Expectation.
Q Matrix variable.
R Matrix variable.
W Mapping matrix.

I. I N T R O D U C T I O N
Although traditional machine learning technology has
achieved great success and has been successfully applied
in many practical applications, it still has some limita-
tions for certain real-world scenarios. The ideal scenario
of machine learning is that there are abundant labeled
training instances, which have the same distribution as the
test data. However, in many scenarios, collecting sufficient
training data is often expensive, time-consuming, or even
unrealistic. Semi-supervised learning can partly solve this
problem by relaxing the need of mass labeled data. Typ-
ically, a semi-supervised approach only requires a limited
number of labeled data, and it utilizes a large amount of
unlabeled data to improve the learning accuracy. But in
many cases, unlabeled instances are also difficult to col-
lect, which usually makes the resultant traditional models
unsatisfactory.

Transfer learning, which focuses on transferring the
knowledge across domains, is a promising machine learn-
ing methodology for solving the problem mentioned above.
The concept about transfer learning may initially come
from educational psychology. According to the general-
ization theory of transfer, as proposed by psychologist
C. H. Judd, learning to transfer is the result of the
generalization of experience. It is possible to realize the
transfer from one situation to another, as long as a per-
son generalizes his experience. According to this theory,
the prerequisite of transfer is that there needs to be a
connection between two learning activities. In practice,
a person who has learned the violin can learn the piano
faster than others, since both the violin and the piano
are musical instruments and may share some common

Fig. 1. Intuitive examples about transfer learning.

knowledge. Fig. 1 shows some intuitive examples about
transfer learning. Inspired by human beings’ capabilities
to transfer knowledge across domains, transfer learning
aims to leverage knowledge from a related domain (called
source domain) to improve the learning performance or
minimize the number of labeled examples required in a
target domain. It is worth mentioning that the transferred
knowledge does not always bring a positive impact on
new tasks. If there is little in common between domains,
knowledge transfer could be unsuccessful. For example,
learning to ride a bicycle cannot help us learn to play
the piano faster. Besides, the similarities between domains
do not always facilitate learning, because sometimes the
similarities may be misleading. For example, although
Spanish and French have a close relationship with each
other and both belong to the Romance group of languages,
people who learn Spanish may experience difficulties in
learning French, such as using the wrong vocabulary or
conjugation. This occurs because previous successful expe-
rience in Spanish can interfere with learning the word
formation, usage, pronunciation, conjugation, and so on,
in French. In the field of psychology, the phenomenon
that previous experience has a negative effect on learning
new tasks is called negative transfer [1]. Similarly, in the
transfer learning area, if the target learner is negatively
affected by the transferred knowledge, the phenomenon is
also termed as negative transfer [2], [3]. Whether negative
transfer will occur may depend on several factors, such as
the relevance between the source and the target domains
and the learner’s capacity of finding the transferable and
beneficial part of the knowledge across domains. In [3],
a formal definition and some analyses of negative transfer
are given.

Roughly speaking, according to the discrepancy between
domains, transfer learning can be further divided into
two categories, that is, homogeneous and heterogeneous
transfer learning [4]. Homogeneous transfer learning
approaches are developed and proposed for handling the
situations where the domains are of the same feature
space. In homogeneous transfer learning, some studies
assume that domains differ only in marginal distributions.
Therefore, they adapt the domains by correcting the sam-
ple selection bias [5] or covariate shift [6]. However, this
assumption does not hold in many cases. For example,
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in sentiment classification problem, a word may have dif-
ferent meaning tendencies in different domains. This phe-
nomenon is also called context feature bias [7]. To solve
this problem, some studies further adapt the conditional
distributions. Heterogeneous transfer learning refers to
the knowledge transfer process in the situations where
the domains have different feature spaces. In addition to
distribution adaptation, heterogeneous transfer learning
requires feature space adaptation [7], which makes it more
complicated than homogeneous transfer learning.

The survey aims to give readers a comprehensive under-
standing about transfer learning from the perspectives
of data and model. The mechanisms and the strategies
of transfer learning approaches are introduced to allow
readers grasp how the approaches work. And a number of
the existing transfer learning researches are connected and
systematized. Specifically, over 40 representative transfer
learning approaches are introduced. Besides, we conduct
experiments to demonstrate on which data set a transfer
learning model performs well.

In this survey, we focus more on homogeneous transfer
learning. Some interesting transfer learning topics are
not covered in this survey, such as reinforcement transfer
learning [8], lifelong transfer learning [9], and online
transfer learning [10]. The rest of this survey is orga-
nized into seven sections. Section II clarifies the difference
between transfer learning and other related machine learn-
ing techniques. Section III introduces the notation used
in this survey and the definitions about transfer learning.
Sections IV and V interpret transfer learning approaches
from the data and the model perspectives, respectively.
Section VI introduces some applications of transfer learn-
ing. Experiments are conducted and the results are pro-
vided in Section VII. Section VIII concludes this survey.
The main contributions of this survey are summarized as
follows.

1) Over 40 representative transfer learning approaches
are introduced and summarized, which can give
readers a comprehensive overview about transfer
learning.

2) Experiments are conducted to compare different
transfer learning approaches. The performance of
over 20 different approaches is displayed intuitively
and then analyzed, which may be instructive for the
readers to select the appropriate ones in practice.

II. R E L AT E D W O R K
Some areas related to transfer learning are introduced.
The connections and difference between them and transfer
learning are clarified.

A. Semisupervised Learning

Semisupervised learning [11] is a machine learning
task and a method that lies between supervised learn-
ing (with completely labeled instances) and unsupervised
learning (without any labeled instances). Typically, a semi-
supervised method utilizes abundant unlabeled instances

combined with a limited number of labeled instances
to train a learner. Semi-supervised learning relaxes the
dependence on labeled instances and thus reduces the
expensive labeling costs. Note that, in semi-supervised
learning, both the labeled and unlabeled instances are
drawn from the same distribution. In contrast, in transfer
learning, the data distributions of the source and the
target domains are usually different. Many transfer learn-
ing approaches absorb the technology of semi-supervised
learning. The key assumptions in semi-supervised learning,
that is, smoothness, cluster, and manifold assumptions, are
also made use of in transfer learning. It is worth mention-
ing that semi-supervised transfer learning is a controversial
term. The reason is that the concept of whether the label
information is available in transfer learning is ambiguous
because both the source and the target domains can be
involved.

B. Multiview Learning

Multiview learning [12] focuses on the machine learn-
ing problems with multiview data. A view represents a
distinct feature set. An intuitive example about multi-
ple views is that a video object can be described from
two different viewpoints, that is, the image signal and
the audio signal. Briefly, multiview learning describes
an object from multiple views, which results in abun-
dant information. By properly considering the informa-
tion from all views, the learner’s performance can be
improved. There are several strategies adopted in mul-
tiview learning such as subspace learning, multikernel
learning, and co-training [13], [14]. Multiview techniques
are also adopted in some transfer learning approaches.
For example, Zhang et al. [15] proposed a multiview trans-
fer learning framework, which imposes the consistency
among multiple views. Yang and Gao [16] incorporated
multiview information across different domains for knowl-
edge transfer. The work by Feuz and Cook [17] introduces
a multiview transfer learning approach for activity learn-
ing, which transfers activity knowledge between heteroge-
neous sensor platforms.

C. Multitask Learning

The thought of multitask learning [18] is to jointly learn
a group of related tasks. To be more specific, multitask
learning reinforces each task by taking advantage of the
interconnections between task, that is, considering both
the intertask relevance and the intertask difference. In this
way, the generalization of each task is enhanced. The
main difference between transfer learning and multitask
learning is that the former transfer the knowledge con-
tained in the related domains, while the latter transfer the
knowledge via simultaneously learning some related tasks.
In other words, multitask learning pays equal attention to
each task, while transfer learning pays more attention to
the target task than to the source task. There are some
commons and associations between transfer learning and
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multitask learning. Both of them aim to improve the per-
formance of learners via knowledge transfer. Besides, they
adopt some similar strategies for constructing models, such
as feature transformation and parameter sharing. Note that
some existing studies utilize both the transfer learning and
the multitask learning technologies. For example, the work
by Zhang et al. [19] employs multitask and transfer learn-
ing techniques for biological image analysis. The work by
Liu et al. [20] proposes a framework for human action
recognition based on multitask learning and multisource
transfer learning.

III. O V E R V I E W
In this section, the notation used in this survey are listed
for convenience. Besides, some definitions and categoriza-
tions about transfer learning are introduced, and some
related surveys are also provided.

A. Notation

For convenience, a list of symbols and their definitions
are shown in Nomenclature. Besides, we use � · � to repre-
sent the norm and superscript T to denote the transpose of
a vector/matrix.

B. Definition

In this section, some definitions about transfer learning
are given. Before giving the definition of transfer learning,
let us review the definitions of a domain and a task.

Definition 1 (Domain): A domain D is composed of two
parts, that is, a feature space X and a marginal distribution
P (X). In other words, D = {X , P (X)}. And the symbol X

denotes an instance set, which is defined as X = {x|xi ∈
X , i = 1, . . . , n}.

Definition 2 (Task): A task T consists of a label space
Y and a decision function f , that is, T = {Y, f}. The
decision function f is an implicit one, which is expected
to be learned from the sample data.

Some machine learning models actually output the pre-
dicted conditional distributions of instances. In this case,
f(xj) = {P (yk|xj)|yk ∈ Y, k = 1, . . . , |Y|}.

In practice, a domain is often observed by a number
of instances with or without the label information. For
example, a source domain DS corresponding to a source
task TS is usually observed via the instance-label pairs,
that is, DS = {(x, y)|xi ∈ X S, yi ∈ YS, i = 1, . . . , nS};
an observation of the target domain usually consists of a
number of unlabeled instances and/or limited number of
labeled instances.

Definition 3 (Transfer Learning): Given some/an obser-
vation(s) corresponding to mS ∈ N

+ source domain(s)
and task(s) (i.e., {(DSi , TSi)|i = 1, . . . , mS}), and some/an
observation(s) about mT ∈ N

+ target domain(s) and
task(s) (i.e., {(DTj , TTj )|j = 1, . . . , mT }), transfer learning
utilizes the knowledge implied in the source domain(s) to
improve the performance of the learned decision functions
fTj (j = 1, . . . , mT ) on the target domain(s).

The above definition, which covers the situation of
multisource transfer learning, is an extension of the one
presented in the survey [2]. If mS equals 1, the scenario
is called single-source transfer learning. Otherwise, it is
called multisource transfer learning. Besides, mT repre-
sents the number of the transfer learning tasks. A few
studies focus on the setting that mT ≥ 2 [21]. The
existing transfer learning studies pay more attention to
the scenarios where mT = 1 (especially where mS =

mT = 1). It is worth mentioning that the observation of
a domain or a task is a concept with broad sense, which
is often cemented into a labeled/unlabeled instance set or
a prelearned model. A common scenario is that we have
abundant labeled instances or have a well-trained model
on the source domain, and we only have limited labeled
target-domain instances. In this case, the resources such as
the instances and the model are actually the observations,
and the goal of transfer learning is to learn a more accurate
decision function on the target domain.

Another term commonly used in the transfer learning
area is domain adaptation. Domain adaptation refers to
the process that adapting one or more source domains to
transfer knowledge and improve the performance of the
target learner [4]. Transfer learning often relies on the
domain adaptation process, which attempts to reduce
the difference between domains.

C. Categorization of Transfer Learning

There are several categorization criteria of transfer
learning. For example, transfer learning problems can be
divided into three categories, that is, transductive, induc-
tive, and unsupervised transfer learning [2]. The com-
plete definitions of these three categories are presented
in [2]. These three categories can be interpreted from a
label-setting aspect. Roughly speaking, transductive trans-
fer learning refers to the situations where the label infor-
mation only comes from the source domain. If the label
information of the target-domain instances is available,
the scenario can be categorized into inductive transfer
learning. If the label information is unknown for both the
source and the target domains, the situation is known as
unsupervised transfer learning. Another categorization is
based on the consistency between the source and the target
feature spaces and label spaces. If XS = X T and YS = YT ,
the scenario is termed as homogeneous transfer learning.
Otherwise, if XS �= X T or/and YS �= YT , the scenario is
referred to as heterogeneous transfer learning.

According to the survey [2], the transfer learning
approaches can be categorized into four groups: instance-
based, feature-based, parameter-based, and relational-
based approaches. Instance-based transfer learning
approaches are mainly based on the instance weighting
strategy. Feature-based approaches transform the original
features to create a new feature representation; they
can be further divided into two subcategories, that
is, asymmetric and symmetric feature-based transfer
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Fig. 2. Categorizations of transfer learning.

learning. Asymmetric approaches transform the source
features to match the target ones. In contrast, symmetric
approaches attempt to find a common latent feature space
and then transform both the source and the target features
into a new feature representation. The parameter-based
transfer learning approaches transfer the knowledge at
the model/parameter level. Relational-based transfer
learning approaches mainly focus on the problems in
relational domains. Such approaches transfer the logical
relationship or rules learned in the source domain to
the target domain. For better understanding, Fig. 2
shows the above-mentioned categorizations of transfer
learning.

Some surveys are provided for the readers who want
to have a more complete understanding of this field. The
survey by Pan and Yang [2], which is a pioneering work,
categorizes transfer learning and reviews the research
progress before 2010. The survey by Weiss et al. [4]
introduces and summarizes a number of homogeneous
and heterogeneous transfer learning approaches. Hetero-
geneous transfer learning is specially reviewed in the sur-
vey by Day and Khoshgoftaar [7]. Some surveys review the
literatures related to specific themes such as reinforcement
learning [8], computational intelligence [22], and deep
learning [23], [24]. Besides, a number of surveys focus
on specific application scenarios including activity recog-
nition [25], visual categorization [26], collaborative rec-
ommendation [27], computer vision [24], and sentiment
analysis [28].

Note that the organization of this survey does
not strictly follow the above-mentioned categorizations.
In Sections IV and V, transfer learning approaches are
interpreted from the data and the model perspectives.
Roughly speaking, data-based interpretation covers the
above-mentioned instance-based and feature-based trans-
fer learning approaches, but from a broader perspective.
Model-based interpretation covers the above-mentioned
parameter-based approaches. Since there are relatively few
studies concerning relational-based transfer learning and
the representative approaches are well introduced in [2]

and [4], this survey does not focus on relational-based
approaches.

IV. D ATA - B A S E D I N T E R P R E TAT I O N
Many transfer learning approaches, especially the
data-based approaches, focus on transferring the
knowledge via the adjustment and the transformation of
data. Fig. 3 shows the strategies and the objectives of the
approaches from the data perspective. As shown in Fig. 3,
space adaptation is one of the objectives. This objective is
required to be satisfied mostly in heterogeneous transfer
learning scenarios. In this survey, we focus more on
homogeneous transfer learning, and the main objective
in this scenario is to reduce the distribution difference
between the source-domain and the target-domain
instances. Furthermore, some advanced approaches may
attempt to preserve the data properties in the adaptation
process. There are generally two strategies for realizing
the objectives from the data perspective, that is, instance
weighting and feature transformation. In this section,
some related transfer learning approaches are introduced
in proper order according to the strategies shown in Fig. 3.

A. Instance Weighting Strategy

Let us first consider a simple scenario in which a large
number of labeled source-domain and a limited number of
target-domain instances are available and domains differ
only in marginal distributions (i.e., P S(X) �= P T (X)

and P S(Y |X) = P T (Y |X)). For example, let us consider
we need to build a model to diagnose cancer in a spe-
cific region where the elderly are the majority. Limited
target-domain instances are given, and relevant data are
available from another region where young people are the
majority. Directly transferring all the data from another
region may be unsuccessful, since the marginal distribution
difference exists, and the elderly have a higher risk of
cancer than younger people. In this scenario, it is natural
to consider adapting the marginal distributions. A simple
idea is to assign weights to the source-domain instances in
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Fig. 3. Strategies and the objectives of the transfer learning approaches from the data perspective.

the loss function. The weighting strategy is based on the
following equation [5]:

E(x,y)∼P T [L(x, y; f)] = E(x,y)∼P S

�
P T (x, y)

P S(x, y)
L(x, y; f)

�

= E(x,y)∼P S

�
P T (x)

P S(x)
L(x, y; f)

�
.

Therefore, the general objective function of a learning task
can be written as [5]

min
f

1

nS

nS�
i=1

βiL
�
f(xS

i ), yS
i

�
+ Χ(f)

where βi (i = 1, 2, . . . , nS) is the weighting parameter.
The theoretical value of βi is equal to P T (xi)/P S(xi).
However, this ratio is generally unknown and is difficult
to be obtained by using the traditional methods.

Kernel mean matching (KMM), which is proposed by
Huang et al. [5], resolves the estimation problem of the
above unknown ratios by matching the means between
the source-domain and the target-domain instances in a
reproducing kernel Hilbert space (RKHS), that is,

arg min
βi∈[0,B]

������
������ 1

nS

nS�
i=1

βiΦ
�
xS

i

�
− 1

nT

nT�
j=1

Φ
�
xT

j

�������
������
2

H

s.t.

������ 1

nS

nS�
i=1

βi − 1

������ ≤ δ

where δ is a small parameter and B is a parameter for
constraint. The optimization problem mentioned above
can be converted into a quadratic programming problem
by expanding and using the kernel trick. This approach to
estimating the ratios of distributions can be easily incor-
porated into many existing algorithms. Once the weight
βi is obtained, a learner can be trained on the weighted
source-domain instances.

There are some other studies attempting to estimate
the weights. For example, Sugiyama et al. [6] proposed an
approach termed Kullback–Leibler importance estimation
procedure (KLIEP). KLIEP depends on the minimization of
the Kullback–Leibler (KL) divergence and incorporates a
built-in model selection procedure. Based on the studies of
weight estimation, some instance-based transfer learning
frameworks or algorithms are proposed. For example,
Sun et al. [29] proposed a multisource framework termed
two-stage weighting framework for multisource-domain
adaptation (2SW-MDA) with the following two
stages.

1) Instance weighting: The source-domain instances are
assigned with weights to reduce the marginal distrib-
ution difference, which is similar to KMM.

2) Domain weighting: Weights are assigned to each
source domain for reducing the conditional dis-
tribution difference based on the smoothness
assumption [30].

Then, the source-domain instances are reweighted based
on the instance weights and the domain weights. These
reweighted instances and the labeled target-domain
instances are used to train the target classifier.

6 PROCEEDINGS OF THE IEEE

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on July 09,2020 at 01:16:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhuang et al.: Comprehensive Survey on Transfer Learning

In addition to directly estimating the weighting
parameters, adjusting weights iteratively is also effective.
The key is to design a mechanism to decrease the weights
of the instances that have negative effects on the target
learner. A representative work is TrAdaBoost, which is a
framework proposed by Dai et al. [31]. This framework
is an extension of AdaBoost [32]. AdaBoost is an effec-
tive boosting algorithm designed for traditional machine
learning tasks. In each iteration of AdaBoost, a learner
is trained on the instances with updated weights, which
results in a weak classifier. The weighting mechanism of
instances ensures that the instances with incorrect clas-
sification are given more attention. Finally, the resultant
weak classifiers are combined to form a strong classifier.
TrAdaBoost extends the AdaBoost to the transfer learn-
ing scenario; a new weighting mechanism is designed to
reduce the impact of the distribution difference. Specif-
ically, in TrAdaBoost, the labeled source-domain and
labeled target-domain instances are combined as a whole,
that is, a training set, to train the weak classifier. The
weighting operations are different for the source-domain
and the target-domain instances. In each iteration, a tem-
porary variable δ̄, which measures the classification error
rate on the labeled target-domain instances, is calcu-
lated. Then, the weights of the target-domain instances
are updated based on δ̄ and the individual classification
results, while the weights of the source-domain instances
are updated based on a designed constant and the indi-
vidual classification results. For better understanding,
the formulas used in the kth iteration (k = 1, . . . , N)
for updating the weights are presented repeatedly as
follows [31]:

βS
k,i = βS

k−1,i

�
1 +

�
2 ln nS/N

�−|fk(xS
i )−yS

i |

(i = 1, . . . , nS)

βT
k,j = βT

k−1,j

�
δ̄k/(1− δ̄k)

	−|fk(xT
j )−yT

j | (j = 1, . . . , nT ).

Note that each iteration forms a new weak classifier. The
final classifier is constructed by combining and ensembling
half the number of the newly resultant weak classifiers
through voting scheme.

Some studies further extend TrAdaBoost. The work
by Yao and Doretto [33] proposes a Multi-Source TrAd-
aBoost (MsTrAdaBoost) algorithm, which mainly has the
following two steps in each iteration.

1) Candidate classifier construction: A group of candi-
date weak classifiers are, respectively, trained on
the weighted instances in the pairs of each source
domain and the target domain, that is, DSi ∪ DT

(i = 1, . . . , mS).
2) Instance weighting: A classifier (denoted by j and

trained on DSj ∪ DT ) which has the minimal classifi-
cation error rate δ̄ on the target-domain instances is
selected, and then is used for updating the weights of
the instances in DSj and DT .

Finally, the selected classifiers from each iteration are com-
bined to form the final classifier. Another parameter-based
algorithm, that is, TaskTrAdaBoost, is also proposed in the
work [33], which is introduced in Section V-C.

Some approaches realize instance weighting strategy in
a heuristic way. For example, Jiang and Zhai [34] proposed
a general weighting framework. There are three terms in
the framework’s objective function, which are designed to
minimize the cross-entropy loss of three types of instances.
The following types of instances are used to construct the
target classifier.

1) Labeled target-domain instance: The classifier should
minimize the cross-entropy loss on them, which is
actually a standard supervised learning task.

2) Unlabeled target-domain instance: These instances’
true conditional distributions P (y|xT,U

i ) are unknown
and should be estimated. A possible solution is
to train an auxiliary classifier on the labeled
source-domain and target-domain instances to help
estimate the conditional distributions or assign
pseudo labels to these instances.

3) Labeled source-domain instance: The authors define
the weight of xS,L

i as the product of two parts,
that is, αi and βi. The weight βi is ideally equal to
P T (xi)/P S(xi), which can be estimated by nonpara-
metric methods such as KMM or can be set uniformly
in the worst case. The weight αi is used to filter out
the source-domain instances that differ greatly from
the target domain.

A heuristic method can be used to produce the value of αi,
which contains the following three steps.

1) Auxiliary classifier construction: An auxiliary classi-
fier trained on the labeled target-domain instances
are used to classify the unlabeled source-domain
instances.

2) Instance ranking: The source-domain instances are
ranked based on the probabilistic prediction results.

3) Heuristic weighting (βi): The weights of the top-k
source-domain instances with wrong predictions are
set to zero, and the weights of others are set to 1.

B. Feature Transformation Strategy

Feature transformation strategy is often adopted
in feature-based approaches. For example, consider a
cross-domain text classification problem. The task is to
construct a target classifier by using the labeled text data
from a related domain. In this scenario, a feasible solution
is to find the common latent features (e.g., latent topics)
through feature transformation and use them as a bridge to
transfer knowledge. Feature-based approaches transform
each original feature into a new feature representation for
knowledge transfer. The objectives of constructing a new
feature representation include minimizing the marginal
and the conditional distribution difference, preserving the
properties or the potential structures of the data, and
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Table 1 Metrics Adopted in Transfer Learning

finding the correspondence between features. The opera-
tions of feature transformation can be divided into three
types, that is, feature augmentation, feature reduction,
and feature alignment. Besides, feature reduction can be
further divided into several types such as feature mapping,
feature clustering, feature selection, and feature encoding.
A complete feature transformation process designed in an
algorithm may consist of several operations.

1) Distribution Difference Metric: One primary objective
of feature transformation is to reduce the distribution
difference of the source and the target-domain instances.
Therefore, how to measure the distribution difference or
the similarity between domains effectively is an important
issue.

The measurement termed maximum mean discrep-
ancy (MMD) is widely used in the field of transfer learning,
which is formulated as follows [35]:

MMD
�
XS , XT

�
=

������
������ 1

nS

nS�
i=1

Φ
�
xS

i

�
− 1

nT

nT�
j=1

Φ
�
xT

j

�������
������
2

H

.

MMD can be easily computed by using kernel trick. Briefly,
MMD quantifies the distribution difference by calculat-
ing the distance of the mean values of the instances in
an RKHS. Note that the above-mentioned KMM actually
produces the weights of instances by minimizing the MMD
distance between domains.

Table 1 lists some commonly used metrics and the
related algorithms. In addition to Table 1, there are some
other measurement criteria adopted in transfer learning,
including Wasserstein distance [59], [60] and central
moment discrepancy [61]. Some studies focus on opti-
mizing and improving the existing measurements. Let us
take MMD as an example. Gretton et al. [62] proposed
a multikernel version of MMD, that is, MK-MMD, which
takes advantage of multiple kernels. Besides, Yan et al. [63]
proposed a weighted version of MMD, which attempts to
address the issue of class weight bias.

2) Feature Augmentation: Feature augmentation opera-
tions are widely used in feature transformation, especially
in symmetric feature-based approaches. To be more spe-
cific, there are several ways to realize feature augmen-
tation such as feature replication and feature stacking.
For better understanding, we start with a simple transfer
learning approach which is established based on feature
replication.

The work by Daumé [64] proposes a simple domain
adaptation method, that is, feature augmentation method

(FAM). This method transforms the original features by
simple feature replication. Specifically, in single-source
transfer learning scenario, the feature space is augmented
to three times its original size. The new feature represen-
tation consists of general features, source-specific features,
and target-specific features. Note that, for the transformed
source-domain instances, their target-specific features are
set to zero. Similarly, for the transformed target-domain
instances, their source-specific features are set to zero. The
new feature representation of FAM is presented as follows:

ΦS

�
xS

i

�
=



xS

i ,xS
i ,0

�
, ΦT

�
xT

j

�
=



xT

j ,0, xT
j

�

where ΦS and ΦT denote the mappings to the new feature
space from the source and the target domain, respectively.
The final classifier is trained on the transformed labeled
instances. It is worth mentioning that this augmentation
method is actually redundant. In other words, augmenting
the feature space in other ways (with fewer dimensions)
may be able to produce competent performance. The supe-
riority of FAM is that its feature expansion has an elegant
form, which results in some good properties such as the
generalization to multisource scenarios. An extension of
FAM is proposed by Daumé et al. [65], which utilizes
the unlabeled instances to further facilitate the knowledge
transfer process.

However, FAM may not work well in handling hetero-
geneous transfer learning tasks. The reason is that directly
replicating features and padding zero vectors are less effec-
tive when the source and the target domains have different
feature representations. To solve this problem, Li et al. [67]
proposed an approach termed heterogeneous feature aug-
mentation (HFA) [66]. The feature representation of HFA
is presented as follows:

ΦS

�
xS

i

�
=



W SxS

i ,xS
i ,0T

�
ΦT

�
xT

j

�
=



W T xT

j ,0S ,xT
j

�

where W SxS
i and W T xT

j have the same dimension;
0S and 0T denote the zero vectors with the dimensions
of xS and xT , respectively. HFA maps the original features
into a common feature space and then performs a feature
stacking operation. The mapped features, original features,
and zero elements are stacked in a particular order to
produce a new feature representation.

3) Feature Mapping: In the field of traditional machine
learning, there are many feasible mapping-based methods
of extracting features such as principal component analysis
(PCA) [68] and kernelized-PCA (KPCA) [69]. However,
these methods mainly focus on the data variance rather
than the distribution difference. In order to solve the
distribution difference, some feature extraction methods
are proposed for transfer learning. Let us first consider
a simple scenario where there is little difference in the
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conditional distributions of the domains. In this case,
the following simple objective function can be used to find
a mapping for feature extraction

min
Φ

�
DIST

�
XS, XT ; Φ

	
+ λΧ(Φ)

�
/
�

VAR
�
XS ∪XT ; Φ

	�

where Φ is a low-dimensional mapping function, DIST(·)
represents a distribution difference metric, Χ(Φ) is a
regularizer controlling the complexity of Φ, and VAR(·)
represents the variance of instances. This objective func-
tion aims to find a mapping function Φ that minimizes
the marginal distribution difference between domains and
meanwhile makes the variance of the instances as large as
possible. The objective corresponding to the denominator
can be optimized in several ways. One possible way is to
optimize the objective of the numerator with a variance
constraint. For example, the scatter matrix of the mapped
instances can be enforced as an identity matrix. Another
way is to optimize the objective of the numerator in a
high-dimensional feature space at first. Then, a dimension
reduction algorithm such as PCA or KPCA can be per-
formed to realize the objective of the denominator.

Furthermore, finding the explicit formulation of Φ(·) is
nontrivial. To solve this problem, some approaches adopt
linear mapping technique or turn to the kernel trick.
In general, there are three main ideas to deal with the
above optimization problems.

1) Mapping learning + feature extraction: A possible way
is to find a high-dimensional space at first where the
objectives are met by solving a kernel matrix learning
problem or a transformation matrix finding problem.
Then, the high-dimensional features are compacted
to form a low-dimensional feature representation. For
example, once the kernel matrix is learned, the prin-
cipal components of the implicit high-dimensional
features can be extracted to construct a new feature
representation based on PCA.

2) Mapping construction + mapping learning: Another
way is to map the original features to a con-
structed high-dimensional feature space, and then a
low-dimensional mapping is learned to satisfy the
objective function. For example, a kernel matrix can
be constructed based on a selected kernel function at
first. Then, the transformation matrix can be learned,
which projects the high-dimensional features into a
common latent subspace.

3) Direct low-dimensional mapping learning: It is usually
difficult to find a desired low-dimensional mapping
directly. However, if the mapping is assumed to satisfy
certain conditions, it may be solvable. For example,
if the low-dimensional mapping is restricted to be a
linear one, the optimization problem can be easily
solved.

Some approaches also attempt to match the condi-
tional distributions and preserve the structures of the data.
To achieve this, the above simple objective function needs

to incorporate new terms or/and constraints. For exam-
ple, the following general objective function is a possible
choice:

min
Φ

μDIST
�
XS , XT ; Φ

�
+ λ1Χ

GEO(Φ) + λ2Χ(Φ)

+ (1− μ)DIST
�
Y S |XS , Y T |XT ; Φ

�
s.t. Φ(X)THΦ(X) = I, with H = I − (1/n) ∈ R

n×n

where μ is a parameter balancing the marginal and the
conditional distribution difference [70], ΧGEO(Φ) is a reg-
ularizer controlling the geometric structure, Φ(X) is the
matrix whose rows are the instances from both the source
and the target domains with the extracted new feature
representation, H is the centering matrix for constructing
the scatter matrix, and the constraint is used to maxi-
mize the variance. The last term in the objective function
denotes the measurement of the conditional distribution
difference.

Before the further discussion about the above objective
function, it is worth mentioning that the label information
of the target-domain instances is often limited or even
unknown. The lack of the label information makes it
difficult to estimate the distribution difference. In order
to solve this problem, some approaches resort to the
pseudo-label strategy, that is, assigning pseudo labels to
the unlabeled target-domain instances. A simple method
of realizing this is to train a base classifier to assign
pseudo labels. By the way, there are some other methods of
providing pseudo labels such as co-training [71], [72] and
tri-training [73], [74]. Once the pseudo-label information
is complemented, the conditional distribution difference
can be measured. For example, MMD can be modified
and extended to measure the conditional distribution dif-
ference. Specifically, for each label, the source-domain
and the target-domain instances that belong to the same
class are collected, and the estimation expression of the
conditional distribution difference is given by [38]

|Y|�
k=1

������
������ 1

nS
k

nS
k�

i=1

Φ
�
xS

i

�
− 1

nT
k

nT
k�

j=1

Φ
�
xT

j

�������
������
2

H

where nS
k and nT

k denote the numbers of the instances
in the source and the target domains with the same
label Yk, respectively. This estimation actually measures
the class-conditional distribution [i.e., P (x|y)] difference
to approximate the conditional distribution [i.e., P (y|x)]
difference. Some studies improve the above estimation. For
example, the work by Wang et al. [70] uses a weighted
method to additionally solve the class imbalance problem.
For better understanding, the transfer learning approaches
that are the special cases of the general objective func-
tion presented in the previous paragraph are detailed as
follows.
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1) μ = 1 and λ1 �= 0: The objective function of MMD
embedding (MMDE) is given by [75]

min
K

MMD
�
XS , XT ; Φ

�
− λ1

nS + nT�
i�=j

||Φ(xi)− Φ(xj)||2

s.t. ∀(xi ∈ k-NN(xj)) ∧ (xj ∈ k-NN(xi))

||Φ(xi)−Φ(xj)||2 = ||xi − xj ||2�
xi,xj ∈ XS ∪XT

�

where k-NN(x) represents the k nearest neighbors
of the instance x. Weinberger et al. [76] design the
above objective function motivated by maximum vari-
ance unfolding (MVU). Instead of employing a scatter
matrix constraint, the constraints and the second
term of this objective function aim to maximize the
distance between instances as well as preserve local
geometry. The desired kernel matrix K can be learned
by solving a semi-definite programming (SDP) [77]
problem. After obtaining the kernel matrix, PCA is
applied to it, and then the leading eigenvectors are
selected to help construct a low-dimensional feature
representation.

2) μ = 1 and λ1 = 0: The work by Pan et al. [36], [78]
proposes an approach termed transfer component
analysis (TCA). TCA adopts MMD to measure the
marginal distribution difference and enforces the scat-
ter matrix as the constraint. Different from MMDE
that learns the kernel matrix and then further adopts
PCA, TCA is a unified method that just needs to
learn a linear mapping from an empirical kernel
feature space to a low-dimensional feature space.
In this way, it avoids solving the SDP problem, which
results in relatively low computational burden. The
final optimization problem can be easily solved via
eigen-decomposition. TCA can also be extended to
utilize the label information. In the extended ver-
sion, the scatter matrix constraint is replaced by a
new one that balances the label dependence (mea-
sured by HSIC) and the data variance. Besides,
a graph Laplacian regularizer [30] is also added to
preserve the geometry of the manifold. Similarly,
the final optimization problem can also be solved by
eigen-decomposition.

3) μ = 0.5 and λ1 = 0: Long et al. [38] pro-
posed an approach termed joint distribution adap-
tation (JDA). JDA attempts to find a transformation
matrix that maps the instances to a low-dimensional
space where both the marginal and the conditional
distribution difference are minimized. To realize it,
the MMD metric and the pseudo-label strategy are
adopted. The desired transformation matrix can be
obtained by solving a trace optimization problem
via eigen-decomposition. Furthermore, it is obvious
that the accuracy of the estimated pseudo labels

affects the performance of JDA. In order to improve
the labeling quality, the authors adopt the iterative
refinement operations. Specifically, in each iteration,
JDA is performed, and then a classifier is trained
on the instances with the extracted features. Next,
the pseudo labels are updated based on the trained
classifier. After that, JDA is performed repeatedly with
the updated pseudo labels. The iteration ends when
convergence occurs. Note that JDA can be extended
by utilizing the label and structure information [79],
clustering information [80], various statistical and
geometrical information [81], and so on

4) μ ∈ (0, 1) and λ1 = 0: The article by Wang et al. [70]
proposes an approach termed balanced distribution
adaptation (BDA), which is an extension of JDA. Dif-
ferent from JDA which assumes that the marginal and
the conditional distributions have the same impor-
tance in adaptation, BDA attempts to balance the
marginal and the conditional distribution adaptation.
The operations of BDA are similar to JDA. In addition,
the authors also proposed the weighted BDA (WBDA).
In WBDA, the conditional distribution difference is
measured by a weighted version of MMD to solve the
class imbalance problem.

It is worth mentioning that some approaches transform
the features into a new feature space (usually of a high
dimension) and train an adaptive classifier simultaneously.
To realize this, the mapping function of the features and
the decision function of the classifier need to be associated.
One possible way is to define the following decision func-
tion: f(x) = θ · Φ(x) + b, where θ denotes the classifier
parameter; b denotes the bias. In light of the represen-
ter theorem [82], the parameter θ can be defined as
θ =

�n
i=1 αiΦ(xi), and thus we have

f(x) =
n�

i=1

αiΦ(xi) · Φ(x) + b =
n�

i=1

αiκ(xi,x) + b

where κ denotes the kernel function. By using the kernel
matrix as the bridge, the regularizers designed for the
mapping function can be incorporated into the classi-
fier’s objective function. In this way, the final optimiza-
tion problem is usually about the parameter (e.g., αi)
or the kernel function. For example, the article by
Long et al. [39] proposes a general framework termed
adaptation regularization-based transfer learning (ARTL).
The goals of ARTL are to learn the adaptive classifier,
to minimize the structural risk, to jointly reduce the
marginal and the conditional distribution difference, and
to maximize the manifold consistency between the data
structure and the predictive structure. The authors also
proposed two specific algorithms under this framework
based on different loss functions. In these two algo-
rithms, the coefficient matrix for computing MMD and
the graph Laplacian matrix for manifold regularization are
constructed at first. Then, a kernel function is selected to
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construct the kernel matrix. After that, the classifier learn-
ing problem is converted into a parameter (i.e., αi) solving
problem, and the solution formula is also given in [39].

In ARTL, the choice of the kernel function affects the
performance of the final classifier. In order to construct a
robust classifier, some studies turn to kernel learning. For
example, the article by Duan et al. [83] proposes a unified
framework termed domain transfer multiple kernel learn-
ing (DTMKL). In DTMKL, the kernel function is assumed to
be a linear combination of a group of base kernels, that is,
κ(xi,xj) =

�N
k=1 βkκk(xi,xj). DTMKL aims to minimize

the distribution difference, the classification error, and
so on, simultaneously. The general objective function of
DTMKL can be written as follows:

min
βk,f

σ
�

MMD(XS , XT ; κ)
�

+ λΧL(βk, f)

where σ is any monotonically increasing function, f is
the decision function with the same definition as the
one in ARTL, and ΧL(βk, f) is a general term repre-
senting a group of regularizers defined on the labeled
instances such as the ones for minimizing the classifica-
tion error and controlling the complexity of the resultant
model. Rakotomamonjy et al. [84] developed an algorithm
to learn the kernel and the decision function simulta-
neously by using the reduced gradient descent method.
In each iteration, the weight coefficients of base kernels
are fixed to update the decision function at first. Then,
the decision function is fixed to update the weight coef-
ficients. Note that DTMKL can incorporate many existing
kernel methods. The authors proposed two specific algo-
rithms under this framework. The first one implements the
framework by using hinge loss and support vector machine
(SVM). The second one is an extension of the first one
with an additional regularizer utilizing pseudo-label infor-
mation, and the pseudo labels of the unlabeled instances
are generated by using base classifiers.

4) Feature Clustering: Feature clustering aims to find
a more abstract feature representation of the original
features. Although it can be regarded as a way of fea-
ture extraction, it is different from the above-mentioned
mapping-based extraction.

For example, some transfer learning approaches implic-
itly reduce the features by using the co-clustering
technique, that is, simultaneously clustering both the
columns and rows of (or say, co-cluster) a contin-
gency table based on the information theory [85]. The
article by Dai et al. [41] proposes an algorithm termed
Co-Clustering-Based Classification (CoCC), which is used
for document classification. In a document classification
problem, the transfer learning task is to classify the
target-domain documents (represented by a document-
to-word matrix) with the help of the labeled source
document-to-word data. CoCC regards the co-clustering
technique as a bridge to transfer the knowledge. In CoCC

algorithm, both the source and the target document-to-
word matrices are co-clustered. The source document-to-
word matrix is co-clustered to generate the word clusters
based on the known label information, and these word
clusters are used as constraints during the co-clustering
process of the target-domain data. The co-clustering crite-
rion is to minimize the loss in mutual information, and the
clustering results are obtained by iteration. Each iteration
contains the following two steps.

1) Document clustering: Each row of the target
document-to-word matrix is reordered based on the
objective function for updating the document clusters.

2) Word clustering: The word clusters are adjusted to
minimize the joint mutual-information loss of the
source and the target document-word matrices.

After several times of iterations, the algorithm converges,
and the classification results are obtained. Note that,
in CoCC, the word clustering process implicitly extracts the
word features to form unified word clusters.

Dai et al. [42] also proposed an unsupervised clustering
approach, which is termed as self-taught clustering (STC).
Similar to CoCC, this algorithm is also a co-clustering-
based one. However, STC does not need the label
information. STC aims to simultaneously co-cluster the
source-domain and the target-domain instances with the
assumption that these two domains share the same feature
clusters in their common feature space. Therefore, two
co-clustering tasks are separately performed at the same
time to find the shared feature clusters. Each iteration of
STC has the following steps.

1) Instance clustering: The clustering results of the
source-domain and the target-domain instances are
updated to minimize their respective loss in mutual
information.

2) Feature clustering: The feature clusters are updated to
minimize the joint loss in mutual information.

When the algorithm converges, the clustering results of the
target-domain instances are obtained.

Different from the above-mentioned co-clustering-based
ones, some approaches extract the original features into
concepts (or topics). In the document classification prob-
lem, the concepts represent the high-level abstractness of
the words (e.g., word clusters). In order to introduce the
concept-based transfer learning approaches easily, let us
briefly review the latent semantic analysis (LSA) [86],
the probabilistic LSA (PLSA) [87], and the dual-PLSA [88].

1) LSA: LSA is an approach to mapping the document-to-
word matrix to a low-dimensional space (i.e., a latent
semantic space) based on the singular value decom-
position SVD) technique. In short, LSA attempts to
find the true meanings of the words. To realize this,
SVD technique is used to reduce the dimensionality,
which can remove the irrelevant information and
filter out the noise information from the raw data.

2) PLSA: PLSA is developed based on a statistical view
of LSA. PLSA assumes that there is a latent class
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variable z, which reflects the concept, associating
the document d and the word w. Besides, d and
w are independently conditioned on the concept z.
The diagram of this graphical model is presented as
follows:

d
P (di|zk)←−−−−−

P (zk)
⇓
z

P (wj |zk)
−−−−−−→ w

where the subscripts i, j, and k represent the
indexes of the document, the word, and the con-
cept, respectively. PLSA constructs a Bayesian net-
work, and the parameters are estimated by using the
expectation-maximization (EM) algorithm [89].

3) Dual-PLSA: The dual-PLSA is an extension of PLSA.
This approach assumes there are two latent variables
zd and zw associating the documents and the words.
Specifically, the variables zd and zw reflect the con-
cepts behind the documents and the words, respec-
tively. The diagram of the dual-PLSA is provided as
follows:

d
P
�

di|zd
k1

�

←−−−−−−− zd
P
�

zd
k1

,zw
k2

�

←−−−−−−−→ zw
P
�

wj |zw
k2

�

−−−−−−−→ w.

The parameters of the dual-PLSA can also be obtained
based on the EM algorithm.

Some concept-based transfer learning approaches are
established based on PLSA. For example, the article by
Xue et al. [90] proposes a cross-domain text classi-
fication approach termed topic-bridged PLSA (TPLSA).
TPLSA, which is an extension of PLSA, assumes that the
source-domain and the target-domain instances share the
same mixing concepts of the words. Instead of performing
two PLSAs for the source domain and the target domain
separately, the authors merge those two PLSAs as an
integrated one by using the mixing concept z as a bridge,
that is, each concept has some probabilities to produce
the source-domain and the target-domain documents. The
diagram of TPLSA is provided as follows:

���dS

dT

�
�

P(dS
i |zk)

========
P(dT

i
|zk)

z
P(zk|wj)←−−−−−− w.

Note that PLSA does not require the label information.
In order to exploit the label information, the authors
add the concept constraints, which include must-link and
cannot-link constraints, as the penalty terms in the objec-
tive function of TPLSA. Finally, the objective function is
iteratively optimized to obtain the classification results
[i.e., arg maxzP (z|dT

i )] by using the EM algorithm.
The work by Zhuang et al. [91], [92] proposes

an approach termed collaborative dual-PLSA (CD-PLSA)
for multidomain text classification (mS source domains
and mT target domains). CD-PLSA is an extension of

dual-PLSA. Its diagram is shown as follows:

P(Dk0)
⇓
D →

P
�

di|zd
k1

,Dk0

�

⇓
d ← zd

P
�

zd
k1

,zw
k2

�

←−−−−−−−→zw→
P
�

wj |zw
k2

,Dk0

�

⇓
w

� 

where 1 ≤ k0 ≤ mS + mT denotes the domain index.
The domain D connects both the variables d and w but
is independent of the variables zd and zw. The label
information of the source-domain instances is utilized by
initializing the value P (di|zd

k1 ,Dk0) (k0 = 1, . . . , mS).
Due to the lack of the target-domain label information,
the value P (di|zd

k1 ,Dk0) (k0 = mS + 1, . . . , mS + mT )
can be initialized based on any supervised classifier. Sim-
ilarly, the authors adopt the EM algorithm to find the
parameters. Through the iterations, all the parameters in
the Bayesian network are obtained. Thus, the class label
of the ith document in a target domain (denoted by Dk)
can be predicted by computing the posterior probabilities,
i.e., arg maxzdP (zd|di,Dk).

Zhuang et al. [93] further proposed a general
framework that is termed as homogeneous-identical-
distinct-concept (HIDC) model. This framework is
also an extension of dual-PLSA. HIDC is composed
of three generative models, that is, identical-concept,
homogeneous-concept, and distinct-concept models.
These three graphical models are presented as
follows:

Identical-concept model: D→d←zd

� 
→zw

IC→w

Homogeneous-concept model:
 �
D→d←zd

� 
→zw

HC→w

Distinct-concept model:
 � �
D→d←zd

� 
→zw

DC→w .

The original word concept zw is divided into three types,
that is, zw

IC, zw
HC, and zw

DC. In the identical-concept model,
the word distributions only rely on the word concepts,
and the word concepts are independent of the domains.
However, in the homogeneous-concept model, the word
distributions also depend on the domains. The differ-
ence between the identical and the homogeneous con-
cepts is that zw

IC is directly transferable, while zw
HC is the

domain-specific transferable one that may have different
effects on the word distributions for different domains.
In the distinct-concept model, zw

DC is actually the nontrans-
ferable domain-specific one, which may only appear in a
specific domain. The above-mentioned three models are
combined as an integrated one, that is, HIDC. Similar to
other PLSA-related algorithms, HIDC also uses EM algo-
rithm to get the parameters.
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5) Feature Selection: Feature selection is another kind of
operation for feature reduction, which is used to extract
the pivot features. The pivot features are the ones that
behave in the same way in different domains. Due to the
stability of these features, they can be used as the bridge
to transfer the knowledge. For example, Blitzer et al. [94]
proposed an approach termed structural correspondence
learning (SCL). Briefly, SCL consists of the following steps
to construct a new feature representation.

1) Feature selection: SCL first performs feature selection
operations to obtain the pivot features.

2) Mapping learning: The pivot features are utilized to
find a low-dimensional common latent feature space
by using the structural learning technique [95].

3) Feature stacking: A new feature representation is con-
structed by feature augmentation, that is, stacking the
original features with the obtained low-dimensional
features.

Take the part-of-speech tagging problem as an example.
The selected pivot features should occur frequently in
source and target domains. Therefore, determiners can be
included in pivot features. Once all the pivot features are
defined and selected, a number of binary linear classifiers
whose function is to predict the occurrence of each pivot
feature are constructed. Without the loss of generality,
the decision function of the ith classifier, which is used
to predict the ith pivot feature, can be formulated as
fi(x) = sign(θi · x), where x is assumed to be a binary
feature input. And the ith classifier is trained on all the
instances excluding the features derived from the ith pivot
feature. The following formula can be used to estimate the
ith classifier’s parameters, that is

θi = arg min
θ

1

n

n�
j=1

L (θ · xj , Rowi(xj)) + λ�θ�2

where Rowi(xj) denotes the true value of the unlabeled
instance xj in terms of the ith pivot feature. By stacking the
obtained parameter vectors as column elements, a matrix
W̃ is obtained. Next, based on SVD, the top-k left singular
vectors, which are the principal components of the matrix
W̃ , are taken to construct the transformation matrix W .
At last, the final classifier is trained on the labeled instances
in an augmented feature space, that is, ([xL

i ; W TxL
i ]T, yL

i ).

6) Feature Encoding: In addition to feature extraction
and selection, feature encoding is also an effective tool.
For example, autoencoders, which are often adopted in
deep learning area, can be used for feature encoding.
An autoencoder consists of an encoder and a decoder. The
encoder tries to produce a more abstract representation
of the input, while the decoder aims to map back that
representation and to minimize the reconstruction error.
Autoencoders can be stacked to build a deep learning
architecture. Once an autoencoder completes the training
process, another autoencoder can be stacked at the top of

it. The newly added autoencoder is then trained by using
the encoded output of the upper-level autoencoder as its
input. In this way, deep learning architectures can thus be
constructed.

Some transfer learning approaches are developed
based on autoencoders. For example, the article by
Glorot et al. [96] proposes an approach termed stacked
denoising autoencoder (SDA). The denoising autoencoder,
which can enhance the robustness, is an extension of
the basic one [97]. This kind of autoencoder contains a
randomly corrupting mechanism that adds noise to the
input before mapping. For example, an input can be cor-
rupted or partially destroyed by adding a masking noise or
Gaussian noise. The denoising autoencoder is then trained
to minimize the denoising reconstruction error between
the original clean input and the output. The SDA algorithm
proposed in this article mainly encompasses the following
steps.

1) Autoencoder training: The source-domain and
target-domain instances are used to train a stack of
denoising autoencoders in a greedy layer-by-layer
way.

2) Feature encoding and stacking: A new feature rep-
resentation is constructed by stacking the encoding
output of intermediate layers, and the features of
the instances are transformed into the obtained new
representation.

3) Learner training: The target classifier is trained on the
transformed labeled instances.

Although the SDA algorithm has excellent performance
for feature extraction, it still has some drawbacks such
as high computational and parameter-estimation cost.
In order to shorten the training time and to speed up
traditional SDA algorithms, Chen et al. [98], [99] proposed
a modified version of SDA, that is, marginalized stacked
linear denoising autoencoder (mSLDA). This algorithm
adopts linear autoencoders and marginalizes the randomly
corrupting step in a closed form. It may seem that linear
autoencoders are too simple to learn complex features.
However, the authors observe that linear autoencoders are
often sufficient to achieve competent performance when
encountering high-dimensional data. The basic architec-
ture of mSLDA is a single-layer linear autoencoder. The
corresponding single-layer mapping matrix W (augmented
with a bias column for convenience) should minimize the
expected squared reconstruction loss function, that is,

W = arg min
W

1

2n

n�
i=1

EP (x̃i|x)


||xi −W x̃i||2

�

where x̃i denotes the corrupted version of the input xi.
The solution of W is given by [98], [99]

W =

�
n�

i=1

xiE[x̃i]
T

��
n�

i=1

E

�
x̃ix̃

T
i

��−1

.
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When the corruption strategy is determined, the above
formulas can be further expanded and simplified into a
specific form. Note that, in order to insert nonlinearity,
a nonlinear function is used to squash the output of each
autoencoder after we obtain the matrix W in a closed
form. Then, the next linear autoencoder is stacked to the
current one in a similar way to SDA. In order to deal with
high-dimensional data, the authors also put forward an
extension approach to further reduce the computational
complexity.

7) Feature Alignment: Note that feature augmentation
and feature reduction mainly focus on the explicit fea-
tures in a feature space. In contrast, in addition to the
explicit features, feature alignment also focuses on some
implicit features such as the statistic features and the
spectral features. Therefore, feature alignment can play
various roles in the feature transformation process. For
example, the explicit features can be aligned to generate
a new feature representation, or the implicit features can
be aligned to construct a satisfied feature transformation.

There are several kinds of features that can be aligned,
which includes subspace features, spectral features, and
statistic features. Take the subspace feature alignment as
an example. A typical approach mainly has the following
steps.

1) Subspace generation: In this step, the instances are
used to generate the respective subspaces for the
source and the target domains. The orthonormal
bases of the source- and the target-domain subspaces
are then obtained, which are denoted by MS and MT ,
respectively. These bases are used to learn the shift
between the subspaces.

2) Subspace alignment (SA): In the second step, a map-
ping, which aligns the bases MS and MT of the sub-
spaces, is learned. And the features of the instances
are projected to the aligned subspaces to generate
new feature representation.

3) Learner training: Finally, the target learner is trained
on the transformed instances.

For example, the work by Fernando et al. [100] proposes
an approach termed SA. In SA, the subspaces are generated
by performing PCA; the bases MS and MT are obtained by
selecting the leading eigenvectors. Then, a transformation
matrix W is learned to align the subspaces, which is given
by [100]

W = arg min
W

||MSW −MT ||2F = MT
SMT

where || · ||F denotes the Frobenius norm. Note that the
matrix W aligns MS with MT , or say, transforms the
source subspace coordinate system into the target subspace
coordinate system. The transformed low-dimensional
source-domain and target-domain instances are given by
XSMSW and XT MT , respectively. Finally, a learner can
be trained on the resultant transformed instances.

In light of SA, a number of transfer learning
approaches are established. For example, the article by
Sun and Saenko [101] proposes an approach that aligns
both the subspace bases and the distributions, which is
termed as subspace distribution alignment between two
subspaces (SDA-TS). In SDA-TS, the transformation matrix
W is formulated as W = MT

SMT Q, where Q is a matrix
used to align the distribution difference. The transforma-
tion matrix W in SA is a special case of the one in SDA-TS
by setting Q to an identity matrix. Note that SA is a
symmetrical feature-based approach, while SDA-TS is an
asymmetrical one. In SDA-TS, the labeled source-domain
instances are projected to the source subspace, then
mapped to the target subspace, and finally mapped back
to the target domain. The transformed source-domain
instances are formulated as XSMSWMT

T .
Another representative subspace feature alignment

approach is geodesic flow kernel (GFK), which is proposed
by Gong et al. [102]. GFK is closely related to a previous
approach termed geodesic flow subspaces (GFSs) [103].
Before introducing GFK, let us review the steps of GFS at
first. GFS is inspired by incremental learning. Intuitively,
utilizing the information conveyed by the potential path
between two domains may be beneficial to the domain
adaptation. GFS generally takes the following steps to align
features.

1) Subspace generation: GFS first generates two
subspaces of the source and the target domains by
performing PCA, respectively.

2) Subspace interpolation: The two obtained subspaces
can be viewed as two points on the Grassmann
manifold [104]. A finite number of the interpo-
lated subspaces are generated between these two
subspaces based on the geometric properties of the
manifold.

3) Feature projection and stacking: The original features
are transformed by stacking the corresponding projec-
tions from all the obtained subspaces.

Despite the usefulness and superiority of GFS, there is
a problem about how to determine the number of the
interpolated subspaces. GFK resolves this problem by inte-
grating infinite number of the subspaces located on the
geodesic curve from the source subspace to the target one.
The key of GFK is to construct an infinite-dimensional fea-
ture space that incorporating the information of all the sub-
spaces lying on the geodesic flow. In order to compute the
inner product in the resultant infinite-dimensional space,
the GFK is defined and derived. In addition, a subspace-
disagreement measure is proposed to select the optimal
dimensionality of the subspaces; a rank-of-domain metric
is also proposed to select the optimal source domain when
multisource domains are available.

Statistic feature alignment is another kind of feature
alignment. For example, Sun et al. [105] proposed an
approach termed co-relation alignment (CORAL). CORAL
constructs the transformation matrix of the source features
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by aligning the second-order statistic features, that is,
the covariance matrices. The transformation matrix W is
given by [105]

W = arg min
W

||W TCSW − CT ||2F

where C denotes the covariance matrix. Note that, com-
pared to the above subspace-based approaches, CORAL
avoids subspace generation as well as projection and is
very easy to implement.

Some transfer learning approaches are established
based on spectral feature alignment (SFA). In traditional
machine learning area, spectral clustering is a clustering
technique based on graph theory. The key of this technique
is to utilize the spectrum, that is, eigenvalues, of the
similarity matrix to reduce the dimension of the features
before clustering. The similarity matrix is constructed to
quantitatively assess the relative similarity of each pair
of data/vertices. On the basis of spectral clustering and
feature alignment, SFA is proposed by Pan et al. [106].
SFA is an algorithm for sentiment classification. This
algorithm tries to identify the domain-specific words and
domain-independent words in different domains, and then
aligns these domain-specific word features to construct
a low-dimensional feature representation. SFA generally
contains the following five steps.

1) Feature selection: In this step, feature selection
operations are performed to select the domain-
independent/pivot features. This article presents
three strategies to select domain-independent fea-
tures. These strategies are based on the occurrence
frequency of words, the mutual information between
features and labels [107], and the mutual information
between features and domains, respectively.

2) Similarity matrix construction: Once the domain-
specific and the domain-independent features are
identified, a bipartite graph is constructed. Each edge
of this bipartite graph is assigned with a weight
that measures the co-occurrence relationship between
a domain-specific word and a domain-independent
word. Based on the bipartite graph, a similarity matrix
is then constructed.

3) SFA: In this step, a spectral clustering algorithm is
adapted and performed to align domain-specific fea-
tures [108], [109]. Specifically, based on the eigen-
vectors of the graph Laplacian, a feature alignment
mapping is constructed, and the domain-specific fea-
tures are mapped into a low-dimensional feature
space.

4) Feature stacking: The original features and the low-
dimensional features are stacked to produce the final
feature representation.

5) Learner training: The target learner is trained
on the labeled instances with the final feature
representation.

There are some other spectral transfer learning
approaches. For example, the work by Ling et al. [110]
proposes an approach termed cross-domain spectral clas-
sifier (CDSC). The general ideas and steps of this approach
are presented as follows.

1) Similarity matrix construction: In the first step, two
similarity matrices are constructed corresponding to
the whole instances and the target-domain instances,
respectively.

2) SFA: An objective function is designed with respect to
a graph-partition indicator vector; a constraint matrix
is constructed, which contains pair-wise must-link
information. Instead of seeking the discrete solution
of the indicator vector, the solution is relaxed to
be continuous, and the eigen-system problem corre-
sponding to the objective function is solved to con-
struct the aligned spectral features [111].

3) Learner training: A traditional classifier is trained on
the transformed instances.

To be more specific, the objective function has a form of
the generalized Rayleigh quotient, which aims to find the
optimal graph partition that respects the label information
with small cut-size [112], to maximize the separation of
the target-domain instances, and to fit the constraints of
the pair-wise property. After eigen-decomposition, the last
eigenvectors are selected and combined as a matrix, and
then the matrix is normalized. Each row of the normalized
matrix represents a transformed instance.

V. M O D E L - B A S E D I N T E R P R E TAT I O N
Transfer learning approaches can also be interpreted from
the model perspective. Fig. 4 shows the corresponding
strategies and the objectives. The main objective of a
transfer learning model is to make accurate prediction
results on the target domain, for example, classification
or clustering results. Note that a transfer learning model
may consist of a few sub-modules such as classifiers,
extractors, or encoders. These submodules may play differ-
ent roles, for example, feature adaptation or pseudo-label
generation. In this section, some related transfer learning
approaches are introduced in proper order according to the
strategies shown in Fig. 4.

A. Model Control Strategy

From the perspective of model, a natural thought is
to directly add the model-level that regularizers to the
learner’s objective function. In this way, the knowledge
contained in the preobtained source models can be trans-
ferred into the target model during the training process.
For example, the article by Duan et al. [113], [114]
proposes a general framework termed domain adaptation
machine (DAM), which is designed for multisource transfer
learning. The goal of DAM is to construct a robust classifier
for the target domain with the help of some preobtained
base classifiers that are, respectively, trained on multiple
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Fig. 4. Strategies and objectives of the transfer learning approaches from the model perspective.

source domains. The objective function is given by

min
fT
LT,L(fT ) + λ1Χ

D(fT ) + λ2Χ(fT )

where the first term represents the loss function used
to minimize the classification error of the labeled
target-domain instances, the second term denotes different
regularizers, and the third term is used to control the
complexity of the final decision function fT . Different
types of the loss functions can be adopted in LT,L(fT ) such
as the square error or the cross-entropy loss. Some transfer
learning approaches can be regarded as the special cases
of this framework to some extent.

1) Consensus regularizer: The work by Luo et al. [115]
proposes a framework termed consensus regular-
ization framework (CRF) [116]. CRF is designed
for multisource transfer learning with no labeled
target-domain instances. The framework constructs
mS classifiers corresponding to each source domain,
and these classifiers are required to reach mutual
consensuses on the target domain. The objective func-
tion of each source classifier, denoted by fS

k (with
k = 1, . . . , mS), is similar to that of DAM, which is
presented as follows:

min
fS

k

−
nSk�
i=1

log P
�
ySk

i |x
Sk
i ; fS

k

�
+ λ2Χ

�
fS

k

�

+λ1

nT,U�
i=1

�
yj∈Y

S

�
� 1

mS

mS�
k0=1

P
�
yj |xT,U

i ; fS
k0

���

where fS
k denotes the decision function correspond-

ing to the kth source domain, and S(x) = −x log x.
The first term is used to quantify the classification
error of the kth classifier on the kth source domain,

and the last term is the consensus regularizer in the
form of cross-entropy. The consensus regularizer can
not only enhance the agreement of all the classifiers
but also reduce the uncertainty of the predictions
on the target domain. The authors implement this
framework based on the logistic regression. A differ-
ence between DAM and CRF is that DAM explicitly
constructs the target classifier, while CRF makes the
target predictions based on the reached consensus
from the source classifiers.

2) Domain-dependent regularizer: Fast-DAM is a specific
algorithm of DAM [113]. In light of the manifold
assumption [30] and the graph-based regularizer
[117], [118], fast-DAM designs a domain-dependent
regularizer. The objective function is given by

min
fT

nT,L�
j=1

�
fT

�
xT,L

j

�
− yT,L

j

�2

+ λ2Χ(fT )

+λ1

mS�
k=1

βk

nT,U�
i=1

�
fT

�
xT,U

i

�
− fS

k

�
xT,U

i

��2

where fS
k (k = 1, 2, . . . , mS) denotes the preob-

tained source decision function for the kth source
domain and βk represents the weighting parameter
that is determined by the relevance between the
target domain and the kth source domain and can be
measured based on the MMD metric. The third term
is the domain-dependent regularizer, which trans-
fers the knowledge contained in the source classifier
motivated by domain dependence. Duan et al. [113]
also introduced and added a new term to the above
objective function based on ε-insensitive loss function
[119], which makes the resultant model have high
computational efficiency.

3) Domain-dependent regularizer + universum
regularizer: Univer-DAM is an extension of the
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fast-DAM [114]. Its objective function contains an
additional regularizer, that is, Universum regularizer.
This regularizer usually utilizes an additional data set
termed Universum where the instances do not belong
to either the positive or the negative class [120].
The authors treat the source-domain instances as the
Universum for the target domain, and the objective
function of Univer-DAM is presented as follows:

min
fT

nT,L�
j=1

�
fT

�
xT,L

j

�
− yT,L

j

�2

+ λ2

nS�
j=1

�
fT

�
xS

j

��2

+ λ1

mS�
k=1

βk

nT,U�
i=1

�
fT

�
xT,U

i

�
− fS

k

�
xT,U

i

��2

+ λ3Χ(fT ).

Similar to fast-DAM, the ε-insensitive loss function
can also be utilized [114].

B. Parameter Control Strategy

The parameter control strategy focuses on the
parameters of models. For example, in the application of
object categorization, the knowledge from known source
categories can be transferred into target categories via
object attributes such as shape and color [121]. The
attribute priors, that is, probabilistic distribution parame-
ters of the image features corresponding to each attribute,
can be learned from the source domain and then used to
facilitate learning the target classifier. The parameters of a
model actually reflect the knowledge learned by the model.
Therefore, it is possible to transfer the knowledge at the
parametric level.

1) Parameter Sharing: An intuitive way of controlling
the parameters is to directly share the parameters of
the source learner to the target learner. Parameter shar-
ing is widely employed especially in the network-based
approaches. For example, if we have a neural network for
the source task, we can freeze (or say, share) most of its
layers and only finetune the last few layers to produce a
target network. The network-based approaches are intro-
duced in Section V-D.

In addition to network-based parameter sharing, matrix-
factorization-based parameter sharing is also workable.
For example, Zhuang et al. [122] proposed an approach
for text classification, which is referred to as matrix tri-
factorization-based classification framework (MTrick). The
authors observe that, in different domains, different words
or phrases sometimes express the same or similar connota-
tive meaning. Thus, it is more effective to use the concepts
behind the words rather than the words themselves as
a bridge to transfer the knowledge in source domains.
Different from PLSA-based transfer learning approaches
that utilize the concepts by constructing Bayesian net-
works, MTrick attempts to find the connections between

the document classes and the concepts conveyed by
the word clusters through matrix tri-factorization. These
connections are considered to be the stable knowledge
that is supposed to be transferred. The main idea is to
decompose a document-to-word matrix into three matri-
ces, that is, document-to-cluster, connection, and cluster-
to-word matrices. Specifically, by performing the matrix
tri-factorization operations on the source and the target
document-to-word matrices, respectively, a joint optimiza-
tion problem is constructed, which is given by

min
Q,R,W

�XS −QSRW S�2 + λ1�XT −QT RW T�2

+ λ2�QS − Q̆S�2

s.t. normalization constraints

where X denotes the document-to-word matrix, Q denotes
the document-to-cluster matrix, R represents the transfor-
mation matrix from document clusters to word clusters,
W denotes the cluster-to-word matrix, nd denotes the
number of the documents, and Q̆S represents the label
matrix. The matrix Q̆S is constructed based on the class
information of the source-domain documents. If the ith
document belongs to the kth class, Q̆S

[i,k] = 1. In the above
objective function, the matrix R is actually the shared
parameter. The first term aims to tri-factorize the source
document-to-word matrix, and the second term decom-
poses the target document-to-word matrix. The last term
incorporates the source-domain label information. The
optimization problem is solved based on the alternating
iteration method. Once the solution of QT is obtained,
the class index of the kth target-domain instance is the one
with the maximum value in the kth row of QT .

Furthermore, Zhuang et al. [123] extended MTrick and
proposed an approach termed Triplex Transfer Learn-
ing (TriTL). MTrick assumes that the domains share the
similar concepts behind their word clusters. In contrast,
TriTL assumes that the concepts of these domains can
be further divided into three types, that is, domain-
independent, transferable domain-specific, and nontrans-
ferable domain-specific concepts, which is similar to
HIDC. This idea is motivated by dual transfer learning
(DTL), where the concepts are assumed to be composed
of the domain-independent ones and the transferable
domain-specific ones [124]. The objective function of TriTL
is provided as follows:

min
Q,R,W

mS+mT�
k=1

�������Xk −Qk

�
RDI RTD RND

k

����W DI

W TD
k

W ND
k

�
��
�������

2

s.t. normalization constraints

where the definitions of the symbols are similar to those
of MTrick and the subscript k denotes the index of the
domains with the assumption that the first mS domains
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are the source domains and the last mT domains are
the target domains. The authors proposed an iterative
algorithm to solve the optimization problem. And in the
initialization phase, W DI and W TD

k are initialized based on
the clustering results of the PLSA algorithm, while W UT

k is
randomly initialized; the PLSA algorithm is performed on
the combination of the instances from all the domains.

There are some other approaches developed based
on matrix factorization. Wang et al. [125] proposed
a transfer learning framework for image classification.
Wang et al. [126] proposed a softly associative approach
that integrates two matrix tri-factorizations into a joint
framework. Do et al. [127] utilized matrix tri-factorization
to discover both the implicit and the explicit similarities for
cross-domain recommendation.

2) Parameter Restriction: Another parameter-control-
type strategy is to restrict the parameters. Different from
the parameter sharing strategy that enforces the models
share some parameters, parameter restriction strategy only
requires the parameters of the source and the target mod-
els to be similar.

Take the approaches to category learning as examples.
The category-learning problem is to learn a new decision
function for predicting a new category (denoted by the
(k + 1)th category) with only limited target-domain
instances and k preobtained binary decision functions.
The function of these preobtained decision functions
is to predict which of the k categories an instance
belongs to. In order to solve the category-learning prob-
lem, Tommasi and Caputo [128] proposed an approach
termed single-model knowledge transfer (SMKL). SMKL is
based on least-squares SVM (LSS-SVM). The advantage of
LS-SVM is that LS-SVM transforms inequality constraints to
equality constraints and has high computational efficiency;
its optimization is equivalent to solving a linear equation
system problem instead of a quadratic programming prob-
lem. SMKL selects one of the preobtained binary decision
functions and transfers the knowledge contained in its
parameters. The objective function is given by

min
f

1

2

������θ − βθ̃
������2 +

λ

2

nT,L�
j=1

ηj

�
f
�
xT,L

j

�
− yT,L

j

�2

where f(x) = θ · Φ(x) + b, β is the weighting parameter
controlling the transfer degree, θ̃ is the parameter of
a selected preobtained model, and ηj is the coefficient
for resolving the label imbalance problem. The kernel
parameter and the tradeoff parameter are chosen based
on cross-validation. In order to find the optimal weight-
ing parameter, the authors refer to an earlier work
[129]. Cawley [129] proposed a model selection mech-
anism for LS-SVM, which is based on the leave-one-out
cross-validation method. The superiority of this method
is that the leave-one-out error for each instance can be
obtained in a closed form without performing the real

cross-validation experiment. Motivated by Cawley’s work,
the generalization error can be easily estimated to guide
the parameter setting in SMKL.

Tommasi et al. [130] further extended SMKL by uti-
lizing all the preobtained decision functions. In [130],
an approach that is referred to as multimodel knowledge
transfer (MMKL) is proposed. Its objective function is
presented as follows:

min
f
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where θi and βi are the model parameter and the
weighting parameter of the ith preobtained decision func-
tion, respectively. The leave-one-out error can also be
obtained in a closed form, and the optimal value of βi

(i = 1, 2, . . . , k) is the one that maximizes the generaliza-
tion performance.

C. Model Ensemble Strategy

In sentiment analysis applications related to product
reviews, data or models from multiple product domains
are available and can be used as the source domains [131].
Combining data or models directly into a single domain
may not be successful because the distributions of these
domains are different from each other. Model ensem-
ble is another commonly used strategy. This strategy
aims to combine a number of weak classifiers to make
the final predictions. Some previously mentioned transfer
learning approaches already adopted this strategy. For
example, TrAdaBoost and MsTrAdaBoost ensemble the
weak classifiers via voting and weighting, respectively.
In this section, several typical ensemble-based transfer
learning approaches are introduced to help readers bet-
ter understand the function and the appliance of this
strategy.

As mentioned in Section IV-A, TaskTrAdaBoost, which
is an extension of TrAdaBoost for handling multisource
scenarios, is proposed in the article [33]. TaskTrAdaBoost
mainly has the following two stages.

1) Candidate classifier construction: In the first stage,
a group of candidate classifiers are constructed by
performing AdaBoost on each source domain. Note
that, for each source domain, each iteration of
AdaBoost results in a new weak classifier. In order to
avoid the over-fitting problem, the authors introduced
a threshold to pick the suitable classifiers into the
candidate group.

2) Classifier selection and ensemble: In the second stage,
a revised version of AdaBoost is performed on the
target-domain instances to construct the final clas-
sifier. In each iteration, an optimal candidate classi-
fier which has the lowest classification error on the
labeled target-domain instances is picked out and
assigned with a weight based on the classification
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error. Then, the weight of each target-domain
instance is updated based on the performance of the
selected classifier on the target domain. After the iter-
ation process, the selected classifiers are ensembled
to produce the final predictions.

The difference between the original AdaBoost and the sec-
ond stage of TaskTrAdaBoost is that, in each iteration,
the former constructs a new candidate classifier on the
weighted target-domain instances, while the latter selects
one preobtained candidate classifier which has the min-
imal classification error on the weighted target-domain
instances.

The article by Gao et al. [132] proposes another
ensemble-based framework that is referred to as locally
weighted ensemble (LWE). LWE focuses on the ensem-
ble process of various learners; these learners could be
constructed on different source domains, or be built by
performing different learning algorithms on a single source
domain. Different from TaskTrAdaBoost that learns the
global weight of each learner, the authors adopted the
local-weight strategy, that is, assigning adaptive weights
to the learners based on the local manifold structure of
the target-domain test set. In LWE, a learner is usually
assigned with different weights when classifying different
target-domain instances. Specifically, the authors adopt a
graph-based approach to estimate the weights. The steps
for weighting are outlined as follows.

1) Graph construction: For the ith source learner, a graph
GT

Si
is constructed by using the learner to classify

the target-domain instances in the test set; if two
instances are classified into the same class, they are
connected in the graph. Another graph GT is con-
structed for the target-domain instances as well by
performing a clustering algorithm.

2) Learner weighting: The weight of the ith learner for
the jth target-domain instance xT

j is proportional to
the similarity between the instance’s local structures
in GT

Si
and GT . And the similarity can be measured

by the percentage of the common neighbors of xT
j in

these two graphs.

Note that this weighting scheme is based on the
clustering-manifold assumption, that is, if two instances
are close to each other in a high-density region, they often
have similar labels. In order to check the validity of this
assumption for the task, the target task is tested on the
source-domain training set(s). Specifically, the clustering
quality of the training set(s) is quantified and checked by
using a metric such as purity or entropy. If the clustering
quality is not satisfactory, uniform weights are assigned
to the learners instead. Besides, it is intuitive that if the
measured structure similarity is particularly low for every
learner, weighting and combining these learners seems
unwise. Therefore, the authors introduce a threshold and
compare it to the average similarity. If the similarity is
lower than the threshold, the label of xT

j is determined
by the voting scheme among its reliable neighbors, where

the reliable neighbors are the ones whose label predictions
are made by the combined classifier.

The above-mentioned TaskTrAdaBoost and LWE
approaches mainly focus on the ensemble process.
In contrast, some studies focus more on the construction
of weak learners. For example, ensemble framework of
anchor adapters (ENCHOR) is a weighting ensemble
framework proposed by Zhuang et al. [133]. An anchor
is a specific instance. Different from TrAdaBoost which
adjusts weights of instances to train and produce a
new learner iteratively, ENCHOR constructs a group
of weak learners via using different representations of
the instances produced by anchors. The thought is that
the higher similarity between a certain instance and an
anchor, the more likely the feature of that instance remains
unchanged relative to the anchor, where the similarity
can be measured by using the cosine or Gaussian distance
function. ENCHOR contains the following steps.

1) Anchor selection: In this step, a group of anchors are
selected. These anchors can be selected based on
some rules or even randomly. In order to improve the
final performance of ENCHOR, Zhuang et al. [133]
proposed a method of selecting high-quality anchors.

2) Anchor-based representation generation: For each
anchor and each instance, the feature vector of an
instance is directly multiplied by a coefficient that
measures the distance from the instance to the anchor.
In this way, each anchor produces a new pair of
anchor-adapted source and target instance sets.

3) Learner training and ensemble: The obtained pairs
of instance sets can be, respectively, used to train
learners. Then, the resultant learners are weighted
and combined to make the final predictions.

The framework ENCHOR is easy to be realized in a parallel
manner in that the operations performed on each anchor
are independent.

D. Deep Learning Technique

Deep learning methods are particularly popular in the
field of machine learning. Many researchers utilize the
deep learning techniques to construct transfer learning
models. For example, the SDA and the mSLDA approaches
mentioned in Section IV-B6 utilize the deep learning
techniques. In this section, we specifically discuss the deep-
learning-related transfer learning models. The deep learn-
ing approaches introduced are divided into two types, that
is, nonadversarial (or say, traditional) ones and adversarial
ones.

1) Traditional Deep Learning: As said earlier,
autoencoders are often used in deep learning area.
In addition to SDA and mSLDA, there are some other
reconstruction-based transfer learning approaches.
For example, the article by Zhuang et al. [44], [134]
proposes an approach termed transfer learning with deep
autoencoders (TLDAs). TLDA adopts two autoencoders
for the source and the target domains, respectively.
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These two autoencoders share the same parameters.
The encoder and the decoder both have two layers with
activation functions. The diagram of the two autoencoders
is presented as follows:

XS (W1,b1)−−−−−→QS (W2,b2)−−−−−−−−−−−→
Softmax Regression

RS (Ŵ2,b̂2)−−−−−→Q̃S (Ŵ1,b̂1)−−−−−→X̃S

⇑
KL Divergence

⇓

XT (W1,b1)−−−−−→QT (W2,b2)−−−−−−−−−−−→
Softmax Regression

RT (Ŵ2,b̂2)−−−−−→Q̃T (Ŵ1,b̂1)−−−−−→X̃T .

There are several objectives of TLDA, which are listed as
follows.

1) Reconstruction error minimization: The output of the
decoder should be extremely close to the input of
encoder. In other words, the distance between XS

and X̃S as well as the distance between XT and X̃T

should be minimized.
2) Distribution adaptation: The distribution difference

between QS and QT should be minimized.
3) Regression error minimization: The output of the

encoder on the labeled source-domain instances, that
is, RS, should be consistent with the corresponding
label information Y S.

Therefore, the objective function of TLDA is given by

min
Θ
LREC(X, X̃) + λ1KL(QS�QT ) + λ2Χ(W, b, Ŵ , b̂)

+λ3LREG(RS, Y S)

where the first term represents the reconstruction error,
the second term KL(·) represents the KL divergence,
the third term controls the complexity, and the last term
represents the regression error. TLDA is trained by using
a gradient descent method. The final predictions can be
made in two different ways. The first way is to directly
use the output of the encoder to make predictions. And
the second way is to treat the autoencoder as a feature
extractor, and then train the target classifier on the labeled
instances with the feature representation produced by the
encoder’s first-layer output.

In addition to the reconstruction-based domain
adaptation, discrepancy-based domain adaptation is also a
popular direction. In earlier research, the shallow neural
networks are tried to learn the domain-independent
feature representation [135]. It is found that the shallow
architectures often make it difficult for the resultant
models to achieve excellent performance. Therefore,
many studies turn to utilize deep neural networks.
Tzeng et al. [136] added a single adaptation layer and
a discrepancy loss to the deep neural network, which
improves the performance. Furthermore, Long et al. [137]
performed multilayer adaptation and utilized multikernel
technique, and they proposed an architecture termed deep
adaptation networks (DANs).

For better understanding, let us review DAN in detail.
DAN is based on AlexNet [138] and its architecture is
presented as follows [137]:

full−−→
6th

RS
6

full−−→
7th

RS
7

full−−→
8th

RS
8

�
f(XS)

�
XS

XT

conv−−→
1st

QS
1

QT
1

conv−−→
···

QS
5

QT
5� � !

	




⇑
MK-MMD

⇓
⇑

MK-MMD
⇓

⇑
MK-MMD

⇓

Five Convolutional Layers
full−−→
6th

RT
6

full−−→
7th

RT
7

full−−→
8th

RT
8

�
f(XT )

�
� � !

Three Fully Connected Layers.

In the above network, the features are first extracted
by five convolutional layers in a general-to-specific man-
ner. Next, the extracted features are fed into one of the
two fully connected networks switched by their original
domains. These two networks consist of three fully con-
nected layers that are specialized for the source and the
target domains. DAN has the following objectives.

1) Classification error minimization: The classification
error of the labeled instances should be minimized.
The cross-entropy loss function is adopted to measure
the prediction error of the labeled instances.

2) Distribution adaptation: Multiple layers, which
include the representation layers and the output
layer, can be jointly adapted in a layer-wise manner.
Instead of using the single-kernel MMD to measure
the distribution difference, the authors turn to
MK-MMD. Gretton et al. [62] adopt the linear-time
unbiased estimation of MK-MMD to avoid numerous
inner product operations.

3) Kernel parameter optimization: The weighting para-
meters of the multiple kernels in MK-MMD should be
optimized to maximize the test power [62].

The objective function of the DAN network is given by

min
Θ

max
κ

nL�
i=1

L
�
f
�
xL

i

�
, yL

i

�
+λ

8�
l=6

MK-MMD
�
RS

l , RT
l ; κ

�

where l denotes the index of the layer. The above opti-
mization is actually a minimax optimization problem. The
maximization of the objective function with respect to the
kernel function κ aims to maximize the test power. After
this step, the subtle difference between the source and
the target domains are magnified. This train of thought is
similar to the generative adversarial network (GAN) [139].
In the training process, the DAN network is initialized
by a pretrained AlexNet [138]. There are two categories
of parameters that should be learned, that is, the net-
work parameters and the weighting parameters of the
multiple kernels. Given that the first three convolutional
layers output the general features and are transferable,
Yosinski et al. [140] freeze them and finetune the last two
convolutional layers and the two fully connected layers.
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The last fully connected layer (or say, the classifier layer)
is trained from scratch.

Long et al. [141] further extended the above DAN
approach and proposed the DAN framework. The new
characteristics are summarized as follows.

1) Regularizer adding: The framework introduces an
additional regularizer to minimize the uncertainty of
the predicted labels of the unlabeled target-domain
instances, which is motivated by entropy minimiza-
tion criterion [142].

2) Architecture generalizing: The DAN framework can
be applied to many other architectures such as
GoogLeNet [143] and ResNet [144].

3) Measurement generalizing: The distribution difference
can be estimated by other metrics. For example,
in addition to MK-MMD, Chwialkowski et al. [145]
also present the mean embedding test for distribution
adaptation.

The objective function of the DAN framework is given by

min
Θ

max
κ

nL�
i=1

L
�
f
�
xL

i

�
, yL

i

�
+ λ1

lend�
l=lstrt

DIST
�
RS

l , RT
l

�

+λ2

nT,U�
i=1

�
yj∈Y

S
�
P

�
yj |f

�
xT,U

i

���

where lstrt and lend denote the boundary indexes of the fully
connected layers for adapting the distributions.

There are some other impressive works. For example,
Long et al. [146] constructed residual transfer networks
for domain adaptation, which is motivated by deep resid-
ual learning. Besides, another work by Long et al. [147]
proposes the joint adaptation network (JAN), which
adapts the joint distribution difference of multiple lay-
ers. Sun and Saenko [148] extended CORAL for deep
domain adaptation and proposed an approach termed
Deep CORAL (DCORAL), in which the CORAL loss is added
to minimize the feature covariance. Chen et al. [149]
realized that the instances with the same label should be
close to each other in the feature space, and they not
only add the CORAL loss but also add an instance-based
class-level discrepancy loss. Pan et al. [150] constructed
three prototypical networks (corresponding toDS ,DT , and
DS ∪ DT ) and incorporated the thought of multimodel
consensus. They also adopt pseudo-label strategy and
adapt both the instance-level and class-level discrepancy.
Kang et al. [151] proposed the contrastive adaptation net-
work (CAN), which is based on the discrepancy metric
termed contrastive domain discrepancy. Zhu et al. [152]
aimed to adapt the extracted multiple feature represen-
tations and proposed the multirepresentation adaptation
network (MRAN).

Deep learning technique can also be used for mul-
tisource transfer learning. For example, the work by
Zhu et al. [153] proposes a framework that is referred to

as multiple feature spaces adaptation network (MFSAN).
The architecture of MFSAN consists of a common-feature
extractor, mS domain-specific feature extractors, and mS

domain-specific classifiers. The corresponding schematic is
shown as follows:

XS
1 · · ·XS

k · · ·XS
mS

XT

Common−−−−−→
Extractor

QS
1 · · ·QS

k · · ·QS
mS

QT

Domain-Specific−−−−−−−−−→
Extractors

RS
1 · · ·RS

k · · ·RS
mS

RT
1 · · ·RT

k · · ·RT
mS

Domain-Specific−−−−−−−−−→
Classifiers

Ŷ S
1 · · · Ŷ S

k · · · Ŷ S
mS

Ŷ T
1 · · · Ŷ T

k · · · Ŷ T
mS

.

In each iteration, MFSAN has the following steps.

1) Common feature extraction: For each source domain
(denoted by DSk with k = 1, . . . , mS), the source-
domain instances (denoted by XS

k ) are separately
input to the common-feature extractor to produce
instances in a common latent feature space (denoted
by QS

k ). Similar operations are also performed on
the target-domain instances (denoted by XT ), which
produces QT .

2) Specific feature extraction: For each source domain,
the extracted common features QS

k is fed to the kth
domain-specific feature extractor. Meanwhile, QT is
fed to all the domain-specific feature extractors,
which results in RT

k with k = 1, . . . , mS.
3) Data classification: The output of the kth

domain-specific feature extractor is input to the kth
classifier. In this way, mS pairs of the classification
results are predicted in the form of probability.

4) Parameter updating: The parameters of the network
are updated to optimize the objective function.

There are three objectives in MFSAN, that is, classifi-
cation error minimization, distribution adaptation, and
consensus regularization. The objective function is given
by

min
Θ

mS�
i=1

L
�
Ŷ S

i , Y S
i

�
+ λ1

mS�
i=1

MMD
�
RS

i , RT
i

�

+ λ2

mS�
i�=j

���Ŷ T
i − Ŷ T

j

���
where the first term represents the classification error
of the labeled source-domain instances, the second term
measures the distribution difference, and the third term
measures the discrepancy of the predictions on the
target-domain instances.

2) Adversarial Deep Learning: The thought of adversarial
learning can be integrated into deep-learning-based trans-
fer learning approaches. As mentioned above, in the DAN
framework, the network Θ and the kernel κ play a minimax
game, which reflects the thought of adversarial learning.
However, the DAN framework is a little different from the
traditional GAN-based methods in terms of the adversarial
matching. In the DAN framework, there is only a few
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parameters to be optimized in the max game, which makes
the optimization easier to achieve equilibrium. Before
introducing the adversarial transfer learning approaches,
let us briefly review the original GAN framework and the
related work.

The original GAN [139], which is inspired by the
two-player game, is composed of two models, a generator
G and a discriminator D. The generator produces the
counterfeits of the true data for the purpose of confusing
the discriminator and making the discriminator produce
wrong detection. The discriminator is fed with the mixture
of the true data and the counterfeits, and it aims to detect
whether a data is the true one or the fake one. These two
models actually play a two-player minimax game, and the
objective function is as follows:

min
G

max
D

Ex∼Ptrue [log D(x)] + Ez̃∼Pz̃
[log (1− D(G(z̃)))]

where z̃ represents the noise instances (sampled from a
certain noise distribution) used as the input of the gener-
ator for producing the counterfeits. The entire GAN can
be trained by using the back-propagation algorithm. When
the two-player game achieves equilibrium, the generator
can produce almost true-looking instances.

Motivated by GAN, many transfer learning approaches
are established based on the assumption that a good
feature representation contains almost no discrimina-
tive information about the instances’ original domains.
For example, the work by Ganin et al. [155] proposes
a deep architecture termed domain-adversarial neural
network (DANN) for domain adaptation [154]. DANN
assumes that there is no labeled target-domain instance to
work with. Its architecture consists of a feature extractor,
a label predictor, and a domain classifier. The correspond-
ing diagram is as follows.

Label−−−−−→
Predictor

Ŷ S,L

Ŷ T,U

XS,L

XT,U

Feature−−−−−→
Extractor

↑
QS,L

QT,U

"
Domain−−−−−→
Classifier

Ŝ

T̂
(Domain Label).

The feature extractor acts like the generator, which aims
to produce the domain-independent feature representation
for confusing the domain classifier. The domain classi-
fier plays the role like the discriminator, which attempts
to detect whether the extracted features come from the
source domain or the target domain. Besides, the label
predictor produces the label prediction of the instances,
which is trained on the extracted features of the labeled
source-domain instances, that is, QS,L. DANN can be
trained by inserting a special gradient reversal layer (GRL).
After the training of the whole system, the feature extractor
learns the deep feature of the instances, and the output
Ŷ T,U is the predicted labels of the unlabeled target-domain
instances.

There are some other related impressive works. The
work by Tzeng et al. [156] proposes a unified adver-
sarial domain adaptation framework. The work by
Shen et al. [59] adopts Wasserstein distance for domain
adaptation. Hoffman et al. [157] adopted cycle-consistency
loss to ensure the structural and semantic consistency.
Long et al. [158] proposed the conditional domain
adversarial network (CDAN), which utilizes a conditional
domain discriminator to assist adversarial adaptation.
Zhang et al. [159] adopted a symmetric design for the
source and the target classifiers. Zhao et al. [160] uti-
lized domain adversarial networks to solve the multisource
transfer learning problem. Yu et al. [161] proposed a
dynamic adversarial adaptation network.

Some approaches are designed for some special
scenarios. Take the partial transfer learning as an exam-
ple. The partial transfer learning approaches are designed
for the scenario that the target-domain classes are less
than the source-domain classes, that is, YS ⊆ YT .
In this case, the source-domain instances with different
labels may have different importance for domain adap-
tation. To be more specific, the source-domain and the
target-domain instances with the same label are more
likely to be potentially associated. However, since the
target-domain instances are unlabeled, how to identify
and partially transfer the important information from the
labeled source-domain instances is a critical issue.

The article by Zhang et al. [162] proposes an approach
for partial domain adaptation, which is called impor-
tance weighted adversarial nets-based domain adaptation
(IWANDA). The architecture of IWANDA is different from
that of DANN. DANN adopts one common feature extractor
based on the assumption that there exists a common
feature space where QS,L and QT,U have the similar
distribution. However, IWANDA uses two domain-specific
feature extractors for the source and the target domains,
respectively. Specifically, IWANDA consists of two feature
extractors, two domain classifiers, and one label predictor.
The diagram of IWANDA is presented as follows:

Label−−−−−→
Predictor

Ŷ S,L

Ŷ T,U

XS,L Source Feature−−−−−−−−→
Extractor

↑
QS,L

XT,U
Target Feature−−−−−−−−→

Extractor
QT,U

↓

"
+βS

−−−−−→
+Ŷ T,U

2nd Domain−−−−−−−→
Classifier

Ŝ2

T̂2

1st Domain−−−−−−→
Classifier

Ŝ1

T̂1

Weight−−−−−→
Function

βS

.

Before training, the source feature extractor and the label
predictor are pretrained on the labeled source-domain
instances. These two components are frozen in the training
process, which means that only the target feature extractor
and the domain classifiers should be optimized. In each
iteration, the above network is optimized by taking the
following steps.
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1) Instance weighting: In order to solve the partial trans-
fer issue, the source-domain instances are assigned
with weights based on the output of the first domain
classifier. The first domain classifier is fed with QS,L

and QT,U , and then outputs the probabilistic predic-
tions of their domains. If a source domain instance
is predicted with a high probability of belonging to
the target domain, this instance is highly likely to
associate with the target domain. Thus, this instance
is assigned with a larger weight and vice versa.

2) Prediction making: The label predictor outputs the
label predictions of the instances. The second classi-
fier predicts which domain an instance belongs to.

3) Parameter updating: The first classifier is optimized to
minimize the domain classification error. The second
classifier plays a minimax game with the target fea-
ture extractor. This classifier aims to detect whether
a instance is the instance from the target domain or
the weighted instance from the source domain, and to
reduce the uncertainty of the label prediction Ŷ T,U .
The target feature extractor aims to confuse the sec-
ond classifier. These components can be optimized in
a similar way to GAN or by inserting a GRL.

In addition to IWANDA, the work by Cao et al. [163]
constructs the selective adversarial network for par-
tial transfer learning. There are some other studies
related to transfer learning. For example, the work by
Wang et al. [164] proposes a minimax-based approach to
select high-quality source-domain data. Chen et al. [165]
investigated the transferability and the discriminability in
the adversarial domain adaptation and proposed a spectral
penalization approach to boost the existing adversarial
transfer learning methods.

VI. A P P L I C AT I O N
In previous sections, a number of representative trans-
fer learning approaches are introduced, which have
been applied to solving a variety of text-related/image-
related problems in their original articles. For example,
MTrick [122] and TriTL [123] utilize the matrix factor-
ization technique to solve cross-domain text classification
problems; the deep-learning-based approaches such as
DAN [137], DCORAL [148], and DANN [154], [155] are
applied to solving image classification problems. Instead
of focusing on the general text-related or image-related
applications, in this section, we mainly focus on the trans-
fer learning applications in specific areas such as medicine,
bioinformatics, transportation, and recommender systems.

A. Medical Application

Medical imaging plays an important role in the medical
area, which is a powerful tool for diagnosis. With the
development of computer technology such as machine
learning, computer-aided diagnosis has become a popular
and promising direction. Note that medical images are
generated by special medical equipment, and their labeling

often relies on experienced doctors. Therefore, in many
cases, it is expensive and hard to collect sufficient training
data. Transfer learning technology can be utilized for med-
ical imaging analysis. A commonly used transfer learning
approach is to pretrain a neural network on the source
domain (e.g., ImageNet, which is an image database con-
taining more than fourteen million annotated images with
more than 20 000 categories [166]) and then finetune it
based on the instances from the target domain.

For example, Maqsood et al. [167] finetuned the
AlexNet [138] for the detection of Alzheimer’s dis-
ease. Their approach has the following four steps. First,
the MRI images from the target domain are preprocessed
by performing contrast stretching operations. Second,
the AlexNet architecture [138] is pretrained over Ima-
geNet [166] (i.e., the source domain) as a starting point
to learn the new task. Third, the convolutional layers
of AlexNet are fixed, and the last three fully connected
layers are replaced by the new ones including one softmax
layer, one fully connected layer, and one output layer.
Finally, the modified AlexNet is finetuned by training on
the Alzheimer’s data set [168] (i.e., the target domain).
The experimental results show that the proposed approach
achieves the highest accuracy for the multiclass classifica-
tion problem (i.e., Alzheimer’s stage detection).

Similarly, Shin et al. [169] finetuned the pretrained deep
neural network for solving the computer-aided detection
problems. Byra et al. [170] utilized the transfer learning
technology to help assess knee osteoarthritis. In addition
to imaging analysis, transfer learning has some other
applications in the medical area. For example, the work
by Tang et al. [171] combines the active learning and the
domain adaptation technologies for the classification of
various medical data. Zeng et al. [172] utilized transfer
learning for automatically encoding ICD-9 codes that are
used to describe a patient’s diagnosis.

B. Bioinformatics Application

Biological sequence analysis is an important task in
the bioinformatics area. Since the understanding of some
organisms can be transferred to other organisms, trans-
fer learning can be applied to facilitate the biological
sequence analysis. The distribution difference problem
exists significantly in this application. For example,
the function of some biological substances may remain
unchanged but with the composition changed between
two organisms, which may result in the marginal dis-
tribution difference. Besides, if two organisms have a
common ancestor but with long evolutionary distance,
the conditional distribution difference would be signifi-
cant. The work by Schweikert et al. [173] uses the mRNA
splice site prediction problem as the example to analyze
the effectiveness of transfer learning approaches. In their
experiments, the source domain contains the sequence
instances from a well-studied model organism, that is,
Caenorhabditis elegans, and the target organisms include

PROCEEDINGS OF THE IEEE 23

Authorized licensed use limited to: THE LIBRARY OF CHINESE ACADEMY OF SCIENCES. Downloaded on July 09,2020 at 01:16:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Zhuang et al.: Comprehensive Survey on Transfer Learning

two additional nematodes (i.e., Caenorhabditis remanei
and Pristionchus pacificus), Drosophila melanogaster, and
the plant Arabidopsis thaliana. A number of transfer learn-
ing approaches, for example, FAM [64] and the variant of
KMM [5], are compared with each other. The experimental
results show that transfer learning can help improve the
classification performance.

Another widely encountered task in the bioinformatics
area is gene expression analysis, for example, predict-
ing associations between genes and phenotypes. In this
application, one of the main challenges is the data spar-
sity problem, since there is usually very little data of
the known associations. Transfer learning can be used to
leverage this problem by providing additional informa-
tion and knowledge. For example, Petegrosso et al. [174]
proposed a transfer learning approach to analyze and
predict the gene–phenotype associations based on the
label propagation algorithm (LPA) [175]. LPA utilizes
the protein–protein interaction (PPI) network and the
initial labeling to predict the target associations based
on the assumption that the genes that are connected
in the PPI network should have the similar labels. The
authors extended LPA by incorporating multitask and
transfer-learning technologies. First, human phenotype
ontology (HPO), which provides a standardized vocabu-
lary of phenotypic features of human diseases, is utilized
to form the auxiliary task. In this way, the associations can
be predicted by utilizing phenotype paths and both the
linkage knowledge in HPO and in the PPI network; the
interacted genes in PPI are more likely to be associated
with the same phenotype and the connected phenotypes
in HPO are more likely to be associated with the same
gene. Second, gene ontology (GO), which contains the
association information between gene functions and genes,
is used as the source domain. Additional regularizers
are designed, and the PPI network and the common
genes are used as the bridge for knowledge transfer. The
gene-GO term and gene-HPO phenotype associations are
constructed simultaneously for all the genes in the PPI net-
work. By transferring additional knowledge, the predicted
gene-phenotype associations can be more reliable.

Transfer learning can also be applied to solving the PPI
prediction problems. Xu et al. [176] proposed an approach
to transfer the linkage knowledge from the source PPI
network to the target one. The proposed approach is based
on the collective matrix factorization technique [177],
where a factor matrix is shared across domains.

C. Transportation Application

One application of transfer learning in the transporta-
tion area is to understand the traffic scene images. In this
application, a challenge problem is that the images taken
from a certain location often suffer from variations because
of different weather and light conditions. In order to solve
this problem, Di et al. [178] proposed an approach that
attempts to transfer the information of the images that

were taken from the same location in different conditions.
In the first step, a pretrained network is finetuned to
extract the feature representations of images. In the sec-
ond step, the feature transformation strategy is adopted
to construct a new feature representation. Specifically,
the dimension reduction algorithm (i.e., partial LSs regres-
sion [179]) is performed on the extracted features to
generate low-dimension features. Then, a transformation
matrix is learned to minimize the domain discrepancy of
the dimension-reduced data. Next, the SA operations are
adopted to further reduce the domain discrepancy. Note
that, although images under different conditions often
have different appearances, they often have the similar
layout structure. Therefore, in the final step, the cross-
domain dense correspondences are established between
the test image and the retrieved best matching image at
first, and then the annotations of the best matching image
are transferred to the test image via the Markov random
field model [180], [181].

Transfer learning can also be applied to the task of driver
behavior modeling. In this task, sufficient personalized
data of each individual driver are usually unavailable.
In such situations, transferring the knowledge contained
in the historical data for the newly involved driver is
a promising alternative. For example, Lu et al. [182]
proposed an approach to driver model adaptation in
lane-changing scenarios. The source domain contains the
sufficient data describing the behavior of the source
drivers, while the target domain has a few numbers of
data about the target driver. In the first step, the data from
both domains are preprocessed by performing PCA to gen-
erate low-dimension features. The authors assume that the
source and the target data are from two manifolds. There-
fore, in the second step, a manifold alignment approach is
adopted for domain adaptation. Specifically, the dynamic
time warping algorithm [183] is applied to measuring
similarity and finding the corresponding source-domain
data point of each target-domain data point. Then, local
Procrustes analysis [184] is adopted to align the two
manifolds based on the obtained correspondences between
data points. In this way, the data from the source domain
can be transferred to the target domain. And in the final
step, a stochastic modeling method (e.g., Gaussian mixture
regression [185]) is used to model the behavior of the
target driver. The experimental results demonstrate that
the transfer learning approach can help the target driver
even when few target-domain data are available. Besides,
the results also show that when the number of target
instances are very small or very large, the superiority of
their approach is not obvious. This may be because the
relationship across domains cannot be found exactly with
few target-domain instances, and in the case of sufficient
target-domain instances, the necessity of transfer learning
is reduced.

Besides, there are some other applications of trans-
fer learning in the transportation area. For example,
Liu et al. [186] applied transfer learning to driver poses
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recognition. Wang et al. [187] adopted the regularization
technique in transfer learning for vehicle-type recognition.
Transfer learning can also be utilized for anomalous activ-
ity detection [188], [189], traffic sign recognition [190],
and so on

D. Recommender-System Application

Due to the rapid increase of the amount of information,
how to effectively recommend the personalized content
for individual users is an important issue. In the field of
recommender systems, some traditional recommendation
methods, for example, factorization-based collaborative
filtering, often rely on the factorization of the user-item
interaction matrix to obtain the predictive function. These
methods often require a large amount of training data to
make accurate recommendations. However, the necessary
training data, for example, the historical interaction data,
are often sparse in real-world scenarios. Besides, for new
registered users or new items, traditional methods are
often hard to make effective recommendations, which is
also known as the cold-start problem.

Recognizing the above-mentioned problems in recom-
mender systems, kinds of transfer learning approaches,
for example, instance-based and feature-based approaches
have been proposed. These approaches attempt to make
use of the data from other recommender systems (i.e.,
the source domains) to help construct the recommender
system in the target domain. Instance-based approaches
mainly focus on transferring different types of instances,
for example, ratings, feedbacks, and examinations, from
the source domain to the target domain. The work by
Pan et al. [191] leverages the uncertain ratings (repre-
sented as rating distributions) of the source domain for
knowledge transfer. Specifically, the source-domain uncer-
tain ratings are used as constraints to help complete the
rating matrix factorization task on the target domain.
Hu et al. [192] proposed an approach termed trans-
fer meeting hybrid, which extracts the knowledge from
unstructured text by using an attentive memory network
and selectively transfer the useful information.

Feature-based approaches often leverage and transfer
the information from a latent feature space. For example,
Pan et al. [193] proposed an approach termed coordinate
system transfer (CST) to leverage both the user-side and
the item-side latent features. The source-domain instances
come from another recommender system, sharing common
users and items with the target domain. CST is devel-
oped based on the assumption that the principle coor-
dinates, which reflect the tastes of users or the factors
of items, characterize the domain-independent structure
and are transferable across domains. CST first constructs
two principle coordinate systems, which are actually the
latent features of users and items, by applying sparse
matrix tri-factorization on the source-domain data, and
then transfer the coordinate systems to the target domain
by setting them as constraints. The experimental results

show that CST significantly outperforms the nontransfer
baselines (i.e., average filling model and latent factoriza-
tion model) in all data sparsity levels [193].

There are some other studies about cross-domain rec-
ommendation [194]–[197]. For example, He et al. [198]
proposed a transfer learning framework based on the
Bayesian neural network. Zhu et al. [199] proposed a deep
framework, which first generates the user and item feature
representations based on the matrix factorization tech-
nique, and then employs a deep neural network to learn
the mapping of features across domains. Yuan et al. [200]
proposed a deep domain adaptation approach based on
autoencoders and a modified DANN [154], [155] to extract
and transfer the instances from rating matrices.

E. Other Applications

1) Communication Application: In addition to WiFi local-
ization tasks [2], [36], transfer learning has also been
employed in wireless-network applications. For example,
Bastug et al. [201] proposed a caching mechanism; the
knowledge contained in contextual information, which is
extracted from the interactions between devices, is trans-
ferred to the target domain. Besides, some studies focus
on the energy saving problems. The work by Li et al. [202]
proposes an energy saving scheme for cellular radio access
networks, which utilizes the transfer-learning expertise.
The work by Zhao and Grace [203] applies transfer
learning to topology management for reducing energy
consumption.

2) Urban-Computing Application: With a large amount
of data related to our cities, urban-computing is a promis-
ing researching track in directions of traffic monitoring,
health care, social security, and so on Transfer learn-
ing has been applied to alleviate the data scarcity prob-
lem in many urban computing applications. For example,
Guo et al. [204] proposed an approach for chain store site
recommendation, which leverages the knowledge from
semantically relevant domains (e.g., other cities with the
same store and other chain stores in the target city) to the
target city. Wei et al. [205] proposed a flexible multimodal
transfer learning approach that transfers knowledge from
a city that have sufficient multimodel data and labels to
the target city to alleviate the data sparsity problem.

Transfer learning has been applied to some recognition
tasks such as hand gesture recognition [206], face recog-
nition [207], activity recognition [208], and speech emo-
tion recognition [209]. Besides, transfer-learning expertise
has also been incorporated into some other areas such
as sentiment analysis [28], [96], [210], fraud detection
[211], social network [212], and hyperspectral image
analysis [54], [213].

VII. E X P E R I M E N T
Transfer learning techniques have been successfully
applied in many real-world applications. In this section,
we perform experiments to evaluate the performance of
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Table 2 Statistical Information of the Preprocessed Data Sets

some representative transfer learning models1 [214] of
different categories on two mainstream research areas,
that is, object recognition and text classification. The data
sets are introduced at first. Then, the experimental results
and further analyses are provided.

A. Data Set and Preprocessing

Three data sets are studied in the experiments, that
is, Office-31, Reuters-21578, and Amazon Reviews. For
simplicity, we focus on the classification tasks. The sta-
tistical information of the preprocessed data sets is listed
in Table 2.

1) Amazon reviews2 [107]: Is a multidomain sentiment
data set which contains product reviews taken from
Amazon.com of four domains (books, kitchen, elec-
tronics, and DVDs). Each review in the four domains
has a text and a rating from zero to five. In the
experiments, the ratios that are less than three are
defined as the negative ones, while others are defined
as the positive ones. The frequency of each word in
all reviews is calculated. Then, the 5000 words with
the highest frequency are selected as the attributes of
each review. In this way, we finally have 1000 pos-
itive instances, 1000 negative instances, and about
5000 unlabeled instances in each domain. In the
experiments, every two of the four domains are
selected to generate 12 tasks.

2) Reuters-215783 : Is a data set for text categorization,
which has a hierarchical structure. The data set con-
tains five top categories (Exchanges, Orgs, People,
Places, and Topics). In out experiment, we use the
top three big category Orgs, People, and Places to
generate three classification tasks (Orgs versus Peo-
ple, Orgs versus Places, and People versus Places).
In each task, the subcategories in the correspond-
ing two categories are separately divided into two
parts. Then, the resultant four parts are used as the
components to form two domains. Each domain has
about 1000 instances, and each instance has about
4500 features. Specifically, taking the task Orgs versus
People as an example, one part from Orgs and one
part from People and combined to form the source
domain; similarly, the remaining two parts form the

1https://github.com/FuzhenZhuang/Transfer-Learning-Toolkit
2http://www.cs.jhu.edu/ mdredze/data sets/sentiment/
3https://archive.ics.uci.edu/ml/data sets/Reuters-21578+Text+

Categorization+Collection

target domain. Note that the instances in the three
categories are all labeled. In order to generate the
unlabeled instances, the labeled instances are selected
from the data set, and their labels are ignored.

3) Office-31 [215]: Is an object recognition data set
which contains 31 categories and three domains, that
is, Amazon, Webcam, and DSLR. These three domains
have 2817, 498, and 795 instances, respectively. The
images in Amazon are the online e-commerce pictures
taken from Amazon.com. The images in Webcam are
the low-resolution pictures taken by web cameras.
And the images in DSLR are the high-resolution pic-
tures taken by DSLR cameras. In the experiments,
every two of the three domains (with the order con-
sidered) are selected as the source and the target
domains, which results in six tasks.

B. Experiment Setting

Experiments are conducted to compare some
representative transfer learning models. Specifically,
eight algorithms are performed on the data set Office-31
for solving the object recognition problem. Besides,
14 algorithms are performed and evaluated on the data set
Reuters-21578 for solving the text classification problem.
In the sentiment classification problem, 11 algorithms are
performed on Amazon Reviews. The classification results
are evaluated by accuracy, which is defined as follows:

accuracy =
|{x|xi ∈ Dtest ∧ f(xi) = yi}|

|Dtest|

where Dtest denotes the test data and y denotes the truth
classification label; f(x) represents the predicted classifi-
cation result. Note that some algorithms need the base
classifier. In these cases, an SVM with a linear kernel is
adopted as the base classifier in the experiments. Besides,
the source-domain instances are all labeled. And for the
performed algorithms (except TrAdaBoost), the target-
domain instances are unlabeled. Each algorithm was exe-
cuted three times, and the average results are adopted as
our experimental results.

The evaluated transfer learning models include:
HIDC [93], TriTL [123], CD-PLSA [91], [92],
MTrick [122], SFA [106], mSLDA [98], [99], SDA [96],
GFK [102], SCL [94], TCA [36], [78], CoCC [41],
JDA [38], TrAdaBoost [31], DAN [137], DCORAL [148],
MRAN [152], CDAN [158], DANN [154], [155],
JAN [147], and CAN [151].
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Table 3 Accuracy Performance on the Amazon Reviews of Four Domains: Kitchen (K), Electronics (E), DVDs (D), and Books (B)

Table 4 Accuracy Performance on the Reuters-21578 of Three Domains:

Orgs, People, and Places

C. Experimental Result

In this section, we compare over 20 algorithms on three
data sets in total. The parameters of all algorithms are
set to the default values or the recommended values men-
tioned in the original articles. The experimental results are
presented in Tables 3–5 corresponding to Amazon Reviews,
Reuters-21578, and Office-31, respectively. In order to
allow readers to understand the experimental results more
intuitively, three radar maps, that is, Figs. 5–7, are pro-
vided, which visualize the experimental results. In the
radar maps, each direction represents a task. The general
performance of an algorithm is demonstrated by a polygon
whose vertices representing the accuracy of the algorithm
for dealing with different tasks.

Table 3 shows the experimental results on Amazon
Reviews. The baseline is a linear classifier trained only on
the source domain (here, we directly use the results from
the article [107]). Fig. 5 depicts the results. As shown
in Fig. 5, most algorithms are relatively well-performed

Table 5 Accuracy Performance on Office-31 of Three Domains: Ama-

zon (A), Webcam (W), and DSLR (D)

when the source domain is electronics or kitchen, which
indicates that these two domains may contain more trans-
ferable information than the other two domains. In addi-
tion, it can be observed that HIDC, SCL, SFA, MTrick, and
SDA perform well and relatively stable in all the 12 tasks.
Meanwhile, other algorithms, especially mSLDA, CD-PLSA,

Fig. 5. Comparison results on Amazon reviews.
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Fig. 6. Comparison results on Reuters-21578.

and TriTL, are relatively unstable; the performance of them
fluctuates in a range about 20%. TriTL has a relatively
high accuracy on the tasks where the source domain is
kitchen, but has a relatively low accuracy on other tasks.
The algorithms TCA, mSLDA, and CD-PLSA have similar
performance on all the tasks with an accuracy about 70%
on average. Among the well-performed algorithms, HIDC
and MTrick are based on feature reduction (feature clus-
tering), while the others are based on feature encoding
(SDA), feature alignment (SFA), and feature selection
(SCL). Those strategies are currently the mainstreams of
feature-based transfer learning.

Table 4 presents the comparison results on Reuter-
21578 (here, we directly use the results of the baseline
and CoCC from articles [78] and [41]). The baseline is
a regularized LS regression model trained only on the
labeled target domain instances [78]. Fig. 6, which has the
same structure of Fig. 5, visualizes the performance. For
clarity, 13 algorithms are divided into two parts that corre-
spond to the two subfigures in Fig. 6. It can be observed
that most algorithms are relatively well-performed for
Orgs versus Places and Orgs versus People, but poor for
People versus Places. This phenomenon indicates that the
discrepancy between People and Places may be relatively
large. TrAdaBoost has a relatively good performance in this
experiment because it uses the labels of the instances in
the target domain to reduce the impact of the distribution
difference. Besides, the algorithms HIDC, SFA, and MTrick
have relatively consistent performance in the three tasks.
These algorithms are also well-performed in the previous
experiment on Amazon Reviews. In addition, the top two
well-performed algorithms in terms of People versus Places
are CoCC and TrAdaBoost.

In the third experiment, seven deep-learning-based
transfer learning models (i.e., DAN, DCORAL, MRAN,
CDAN, DANN, JAN, and CAN) and the baseline (i.e.,
the Alexnet [138], [140] pretrained on ImageNet [166]
and then directly trained on the target domain) are per-
formed on the data set Office-31 (here, we directly use
the results of CDAN, JAN, CAN, and the baseline from
the original articles [137], [147], [151], [158]). The
ResNet-50 [144] is used as the backbone network for all

these three models. The experimental results are provided
in Table 5 and the average performance is visualized
in Fig. 7. As shown in Fig. 7, all of these seven algorithms
have excellent performance, especially on the tasks D→W
and W → D, whose accuracy is very close to 100%. This
phenomenon reflects the superiority of the deep-learning-
based approaches and is consistent with the fact that the
difference between Webcam and DSLR is smaller than
that between Webcam/DSLR and Amazon. Clearly, CAN
outperforms the other six algorithms. In all the six tasks,
the performance of DANN is similar to that of DAN, and
is better than that of DCORAL, which indicates the effec-
tiveness and the practicability of incorporating adversarial
learning.

It is worth mentioning that, in the above experiments,
the performance of some algorithms is not ideal. One
reason is that we use the default parameter settings pro-
vided in the algorithms’ original articles, which may not be
suitable for the data set we selected. For example, GFK was
originally designed for object recognition, and we directly
adopt it into text classification in the first experiment,

Fig. 7. Comparison results on Office-31.
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which turns out to produce an unsatisfactory result (having
about 62% accuracy on average). The above experimental
results are just for reference. These results demonstrate
that some algorithms may not be suitable for the data sets
of certain domains. Therefore, it is important to choose
the appropriate algorithms as the baselines in the process
of research. Besides, in practical applications, it is also
necessary to find a suitable algorithm.

VIII. C O N C L U S I O N A N D F U T U R E
D I R E C T I O N
In this survey article, we have summarized the mechanisms
and the strategies of transfer learning from the perspec-
tives of data and model. The survey gives the clear def-
initions about transfer learning and manages to use a
unified symbol system to describe a large number of repre-
sentative transfer learning approaches and related works.
We have basically introduced the objectives and strategies
in transfer learning based on data-based interpretation
and model-based interpretation. Data-based interpretation
introduces the objectives, the strategies, and some transfer
learning approaches from the data perspective. Similarly,
model-based interpretation introduces the mechanisms
and the strategies of transfer learning but from the model
level. The applications of transfer learning have also been
introduced. At last, experiments have been conducted
to evaluate the performance of representative transfer
learning models on two mainstream area, that is, object

recognition and text categorization. The comparisons of
the models have also been given, which reflects that the
selection of the transfer learning model is an important
research topic as well as a complex issue in practical
applications.

Several directions are available for future research in
the transfer learning area. First, transfer learning tech-
niques can be further explored and applied to a wider
range of applications. And new approaches are needed to
solve the knowledge transfer problems in more complex
scenarios. For example, in real-world scenarios, sometimes
the user-relevant source-domain data comes from another
company. In this case, how to transfer the knowledge
contained in the source domain while protecting user
privacy is an important issue. Second, how to measure the
transferability across domains and avoid negative transfer
is also an important issue. Although there have been some
studies on negative transfer, negative transfer still needs
further systematic analyses [3]. Third, the interpretability
of transfer learning also needs to be investigated further
[216]. Finally, theoretical studies can be further conducted
to provide theoretical support for the effectiveness and
applicability of transfer learning. As a popular and promis-
ing area in machine learning, transfer learning shows some
advantages over traditional machine learning such as less
data dependence and less label dependence. We hope our
work can help readers have a better understanding of the
research status and the research ideas.
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